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Abstract

Let R be a ring with identity and T be a submodule of a left R- moduleW. A
submodule N of W is called T- small in W, denoted byN<T<W, in case for any
submodule X of W, T <€ X + N impliesT < X. A Submodule N of W is called semi -
T- small in W, denoted by NS<_<TW, provided for submodule X of W, TS X + N
implies that T € X + Rad(W). We studied this concept which is a generalization of
the small submodules and obtained some related results
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1- INTRODUCTION
In this paper, all rings have identity elements and all modules are left unitary. Let R be a ring and
W be an R- module. Recall that a submodule N of W is small, denoted by N « W, if for any
submodule X of W, X + N = W implies that X = W. More details about small submodules can be
found in earlier reports [1,2,3]. Following Beyranvand and Moradi [4], let T be a submodule of a
module W. A submodule N of a module W is called T- small in w, denoted by N <T< W, in case for any
submodule X of W, T € X + N implies T c X.
In this work, we introduce the concept of semi-T- small submodules. Let T be a submodule of a
module W. A submodule N of a module W is called semi-T- small in W, denoted by NS<_<T W, in case

for any submodule X of W, TS X+ N impliesT € X + Rad(W) (where Rad (W) is
The Jacobson radical of W). Some properties of this kind of submodules are considered.
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2- SEMI -T- SMALL SUBMODULES

Definition 2.1 Let R be a ring and T be a submodule of an R-module W. A submodule N of W is
called semi-T-small in W, denoted by NS<_<T W, in case that for any submodule X <W, TS X+ N
impliesthat T € X + Rad(W).

Remarks and Examples 2.2

1. Let W be an R-module and T be a submodule of W. Then every T-small submodule is semi — T —
small submodule

Proof: Itis clear.

2. The converse of (1) is not true, i.e. semi-T-small submodule need not to be T-small submodule; for
example: consider Z;, as Z- module and T =<2> N=<3>X=<4>.Then
T=<2>C<4>+<3>=17,. Since T & X, thus N is not T-small in Z,. But X + Rad(Z,,) =<
4>+<6>=<2>, thus T=X+Rad(Z;). Also T=<2>C<2 >+<3>=17,, (where
X =<2>) and thus <2 >E< 2 >= X. Therefore T € X + Rad(Z,,) = X. Hence N is semi-T-
small.

3. Let W be an R- module. If Rad(W) = 0, then the two concepts T-small submodules and semi-T-
small submodules are equivalent.

4. If T = 0 in the last definition, then every submodule of W is semi — T — small.

5 I1f T#0 and Rad(W)=0, thenN S W implies that T ¢ N, for if not then
T € N + (0) and hence T < (0), which is a contradiction.

6. Itisclearthat0 5<_<T W, for an R-module W

Proposition 2.3: Let W be an R-module, L< K <W,and T < W. If S<_<TWthen Ls<_<T w.

Proof : Suppose that T € L + X, where X is a submodule of W, thus T € L + K. But KS<_<TW,
therefore T € X + Rad(W). Hence L ;. W.

Proposition 2.4: Let W be an R-module with N < K < WandT < K. If N [, K

then N <, W.

Proof: Suppose that N ;< K. To show that N . W, let T € N + X, where X is a submodule of W’
Thus T € N + (XNK), but N K Therefore T C (XNK) + Rad(K). Since Rad(K) € Rad(W)
[5],thus T € X + Rad(W) and therefore N S S_T w.

Before we give the converse of the last proposition, we need the following Lemma [6].

Lemma 2.5 [6, Lemma (1.33), p22]: Let M be a module, then Rad(M) = 0 if and only if Rad(N) =
Rad(M) n N, for every submodule N if M.

Now, we have the following.

Proposition 2.6: Let T,K and N be submodules of an R- module W suchthat T< K, N<K<W

and Rad(W) = 0.1f N <, W,then N < K.

Proof: Suppose that N ;. W and Rad(W) = 0. To show that N ;. K, let T S N + X, where X is a
submodule of K. Since N '« W, thusT € X + Rad(W). ButT < K thus TS (X+RadW)NK) =
X+ Rad(W)NK, and by Lemma (2.5),
T € X + Rad(K). Thus N < K.

Proposition 2.7: Let W be a module with submodules N4, N, and T. Then N; (<. W and N, (<, W if
and only if Ny + Ny (S W.

Proof: (=): Suppose that N; .° o W and N, 5o W To prove that N; + N, S 5o W suppose that
TS N;+N,+ X, where X is a submodule of W. Thus T € N; + (N, + X). Smce N, S<_<T W, then
T SN, +X+RadW) =N, + (X + Rad(W)). But N, S, W, thus TCX+Rad(W)+
Rad(W) = X + Rad(W). Hence 1v1 +N, S W

(<): Now, suppose that Ny + N, & 5o W To show that N; 5o W suppose that T € N; + X, where X is
a submodule of W, thus T € N, + N, + X. Since N; + N2 6 W hence T € X + Rad(W). Thus

N, (<, W. Similarly, we can prove that N, ;< W.
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Proposition 2.8: Let W be an R- module with K; < W; < W and K, < W, < W. Then K, S<_<T W,y
and K, ;<. W, ifand only if K; + K s«r W1 + W,.

Proof' First ~assume that K, S,W; and K, W, By Proposition (2.4),
K S oo W1 + W,. Also, by Proposmon (2.7, l{1 +K; - TW1 + W,.

Conversely, suppose that K; + K; TW1 + W,. To show that K; € oo Wl, suppose that T < K; + X,
where X is a submodule of Wl. Thus TCK +K,+X, but
Ki+K, S 5o W1 + W,. Therefore K; 5o W1 Similarly, K, .° oo W2

Theorem 29 Let {T;};c; be an |ndexed set of submodules of an R —module W, and K be a
submodule of W. If foreachi € I, K (<, W, then K ¢ 2 T

Proof: suppose that >T; € K + X, for some X C W, then for each iel, T; € K+ X, and by
hypothesis, T; € X + Rad(W). Thus Y;¢; T; € X + Rad(W).

Corollary 2.10: Let K; and K, be submodules of an R-module W such that K1s<< W and

K2s W ThenKanzs K+k2W

Proof: Slnce Kls w, then by Proposition (2.3), K; N Kzs W and K; nKzs W. Also, by
theorem (2.9),K; N l’(2 5 K +K w.

We introduce the following concept.

Definition 2.11: Let W, H be two right R-modules and 0 = T < W. An R-epimorphism F: W — H is
called semi- T-small in case that Kerf S<_<TW

Proposition 2.12: Let K and 0 # T be two submodules of Left R — module W. The following
statements are equivalent:

1. K S w.
2. The natural epimorphism Pi: W — W /K is semi-T-small.
3. For every R —module F and R —homomorphism h:F - W, T € K + Imh implies that

T € Imh + Rad(W)

Proof: (1) =(2): Let Py:W —>W/K be the natural epimorphism and suppose that
T € KerPy + X, where X is a submodule of W. But KerPy = K, thus T € K + X and since KS<_<TW,
therefore T € X + Rad(W). Hence KerPKS W, i.e. Pg is semi-T-small.

(2) =(3): Itis clear.

(3)=(1): Suppose that T < K + X, for some X < W. Let i: X — W be the inclusion homomorphism.
ThenT S K +Imi =K+ Xandby (3) T S X + Rad(W) = Im i + Rad(W).

Lemma 2.13: Let W and F be R- modules and f W — F be R- homomorphism. If K and T are
submodules of W such that K ;. W, then f(K) ,_ f(T) F. In particular, if K ;. W « F, then K ;< F.

Proof: We may assume that f(T) # 0. Let f(T) < f(K) + X, for some X < F. We claim that
TCK+f1(X).Lett €T, then f(t) = f(k) + x, for some k € K and x € X. Then f(t —k) € X
and so t —k € f~1(X). This implies that t € K + f~1(X), but K << W therefore T < f~1(X) +
Rad(W). Thus f(T) € X + f(Rad(W)) € X + Rad(f), i.e. f(k) ,_ m)

A submodule V of an R-module is called a supplement of a submodule U of W, if V is a minimal
element in the set of submodules < W , with U+F = W. Equivalently, V is a supplement of U if W =
U+Vand U n V<<V [7].

Proposition 2.14: Let N and T be submodules of an R- module W and N’ be a supplement of N in W.
If N S W, thenT S N’ + Rad(W).

Proof: It is clear.

Theorem 2.15: Let K be a submodule of an R-module W and K' is a supplement of K in W. The
following are equivalent:

1. K' S W,

2. For each submodule N of W, the relation K+ N=W implies that
K' € N + Rad(W).

Proof: (1)=(2): Itis clear.
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(2)=(1): Suppose that K' € K + X for some X <W. Since W =K+ K' € K + X, we have W =
K + X, and by assumption, K’ € X + Rad(W).

3- ADDITIONAL RESULTS ABOUT SEMI-T-SMALL SUBMODULES

In this section, we provide new results about semi — T — small submodules and start by the following

proposition.
Proposition  3.1: Let K,N and L be submodules of a module W such that
KSENcLeEWwW. If— SMKthen r+N?V/ansz<r<:’~VI:
T+N X X w
Proof: Let <T<+N e To show that <T<+N T4N let —c = + - for some submodule 5 of ~ then
N
T+N L+X T+K L X T+K L X L <K W
TQT' Hence TS T+NCEL+X, so TC P therefore TQE+E' But Es—%?
therefore =~ c % + Rad (K) cX M.
K K K K K
So TCT+KCX+Rad(W), hence Tt Z . Radlel o X Redlh) o X 4 g d(* ) Thus
L < W
Ns-DE N
To show that 2 <’1§+NE, let XNy 5, for some submodule X of Y Then
k S_T K K K K K K
%_% and hence TE€ET+KEN+XcL+X. So %g% therefore
T+K N « W
— S c - + Rad( ) Thus ES—%E'
Proposition 3.2: Let W be an R-module, L < K < W and T < W. If K ;<. W, then IL(S«TPZ

Proof: Suppose that K .~ « - W. To show that ZS—T T' suppose that = T E §+ o where X < W such that

L<X. Then Z c KLLX therefore TCK+X. But K Sw, thus
T o X+Rad(W) _ X | Rad(W)+L { K «w
T € X + Rad(W). Therefor [ SE—F] —=;t— ¢+ Rad( ) Hence - ;.

Proposmon 33 LetW = W1 @ W, be a module such that R = annWy + annW,. If Hy _° 5 W1
and st T, Wy, thenHy @ Hy ¢, eaTzW
Proof: Let T, ®T,<SH @H,+K, for some submodule K of W. Since
R = annW; + annW,, then by [7, prop. 4.2, chl] K = K; @ K,, for some submodules K; of W; and
submodule K, of W,. Hence,
TT®T,SH @ H,+K DK, =(H; +K;) D (H, + K;).q
One can easily shows that T; € H, + K; and T, € H, + K,. Since H15 w, and H, ¢ o WZ, then
T, €Ky +Rad(W;)and T, € K, + Rad(W,). Thus T, ® T, € K, & Kz + Rad(W;) © Rad(WZ)
Hence T, @ T, < K; + K, + Rad(W) [5]. Therefore H, @ H, S_Tf@TZ w.

Let W be an R — module. W is called a fully stable module if for each submodule N of W and for
each R- homomorphism f from N to W, f(N) € N, see [8].

Proposmon 3.4: Let W =@ W; be a fully stable module. If H; W;, for each i € I then @

ls T
H; s—lf,r SW;.
Proof: Let W 9 ,W; be a fully stable module and HLS«T W;, for each i € I. To show that
@ H, , let 27, @ H +K, for some submodule K of W.We claim that K =

i€l 15__59Tl lEI
o (KﬂW) To show that for each i€l let T;: W — W; be the projection map and let x € K, then
x €E@;c; W; and hence x = Y;¢; x; Where x; € W;, forall i € I and x; # 0 for at most a finite of i € I.
Since W is fully stable, then m;(x) €K, Viel. Now,m;(x) =m;Qierxi) =x; EKNW;
and hence x=Xigxi €@ (KnNW;). ThusK €@ (KnW;). Clearly, @, (KNW;) S K.
Thus K =@;¢; (K N W;). Now, @ie; T; € (Bier Hy) + (Bier (K N W) =Bie; (H; + (K N WY)).
Therefore T, S H;+(KnW;), for eah i€l. Since lS«T W;, Vie€l, then
T; € KN W; + Rad(W;), Vi €  and hence @ T; €@ (K n W;) + Rad(W) [5].
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Let W be an R- module. Recall that W is a multiplication module if, for each submodule N of W/,
there exists an ideal I of R such that N = IW, see [9].
Proposition 3.5
Let W be a finitely generated, faithful, and multiplication module and let I,] be ideals in R. Then
< H : <
I .~ Rifandonly if IW S_]WW.
Proof:
Assume that IS<_<]R. To show that IW Sfjw W.JW < IW + X, for some submodule X of W. Since W
is a multiplication module, then X = KW, for some ideal K of R and hence JW S IW + KW =
(I+ K)W. But W is finitely generated faithful and a multiplication module, therefore W is a

cancelation module by [9]. So J €1 + K. Since IS<_<]R, then ] € K + Rad(R). Hence JW < KW +

Rad(R)W € X + Rad(W) [6]. Thus IW Sij w.
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