Iraqi Journal of Science, 2021, Vol. 62, No. 6, pp: 1956-1960 DOI: 10.24996/ijs.2021.62.6.20

ISSN: 0067-2904

Semi -T- Small Submodules

Alaa A. Elewi

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 7/12/2019 Accepted: 21/1/2020

Abstract

Let *R* be a ring with identity and *T* be a submodule of a left *R*- module *W*. A submodule *N* of *W* is called *T*- small in *W*, denoted by $N_T^{\ll}W$, in case for any submodule *X* of *W*, $T \subseteq X + N$ implies $T \subseteq X$. A Submodule *N* of *W* is called semi - T- small in *W*, denoted by $N_{S-T}^{\ll}W$, provided for submodule *X* of *W*, $T \subseteq X + N$ implies that $T \subseteq X + Rad(W)$. We studied this concept which is a generalization of the small submodules and obtained some related results

Keywords: Small Submodules, T-Small Submodules, Semi -T- Small Submodules.

المقاسات الجزئية الصغرى من النمط T

الاء عباس عليوي

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصه

لتكن R حلقة ابدالية ذات عنصر محايد و T مقاس جزئي من المقاس W المعرف على R يدعى المقاس الجزئي N من W بانه مقاس جزئي شبه اصغر من النمط T. اذا كان $X + N \supseteq T$ يؤدي هذا الى ان (W) = X + Rad(W) الى ان X = X + Rad(W) بعض النتائج ذات العلاقة.

1-INTRODUCTION

In this paper, all rings have identity elements and all modules are left unitary. Let *R* be a ring and *W* be an *R*- module. Recall that a submodule *N* of *W* is small, denoted by $N \ll W$, if for any submodule *X* of *W*, X + N = W implies that X = W. More details about small submodules can be found in earlier reports [1,2,3]. Following Beyranvand and Moradi [4], let *T* be a submodule of a module *W*. A submodule *N* of a module *W* is called *T*- small in *w*, denoted by $N \ll^{m} W$, in case for any submodule *X* of *W*, $T \subseteq X + N$ implies $T \subseteq X$.

In this work, we introduce the concept of semi-*T*- small submodules. Let *T* be a submodule of a module *W*. A submodule *N* of a module *W* is called semi-*T*- small in *W*, denoted by $N \underset{S-T}{\ll} W$, in case for any submodule *X* of *W*, $T \subseteq X + N$ implies $T \subseteq X + Rad(W)$ (where Rad(W) is The Jacobson radical of *W*). Some properties of this kind of submodules are considered.

^{*}Email: alaa.abbas.math@gmail.com

2- SEMI -T- SMALL SUBMODULES

Definition 2.1 Let R be a ring and T be a submodule of an R-module W. A submodule N of W is called semi-*T*-small in *W*, denoted by $N_{S-T}^{\ll}W$, in case that for any submodule $X \leq W$, $T \subseteq X + N$ implies that $T \subseteq X + Rad(W)$.

Remarks and Examples 2.2

1. Let W be an R-module and T be a submodule of W. Then every T-small submodule is semi -T – small submodule

Proof: It is clear.

2. The converse of (1) is not true, i.e. semi-T-small submodule need not to be T-small submodule; for $T = <\bar{2} >, N = <\bar{3} >, X = <\bar{4} >.$ consider \mathbb{Z}_{12} as \mathbb{Z} -module and example: Then $\underline{T} = \langle \overline{2} \rangle \subseteq \langle \overline{4} \rangle + \langle \overline{3} \rangle = \mathbb{Z}_{12}. \text{ Since } T \notin X, \text{ thus } N \text{ is not } T\text{-small in } \mathbb{Z}_{12}. \text{ But } X + Rad(\mathbb{Z}_{12}) = \langle \overline{2} \rangle = \langle \overline$ $\bar{4} > + <\bar{6} > = <\bar{2} >$, thus $T = X + Rad(\mathbb{Z}_{12})$. Also $T = <\bar{2} > \subseteq <\bar{2} > + <\bar{3} > = \mathbb{Z}_{12}$ (where $X = \langle \overline{2} \rangle$ and thus $\langle \overline{2} \rangle \subseteq \langle \overline{2} \rangle = X$. Therefore $T \subseteq X + Rad(\mathbb{Z}_{12}) = X$. Hence N is semi-Tsmall.

3. Let W be an R- module. If Rad(W) = 0, then the two concepts T-small submodules and semi-Tsmall submodules are equivalent.

4. If T = 0 in the last definition, then every submodule of W is semi -T - small.

5. If $T \neq 0$ and Rad(W) = 0, then $N \underset{S-T}{\ll} W$ implies that $T \not\subseteq N$, for if not then $T \subseteq N + (0)$ and hence $T \subseteq (0)$, which is a contradiction.

6. It is clear that $0 \underset{S-T}{\ll} W$, for an *R*-module *W*.

Proposition 2.3: Let *W* be an *R*-module, $L \le K \le W$, and $T \le W$. If $\underset{S-T}{\overset{\ll}{\longrightarrow}} W$ then $L_{S-T} \overset{\ll}{\longrightarrow} W$.

Proof : Suppose that $T \subseteq L + X$, where X is a submodule of W, thus $T \subseteq L + K$. But $K_{S-T} \ll W$, therefore $T \subseteq X + Rad(W)$. Hence $L_{S-T} \ll W$.

Proposition 2.4: Let *W* be an *R*-module with $N \le K \le W$ and $T \le K$. If $N \underset{S-T}{\ll} K$ then $N \underset{S-T}{\ll} W$.

Proof: Suppose that $N \underset{S-T}{\ll} K$. To show that $N \underset{S-T}{\ll} W$, let $T \subseteq N + X$, where X is a submodule of W. Thus $T \subseteq N + (X \cap K)$, but $N_{S-T} \ll K$. Therefore $T \subseteq (X \cap K) + Rad(K)$. Since $Rad(K) \subseteq Rad(W)$ [5], thus $T \subseteq X + Rad(W)$ and therefore $N \underset{S-T}{\ll} W$.

Before we give the converse of the last proposition, we need the following Lemma [6].

Lemma 2.5 [6, Lemma (1.33), p22]: Let M be a module, then Rad(M) = 0 if and only if Rad(N) = $Rad(M) \cap N$, for every submodule N if M.

Now, we have the following.

Proposition 2.6: Let T, K and N be submodules of an R- module W such that $T \le K$, $N \le K \le W$

and Rad(W) = 0. If $N \underset{S-T}{\ll} W$, then $N \underset{S-T}{\ll} K$. **Proof:** Suppose that $N \underset{S-T}{\ll} W$ and Rad(W) = 0. To show that $N \underset{S-T}{\ll} K$, let $T \subseteq N + X$, where X is a submodule of K. Since $N_{S-T}^{\ll} W$, thus $T \subseteq X + Rad(W)$. But $T \subseteq K$, thus $T \subseteq (X + Rad(W) \cap K) =$ $X + Rad(W) \cap K$, and by Lemma (2.5), $T \subseteq X + Rad(K)$. Thus $N \underset{S-T}{\ll} K$.

Proposition 2.7: Let W be a module with submodules N_1 , N_2 and T. Then $N_1 \underset{S-T}{\ll} W$ and $N_2 \underset{S-T}{\ll} W$ if and only if $N_1 + N_1 \underset{S-T}{\ll} W$.

Proof: (\Rightarrow): Suppose that $N_1 \underset{S-T}{\ll} W$ and $N_2 \underset{S-T}{\ll} W$. To prove that $N_1 + N_2 \underset{S-T}{\ll} W$, suppose that $T \subseteq N_1 + N_2 + X$, where X is a submodule of W. Thus $T \subseteq N_1 + (N_2 + X)$. Since $N_1 \underset{S-T}{\ll} W$, then $T \subseteq N_2 + X + Rad(W) = N_2 + (X + Rad(W))$. But $N_2 \underset{S-T}{\ll} W$, thus $T \subseteq X + Rad(W) + Rad(W)$ Rad(W) = X + Rad(W). Hence $N_1 + N_2 \underset{S-T}{\ll} W$.

(⇐): Now, suppose that $N_1 + N_2 \underset{S-T}{\ll} W$. To show that $N_1 \underset{S-T}{\ll} W$, suppose that $T \subseteq N_1 + X$, where X is a submodule of W, thus $T \subseteq N_1 + N_2 + X$. Since $N_1 + N_2 \underset{S-T}{\overset{<}{\leftarrow}} W$, hence $T \subseteq X + Rad(W)$. Thus $N_1 \underset{S-T}{\ll} W$. Similarly, we can prove that $N_2 \underset{S-T}{\ll} W$.

Proposition 2.8: Let *W* be an *R*-module with $K_1 \le W_1 \le W$ and $K_2 \le W_2 \le W$. Then $K_1 \underset{S-T}{\ll} W_1$

and $K_{2} \underset{S-T}{\overset{\ll}{\longrightarrow}} W_{2}$ if and only if $K_{1} + K_{2} \underset{S-T}{\overset{\ll}{\longrightarrow}} W_{1} + W_{2}$. **Proof:** First assume that $K_{1} \underset{S-T}{\overset{\ll}{\longrightarrow}} W_{1}$ and $K_{2} \underset{S-T}{\overset{\ll}{\longrightarrow}} W_{2}$. By Proposition (2.4),

 $K_1 \underset{S-T}{\overset{\ll}{\underset{S-T}{\otimes}} W_1 + W_2$. Also, by Proposition (2.7), $K_1 + K_2 \underset{S-T}{\underset{S-T}{\otimes} w_1 + w_2}$. Conversely, suppose that $K_1 + K_2 \underset{S-T}{\overset{\ll}{\underset{S-T}{\otimes}} W_1 + W_2$. To show that $K_1 \underset{S-T}{\overset{\ll}{\underset{S-T}{\otimes}} W_1$, suppose that $T \subseteq K_1 + X$, where X is a submodule of W_1 . Thus $T \subseteq K_1 + K_2 + X$, but where X is a submodule of W_1 . T $K_1 + K_2 \underset{S-T}{\overset{\ll}{\longrightarrow}} W_1 + W_2$. Therefore $K_1 \underset{S-T}{\overset{\ll}{\longrightarrow}} W_1$. Similarly, $K_2 \underset{S-T}{\overset{\ll}{\longrightarrow}} W_2$.

Theorem 2.9: Let $\{T_i\}_{i \in I}$ be an indexed set of submodules of an R -module W, and K be a submodule of W. If for each $i \in I$, $K_{S-T_i} \ll W$, then $K_{S-\sum_{i \in I} T_i} \ll W$.

Proof: suppose that $\sum T_i \subseteq K + X$, for some $X \subseteq W$, then for each $i \in I$, $T_i \subseteq K + X$, and by hypothesis, $T_i \subseteq X + Rad(W)$. Thus $\sum_{i \in I} T_i \subseteq X + Rad(W)$.

Corollary 2.10: Let K_1 and K_2 be submodules of an *R*-module *W* such that $K_1 \underset{S-K_2}{\ll} W$ and $K_{2} \overset{\ll}{_{S-K_1}} W$. Then $K_1 \cap K_{2} \overset{\ll}{_{S-K_1+k_2}} W$.

Proof: Since $K_1 \underset{S-K_2}{\ll} W$, then by Proposition (2.3), $K_1 \cap K_2 \underset{S-K_2}{\ll} W$ and $K_1 \cap K_2 \underset{S-K_1}{\ll} W$. Also, by theorem (2.9), $K_1 \cap K_2 \overset{\ll}{_{S-K_1+K_2}} W$.

We introduce the following concept.

Definition 2.11: Let W, H be two right R-modules and $0 \neq T \leq W$. An R-epimorphism $F: W \rightarrow H$ is called semi- *T*-small in case that $Kerf \underset{S-T}{\overset{\ll}{\overset{}}} W$.

Proposition 2.12: Let K and $0 \neq T$ be two submodules of Left R – module W. The following statements are equivalent:

 $K \underset{s-T}{\ll} W$. 1.

The natural epimorphism $P_K: W \to W/K$ is semi-*T*-small. 2.

For every R –module F and R –homomorphism $h: F \to W$, $T \subseteq K + Imh$ implies that 3. $T \subseteq Imh + Rad(W)$

Proof: (1) \Rightarrow (2): Let $P_K: W \rightarrow W/K$ be the natural epimorphism and suppose that $T \subseteq KerP_K + X$, where X is a submodule of W. But $KerP_K = K$, thus $T \subseteq K + X$ and since $K \underset{S-T}{\ll} W$, therefore $T \subseteq X + Rad(W)$. Hence $KerP_{K} \underset{S-T}{\ll} W$, i.e. P_{K} is semi-*T*-small.

 $(2) \Longrightarrow (3)$: It is clear.

(3) \Rightarrow (1): Suppose that $T \subseteq K + X$, for some $X \leq W$. Let $i: X \to W$ be the inclusion homomorphism. Then $T \subseteq K + Imi = K + X$ and by (3) $T \subseteq X + Rad(W) = Imi + Rad(W)$.

Lemma 2.13: Let W and F be R- modules and $f: W \to F$ be R- homomorphism. If K and T are submodules of W such that $K_{S-T}^{\ll}W$, then $f(K)_{S-f(T)}^{\ll}F$. In particular, if $K_{S-T}^{\ll}W \ll F$, then $K_{S-T}^{\ll}F$.

Proof: We may assume that $f(T) \neq 0$. Let $f(T) \subseteq f(K) + X$, for some $X \leq F$. We claim that $T \subseteq K + f^{-1}(X)$. Let $t \in T$, then f(t) = f(k) + x, for some $k \in K$ and $x \in X$. Then $f(t-k) \in X$ and so $t - k \in f^{-1}(X)$. This implies that $t \in K + f^{-1}(X)$, but $K \ll W$, therefore $T \subseteq f^{-1}(X) + f^{-1}(X)$. Rad(W). Thus $f(T) \subseteq X + f(Rad(W)) \subseteq X + Rad(f)$, i.e. $f(k) \underset{s-f(T)}{\ll} F$.

A submodule V of an R-module is called a supplement of a submodule U of W, if V is a minimal element in the set of submodules $\leq W$, with U+F = W. Equivalently, V is a supplement of U if W = U+V and U \cap V<<V [7].

Proposition 2.14: Let N and T be submodules of an R-module W and N' be a supplement of N in W. If $N \underset{S-T}{\ll} W$, then $T \subseteq N' + Rad(W)$.

Proof: It is clear.

Theorem 2.15: Let K be a submodule of an R-module W and K' is a supplement of K in W. The following are equivalent:

 $K' \underset{S-K}{\ll} W;$ 1.

submodule N W. relation K + N = W2. For each of the implies that $K' \subseteq N + Rad(W).$

Proof: (1) \Rightarrow (2): It is clear.

Elewi

(2) \Rightarrow (1): Suppose that $K' \subseteq K + X$ for some $X \leq W$. Since $W = K + K' \subseteq K + X$, we have W = K + X, and by assumption, $K' \subseteq X + Rad(W)$.

3- ADDITIONAL RESULTS ABOUT SEMI-T-SMALL SUBMODULES

In this section, we provide new results about semi -T – small submodules and start by the following proposition.

Proposition 3.1: Let K, N and L be submodules of a module W such that $K \subseteq N \subseteq L \subseteq W$. If $\frac{L}{KS - \frac{T+K}{K}} \frac{W}{K}$, then $\frac{L}{NS - \frac{T+N}{N}} \frac{W}{N}$ and $\frac{N}{KS - \frac{T+N}{N}} \frac{W}{K}$. **Proof:** Let $\frac{L}{KS - \frac{T+N}{N}} \frac{W}{K}$. To show that $\frac{L}{NS - \frac{T+N}{N}} \frac{W}{N}$, let $\frac{T+N}{N} \subseteq \frac{L}{N} + \frac{X}{N}$, for some submodule $\frac{X}{N}$ of $\frac{W}{N}$, then $\frac{T+N}{N} \subseteq \frac{L+X}{N}$. Hence $T \subseteq T + N \subseteq L + X$, so $\frac{T+K}{K} \subseteq \frac{L+X}{K}$, therefore $\frac{T+K}{K} \subseteq \frac{L}{K} + \frac{X}{K}$. But $\frac{L}{KS - \frac{T+N}{N}} \frac{W}{K}$, therefore $\frac{T+K}{K} \subseteq \frac{X}{K} + Rad(\frac{W}{K}) \subseteq \frac{X}{K} + \frac{Rad(W)}{K}$. So $T \subseteq T + K \subseteq X + Rad(W)$, hence $\frac{T+N}{N} \subseteq \frac{X}{N} + \frac{Rad(W)+N}{N} \subseteq \frac{X}{N} + \frac{Rad(W)}{N} \subseteq \frac{X}{N} + Rad(\frac{W}{N})$. Thus $\frac{L}{NS - \frac{T+N}{N}} \frac{W}{N}$. To show that $\frac{N}{KS - \frac{K+N}{N}} \frac{W}{K}$, let $\frac{T+K}{K} \subseteq \frac{N}{K} + \frac{X}{K}$, for some submodule $\frac{X}{K}$ of $\frac{W}{K}$. Then $\frac{T+K}{K} \subseteq \frac{N+X}{K}$ and hence $T \subseteq T + K \subseteq N + X \subseteq L + X$. So $\frac{T+K}{K} \subseteq \frac{L+X}{K}$, therefore $\frac{T+K}{K} \subseteq \frac{L+X}{K}$ and hence $T \subseteq T + K \subseteq N + X \subseteq L + X$. So $\frac{T+K}{K} \subseteq \frac{L+X}{K}$, therefore $\frac{T+K}{K} \subseteq \frac{K}{K} + Rad(\frac{W}{K})$. Thus $\frac{N}{KS - \frac{T+N}{N}} \frac{W}{K}$.

Proposition 3.2: Let W be an R-module, $L \le K \le W$ and $T \le W$. If $K \underset{S-T}{\ll} W$, then $\frac{K}{L} \underset{S-T}{\ll} \frac{W}{L}$. **Proof:** Suppose that $K \underset{S-T}{\ll} W$. To show that $\frac{K}{L} \underset{S-T}{\ll} \frac{W}{L}$, suppose that $\frac{T}{L} \subseteq \frac{K}{L} + \frac{X}{L}$, where $X \le W$ such that $L \le X$. Then $\frac{T}{L} \subseteq \frac{K+X}{L}$, therefore $T \subseteq K + X$. But $K \underset{S-T}{\ll} W$, thus $T \subseteq X + Rad(W)$. Therefore $\frac{T}{L} \subseteq \frac{X+Rad(W)}{L} = \frac{X}{L} + \frac{Rad(W)+L}{L} \subseteq \frac{X}{L} + Rad(\frac{W}{L})$. Hence $\frac{K}{L} \underset{S-T}{\ll} \frac{W}{L}$.

Proposition 3.3: Let $W = W_1 \oplus W_2$ be a module such that $R = annW_1 + annW_2$. If $H_1 \underset{S-T_1}{\overset{\ll}{}} W_1$ and $H_2 \underset{S-T_2}{\overset{\ll}{}} W_2$, then $H_1 \oplus H_2 \underset{S-T_1 \oplus T_2}{\overset{\ll}{}} W$.

Proof: Let $T_1 \oplus T_2 \subseteq H_1 \oplus H_2 + K$, for some submodule K of W. Since $R = annW_1 + annW_2$, then by [7, prop. 4.2, ch1] $K = K_1 \oplus K_2$, for some submodules K_1 of W_1 and submodule K_2 of W_2 . Hence,

 $T_1 \oplus T_2 \subseteq \tilde{H_1} \oplus \tilde{H_2} + K_1 \oplus K_2 = (H_1 + K_1) \oplus (H_2 + K_2).q$

One can easily shows that $T_1 \subseteq H_1 + K_1$ and $T_2 \subseteq H_2 + K_2$. Since $H_1 \underset{S-T_1}{\ll} W_1$ and $H_2 \underset{S-T_2}{\ll} W_2$, then $T_1 \subseteq K_1 + Rad(W_1)$ and $T_2 \subseteq K_2 + Rad(W_2)$. Thus $T_1 \oplus T_2 \subseteq K_1 \oplus K_2 + Rad(W_1) \oplus Rad(W_2)$. Hence $T_1 \oplus T_2 \subseteq K_1 + K_2 + Rad(W)$ [5]. Therefore $H_1 \oplus H_2 \underset{S-T_1 \oplus T_2}{\ll} W$.

Let W be an R – module. W is called a fully stable module if for each submodule N of W and for each R- homomorphism f from N to W, $f(N) \subseteq N$, see [8].

Proposition 3.4: Let $W = \bigoplus W_i$ be a fully stable module. If $H_i \underset{S-T_i}{\overset{\ll}{\longrightarrow}} W_i$, for each $i \in I$ then $\bigoplus H_i \underset{S-\overset{\oplus}{\longrightarrow} T_i}{\overset{\otimes}{\longrightarrow}} W_i$.

Proof: Let $W = \bigoplus_{i \in I}^{\oplus} W_i$ be a fully stable module and $H_i \underset{S-T_i}{\ll} W_i$, for each $i \in I$. To show that $\bigoplus_{i \in I}^{\oplus} H_i \underset{S-\bigoplus_{i \in I}^{\oplus} T_i}{\ll} W_i$, let $\bigoplus_{i \in I}^{\oplus} T_i \subseteq \bigoplus_{i \in I}^{\oplus} H_i + K$, for some submodule K of W.We claim that $K = \bigoplus_{i \in I}^{\oplus} (K \cap W_i)$. To show that, for each $i \in I$, let $\pi_i: W \to W_i$ be the projection map and let $x \in K$, then $x \in \bigoplus_{i \in I} W_i$ and hence $x = \sum_{i \in I} x_i$ where $x_i \in W_i$, for all $i \in I$ and $x_i \neq 0$ for at most a finite of $i \in I$. Since W is fully stable, then $\pi_i(x) \in K$, $\forall i \in I$. Now, $\pi_i(x) = \pi_i(\sum_{i \in I} x_i) = x_i \in K \cap W_i$ and hence $x = \sum_{i \in I} x_i \in \bigoplus (K \cap W_i)$. Thus $K \subseteq \bigoplus (K \cap W_i)$. Clearly, $\bigoplus_{i \in I} (K \cap W_i) \subseteq K$. Thus $K = \bigoplus_{i \in I} (K \cap W_i)$. Now, $\bigoplus_{i \in I} T_i \subseteq (\bigoplus_{i \in I} H_i) + (\bigoplus_{i \in I} (K \cap W_i)) = \bigoplus_{i \in I} (H_i + (K \cap W_i))$. Therefore $T_i \subseteq H_i + (K \cap W_i)$, for each $i \in I$. Since $H_i \sum_{S-T_i}^{\ll} W_i$, $\forall i \in I$, then $T_i \subseteq K \cap W_i + Rad(W_i), \forall i \in I$ and hence $\bigoplus T_i \subseteq \bigoplus (K \cap W_i) + Rad(W)$ [5]. Let W be an R- module. Recall that W is a multiplication module if, for each submodule N of W, there exists an ideal I of R such that N = IW, see [9].

Proposition 3.5

Let *W* be a finitely generated, faithful, and multiplication module and let *I*, *J* be ideals in *R*. Then $I_{S-T} R$ if and only if $IW_{S-IW} W$.

Proof:

Assume that $I \underset{S-J}{\ll} R$. To show that $IW \underset{S-JW}{\ll} W$. $JW \subseteq IW + X$, for some submodule X of W. Since W is a multiplication module, then X = KW, for some ideal K of R and hence $JW \subseteq IW + KW = (I + K)W$. But W is finitely generated faithful and a multiplication module, therefore W is a cancelation module by [9]. So $J \subseteq I + K$. Since $I \underset{S-J}{\ll} R$, then $J \subseteq K + Rad(R)$. Hence $JW \subseteq KW + Rad(R)W \subseteq X + Rad(W)$ [6]. Thus $IW \underset{S-IW}{\ll} W$.

References

- 1. F. W. Anderson and K. R. Fuller, 1974. *Rings and Categories of Modules*, New York, Springer Verlag.
- 2. T.Y. Lam, 1999. A First Course In Non-commutative Rings, New York, Springer Verlag, 1991.
- **3.** T.Y. Lam, Lecture on Modules and Rings, Graduate Texts in Math., New York Heidel berg Berlin, Springer Verlag.
- **4.** R. Beyranvand and F. Morudi, **2015**. Small Submodule with Respect to An Arbitrary Submodule, *Journal of Algebra and Related Topics* 3(2): 43-5.
- 5. F. Kasch, 1982. Modules and Rings, Acadmic Press, London.
- 6. N. H. Hamada. 1996. The Radicals of Modules, M.Sc. thesis, University of Baghdad.
- 7. R. Wisbauer. 1991. Foundations of Module and Ring Theory, Philadelphia.
- 8. M. S. Abbas. 1991. On Fully Stable Modules, Ph. D. Thesis, University of Baghdad.
- 9. A. G. Naoum. 1996. ¹/₂ Cancellation Modules, Kyungpook Mathematical Journal, 36(1): 97-106.