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Abstract  

    Let   be a ring with identity and   be a submodule of a left  - module . A 

submodule   of   is called  - small in    denoted by  
 
 , in case for any 

submodule   of ,       implies   .   Submodule   of   is called semi -

T- small in  , denoted by   
   

 , provided for submodule   of  ,       

implies that           . We studied this concept which is a generalization of 

the small submodules and obtained some related results  
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 Tالمقاسات الجزئية الصغرى من النمط 
 

 الاء عباس عليوي 
بغداد، العراق، كلية العلهم، جامعة بغداد، قسم الرياضيات  

 الخلاصه
يدعى   المعرف على   مقاس جزئي من المقاس   حلقة ابدالية ذات عنصر محايد و   لتكن       

  يؤدي هذا       . اذا كان  بانه مقاس جزئي شبه اصغر من النمط   من   لمقاس الجزئي ا
درسنا هذا المفههم الذي هه تعميم لمقاسات الجزئية الصغرى وحصلنا على           .ان  الى

 .بعض النتائج ذات العلاقة

1- INTRODUCTION 

     In this paper, all rings have identity elements and all modules are left unitary. Let   be a ring and 

  be an  - module. Recall that a submodule   of   is small, denoted by      if for any 

submodule   of  ,       implies that    . More details about small submodules can be 

found in earlier reports [1,2,3]. Following Beyranvand and Moradi [4], let   be a submodule of a 

module  . A submodule    of a module   is called  - small in  , denoted by   
 
 , in case for any 

submodule   of          implies       
     In this work, we introduce the concept of semi- - small submodules. Let   be a submodule of a 

module  . A submodule   of a module   is called semi- - small in    denoted by   
   

 , in case 

for any submodule   of  ,       implies            (where         is  

The Jacobson radical of   . Some properties of this kind of submodules are considered.  
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2- SEMI - - SMALL SUBMODULES 

Definition 2.1 Let   be a ring and 𝑻 be a submodule of an  -module  . A submodule   of   is 

called semi-𝑻-small in  , denoted by   
  𝑻

 , in case that for any submodule    , 𝑻      

implies that 𝑻          . 
Remarks and Examples 2.2  

1. Let   be an  -module and   be a submodule of W. Then every  -small submodule is semi –   – 

small submodule  

Proof: It is clear. 

2. The converse of (1) is not true, i.e. semi- -small submodule need not to be  -small submodule; for 

example: consider     as  - module and     ̅  ,     ̅  ,     ̅  . Then 

    ̅     ̅     ̅      . Since    , thus   is not  -small in    . But             
 ̅     ̅     ̅  , thus             . Also     ̅      ̅     ̅       (where  
    ̅    and thus   ̅     ̅    . Therefore               . Hence   is semi- -

small.  

3. Let   be an  - module. If         , then the two concepts  -small submodules and semi- - 

small submodules are equivalent.  

4. If     in the last definition, then every submodule of   is semi –   – small. 

5. If     and         , then   
   

  implies that    , for if not then  

        and hence      , which is a contradiction.  

6. It is clear that   
   

 , for an  -module  . 

Proposition 2.3: Let   be an  -module,      , and 𝑻   . If 
 

  𝑻
         

  𝑻
 . 

Proof : Suppose that      , where   is a submodule of  , thus      . But   
   

 , 

therefore             Hence   
   

 .  

Proposition 2.4: Let   be an  -module with       and 𝑻   . If   
  𝑻

  

then   
   

 .  

Proof: Suppose that   
   

 . To show that   
   

   let      , where   is a submodule of  . 

Thus          , but   
   

 . Therefore                 Since               

[5], thus            and therefore   
   

    

Before we give the converse of the last proposition, we need the following Lemma [6]. 

Lemma 2.5 [6, Lemma (1.33), p22]: Let   be a module, then          if and only if        
        , for every submodule   if  . 

Now, we have the following. 

Proposition 2.6: Let     and   be submodules of an  - module   such that    ,       

and           I    
   

         
   

 . 

Proof: Suppose that   
   

  and         . To show that   
   

 , let      , where   is a 

submodule of  . Since   
   

 , thus           . But    , thus                

          , and by Lemma (2.5), 

          . Thus   
   

 . 

Proposition 2.7: Let   be a module with submodules   ,    and 𝑻. Then   
 

  𝑻
  and   

 
  𝑻

  if 

and only if      
 

  𝑻
 . 

Proof:    : Suppose that   
 

   
  and   

 
   

 . To prove that      
 

   
 , suppose that 

         , where   is a submodule of  . Thus            . Since   
 

   
   then 

                           . But   
 

   
   thus            

               . Hence      
 

   
 . 

   : Now, suppose that      
 

   
 . To show that   

 
   

   suppose that       , where   is 

a submodule of  , thus          . Since      
 

   
 , hence           . Thus 

  
 

   
 . Similarly, we can prove that   

 
   

 .  
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Proposition 2.8: Let   be an  - module with         and        . Then   
 

  𝑻
   

and   
 

  𝑻
   if and only if      

 
  𝑻

     . 

Proof: First assume that   
 

   
   and   

 
   

  . By Proposition (2.4), 

  
 

   
     . Also, by Proposition (2.7),      

 
   

     .  

Conversely, suppose that      
 

   
     . To show that   

 
   

  , suppose that       , 

where   is a submodule of   . Thus          , but  

     
 

   
     . Therefore   

 
   

  . Similarly,   
 

   
  . 

Theorem 2.9: Let {𝑻 }    be an indexed set of submodules of an   –module  , and   be a 

submodule of  . If for each    ,   
  𝑻 

 , then   
  ∑ 𝑻    

    

Proof: suppose that ∑      , for some      then for each    ,         and by 

hypothesis,              Thus ∑               .  

Corollary 2.10: Let    and    be submodules of an  -module   such that   
 

    
  and 

  
 

    
 . Then      

 
       

  . 

Proof: Since   
 

    
 , then by Proposition (2.3),      

 
    

  and      
 

    
 . Also, by 

theorem (2.9),     
 

       
 .  

We introduce the following concept.  

Definition 2.11: Let  ,   be two right  -modules and   𝑻   . An  -epimorphism       is 

called semi- 𝑻-small in case that      
  𝑻

 .  

Proposition 2.12: Let   and   𝑻 be two submodules of Left   – module  . The following 

statements are equivalent:  

1.   
   

 . 

2. The natural epimorphism          is semi- -small.  

3. For every   –module   and   –homomorphism      ,         implies that 

              
Proof: (1)  (2): Let          be the natural epimorphism and suppose that 

         , where   is a submodule of  . But        , thus       and since   
  𝑻

 , 

therefore           . Hence      
 

   
   i.e.    is semi- -small.  

(2)  (3): It is clear.  

(3) (1): Suppose that      , for some      Let       be the inclusion homomorphism. 

Then             and by (3)                       .  
Lemma 2.13: Let   and   be  - modules and       be  - homomorphism. If   and 𝑻 are 

submodules of   such that   
  𝑻

 , then      
    𝑻 

 . In particular, if   
  𝑻

   , then   
  𝑻

    

Proof: We may assume that       . Let            , for some    . We claim that 

            et    , then            , for some     and    . Then          

and so           . This implies that           , but    , therefore          

      . Thus         (      )          , i.e.      
      

   . 

A submodule V of an R-module is called a supplement of a submodule U of W, if V is a minimal 

element in the set of submodules    , with U+F = W. Equivalently, V is a supplement of U if W = 

U+V and U    V<<V [7]. 

Proposition 2.14: Let   and 𝑻 be submodules of an  - module   and    be a supplement of   in  . 

If   
  𝑻

 , then 𝑻           .  

Proof: It is clear. 

Theorem 2.15: Let   be a submodule of an  -module   and    is a supplement of   in  . The 

following are equivalent:  

1.    
   

 ; 

2. For each submodule   of  , the relation       implies that 

           .  
Proof: (1) (2): It is clear.  
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(2) (1): Suppose that        for some    . Since           , we have   
     and by assumption,               
3- ADDITIONAL RESULTS ABOUT SEMI- -SMALL SUBMODULES 

In this section, we provide new results about semi –   – small submodules and start by the following 

proposition. 

Proposition 3.1: Let  ,   and   be submodules of a module   such that 

       . If 
 

 

 

  
𝑻  

 

 

 
, then 

 

 

 

  
𝑻  

 

 

 
 and 

 

 

 

  
𝑻  

 

 

 
. 

Proof: Let 
 

 

 

  
   

 

 

 
. To show that 

 

 

 

  
   

 

 

 
, let  

   

 
 

 

 
 

 

 
, for some submodule  

 

 
 of 

 

 
, then 

   

 
 

   

 
. Hence          , so 

   

 
 

   

 
, therefore 

   

 
 

 

 
 

 

 
. But 

 

 

 

  
   

 

 

 
, 

therefore
   

 
 

 

 
    (

 

 
)  

 

 
 

      

 
.  

So               , hence 
   

 
 

 

 
 

        

 
 

 

 
 

      

 
 

 

 
    (

 

 
). Thus 

 

 

 

  
   

 

 

 
.  

To show that 
 

 

 

  
   

 

 

 
, let 

   

 
 

 

 
 

 

 
, for some submodule   

 

 
 of 

 

 
. Then 

   

 
 

   

 
 and hence              . So 

   

 
 

   

 
, therefore 

   

 
 

 

 
    (

 

 
). Thus 

 

 

 

  
   

 

 

 
. 

Proposition 3.2: Let   be an  -module,       and 𝑻   . If   
  𝑻

 , then 
 

 

 
  𝑻

 

 
. 

Proof: Suppose that   
   

 . To show that 
 

 

 
   

 

 
, suppose that 

 

 
 

 

 
 

 

 
, where     such that 

   . Then 
 

 
 

   

 
, therefore      . But   

   
 , thus 

          . Therefore 
 

 
 

        

 
 

 

 
 

        

 
 

 

 
    (

 

 
). Hence 

 

 

 
   

 

 
. 

Proposition 3.3: Let         be a module such that              . If   
 

  𝑻 
   

and   
 

  𝑻 
  , then      

 
  𝑻  𝑻 

 . 

Proof: Let              , for some submodule   of  . Since  
             , then by [7, prop. 4.2, ch1]        , for some submodules    of    and 

submodule    of   . Hence, 

                                 .q 

One can easily shows that          and         . Since   
 

    
   and   

 
    

  , then 

              and              . Thus                               .  

Hence                    [5]. Therefore      
 

       
 . 

   Let   be an   – module.   is called a fully stable module if for each submodule   of   and for 

each  - homomorphism   from   to  ,       , see [8]. 

Proposition 3.4: Let       be a fully stable module. If   
 

  𝑻 
  , for each     then  

  
 

   
   𝑻 

   . 

Proof: Let    
   

   be a fully stable module and   
 

    
  , for each    . To show that 

 
   

  
 

   
   

  
   
   

    let 
 
   

    
   

    , for some  submodule K of  .We claim that   

 
   

        To show that, for each    , let         be the projection map and let    , then 

         and hence   ∑       where      , for all     and      for at most a finite of    . 
Since   is fully stable, then        ,     . Now,          ∑                

 and hence   ∑              . Thus          . Clearly,             .  

Thus             . Now,                 (          )      (         ).  

Therefore             , for each    . Since   
 

    
  ,     , then  

               ,      and hence                    [5].  
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   Let   be an  - module. Recall that   is a multiplication module if, for each submodule   of  , 

there exists an ideal   of   such that     , see [9]. 

 Proposition 3.5 

Let   be a finitely generated, faithful, and multiplication module and let     be ideals in  . Then 

  
   

  if and only if    
    

 .  

Proof: 

Assume that   
   

 . To show that    
    

 .        , for some submodule   of  . Since   

is a multiplication module, then     , for some ideal   of   and hence          
      . But   is finitely generated faithful and a multiplication module, therefore   is a 

cancelation module by [9]. So      . Since   
   

 , then           . Hence       

                 [6]. Thus    
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