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Abstract

In this paper, we discuss a fluid problem that has wide applications in
biomechanics, polymer industries, and biofluids. We are concerned here with
studying the combined effects of porous medium and heat transfer on MHD non-
Newtonian Jeffery fluid which flows through a two dimensional asymmetric,
inclined tapered channel. Base equations, represented by mass conservation, motion,
energy and concentration conservation, were formulated first in a fixed frame and
then transformed into a moving frame. By holding the assumptions of “long
wavelength and low Reynolds number” these physical equations were simplified
into differential equations. Approximate solutions for the velocity profile, stream
function, and temperature profile were obtained using homotopy perturbation
method. Finally, the graphical expressions and analysis for velocity curve,
temperature distribution, heat transfer coefficient, and stream function, via the
effects of important parameters that appear in the solution form, were given and
examined. These results show a parabolic behavior for velocity distribution curve,
the maximum value of which appears in the central part of the channel and reduces
toward the lower and upper walls, due the impact of porosity parameter x. While a
decreasing behavior was observed via the effect of increasing Hartman number M
(because of the existence of Lorentz force). Furthermore, the plots showed an
increased function for Jeffrey fluid parameter A, on the magnitude of the trapped
bolus.

Keywords: Jeffrey fluid, Peristaltic transport, Porous medium, Asymmetric
channel, Heat transfer.
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1. Introduction

Peristaltic transport occurs in many applications in our body and other processes in life such as
urine flow through the ureter, food flow through the gastrointestinal tract, swallowing of food through
esophagus, locomotion of worms, translocation of water in tall trees and in roller and finger pumps,
nuclear industry, and heart lung machine [1]. This mechanism is identified as sinusoidal waves
travelling along the length of the channel. Many researchers illustrated the peristaltic mechanism
theoretically and experimentally to figure out its impact in different normal and pathological
conditions [2, 3].

A non- Newtonian model in connection with peristalsis phenomenon has exploited the attention,
since many fluids in physiology and industry are classified as non -Newtonian models. Blood, paints,
shampoos, mud at low shear rate, among others, are examples of non- Newtonian models. A large
amount of literature which connects peristalsis and non-Newtonian fluids is available recently [4-6].
Peristalsis with magneto-hydrodynamics interaction gathered much attention of many papers due to its
applications in magnetic drug target, cancer diseases, blood flow, reduction of blood pressure, as well
as MRI (Magnetic Resonance Imaging) and magneto therapy. Some recent investigations in relation to
peristaltic flow of MHD fluid have been published [7, 8].

Besides that, the interaction of heat transfer analysis with peristalsis has a major impact in complex
processes such as oxygenation, hemodialysis, tissues conduction, heat convection for blood flow from
the pores, damage of undesirable cancer tissues, paper making, and food processing. Motivated by
these facts, numerous studies have been also conducted [4, 9, 10].

This investigation addresses the electrically conducting Jeffrey fluid. This model of non-
Newtonian fluid is a relatively simpler linear model that depends on time derivatives instead of
convected derivatives. Moreover, it can indicate the changes of the rheology on the peristaltic flow
even under the assumption of large wavelength, low Reynolds number, and small or large amplitude
ratio. Lakshminarayana et al. [9] studied the slip and heat transfer impact on peristaltic flow of Jeffrey
fluid in porous medium through a vertical asymmetric channel. Hayat et al. [10] examined the
peristaltic flow of MHD Jeffrey fluid in a curved channel, where the Soret and Dufour impact and
convective conditions were discussed. Reddy et al. [11] analyzed the impact of several forces on the
peristaltic flow of Jeffrey nanofluid in an asymmetric channel. Vajravelu et al. [12] studied the
peristaltic flow of Jeffery fluid in inclined asymmetric channel. More attempts which address Jeffery
fluid under different situations can be found elsewhere [13, 14].

In this work, the heat transfer analyzed for peristaltic flow of Jeffrey fluid with slip boundary
condition in an inclined tapered asymmetric porous channel is studied, taking into consideration the
magnetic force. The governing equation of Jeffery fluid flow is formulated based on continuity,
motion, and energy equations. The reduced system of differential equations is simplified by adopting
the long wave length and low Reynolds number assumptions. Finally, the flow terms, velocity,
temperature, heat transfer rate, and streamlines phenomenon are discussed graphically.
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I1. Problem Modeling

We take the peristaltic flows for incompressible MHD Jeffrey fluid in asymmetric inclined tapered
channels with porous medium. The channel is inclined at an angle a to the horizontal axis with width
(d; +d,). The electrically conducting non-Newtonian fluid is subjected to a magnetic force with
flux B = (0,0, B,). Cartesian coordinate system is considered when the X-axis is taken along the axial
direction and the Y-axis is normal to it. Furthermore, an infinite wave train moving along the walls of
the channel with velocity c is considered, such that the asymmetry is induced in the channel when the
non-uniform peristaltic wave train on the walls is assumed to have different amplitudes and phases.
The geometry equation of the channel walls is given as

¥, = B,(X,8) = d;, + X + b,Sin (27" X - ca) L

Y, = Hy(X,0) = —d; = 1hX = bSin (5 (X - cD) + ¢) @)
in which Y;, Y, are the upper and lower walls, respectively, b, b, are the amplitudes of the lower and
upper walls’ waves, m <« 1 is the non- uniform parameter, ¢ € [0, ] is the phase difference, and 1 is
the length of the wave. Consider that when ¢ = 0 approaches the symmetric channel without phase
waves and ¢ = m describes the in phase waves. In addition, d;, d,, a, b,and ¢ satisfy the inequality
in which the walls keep parallel.

b1 + by? + byb,Cosgp < (dy + dy)? ...(3)

T is the Cauchy stress tensor for Jeffrey fluid model, given by

T=-pl+5 5=t (y +1,Y) . (4)
in which S is the extra stress tensor, p is the fluid density, I is the identity tensor, A,,1, and y are the
ratios of relaxation to retardation times. The retardation time as well as the shear rate and dots over the
quantities refer to time differentiation.

The governing equations of an incompressible fluid flow are given below, where the
continuity equation has the form

ou oV
WX ..(5)

and the momentum equations are as follows

o0 | 00U , — a0 aP | 8Szx , 05% = = — .
p(§+ Uz+V5 ) —ﬁ+ a;‘("+ a’;y :U—0B3U+pgﬁ(T—T0)Slna ...(6)
and
p( +U +I76V) _g_?_l_a;;,(x_l_a;y :V—0B3V+pr(T—T0)Cosa .(7)

Also, the energy equation has the form
oT , =0T , —dT\ _ ,, (9°T T av\2 v am =
oGy G+ U5 +75) =k G+ 5%) + 2'“((6)() +(55) )+#(ﬁ+ﬁ) U ---(8)

where U,V,p, 1, 9,T, Ty, P, B, Cp, K, ko, 0,X,and Y are the laboratory frame velocity components. The
fluid density, the fluid dynamic viscosity coefficient, the gravity acceleration, the temperature field,
the mean value of temperature, the pressure, the coefficient of thermal expansion, the constant
pressure specific heat , the thermal conductivity, the permeability parameter, the electrical
conductivity, directions of the fixed frame, and Sgz, Sg7, Sy represent the components of extra stress
tensor.

Now, the following transformation between a moving wave frame (x, ¥) of velocity ¢ and fixed
frame (X, Y) is given as

x=X—ct,y=Y,u=U —c,v =V, p(x) =p(X, 1) ...(9)
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We will define the following non-dimensional quantities in order to reduce the number of extra
parameters:

_x _y _u _v _ HiX) _ ﬁz(X) dz 1 __ by
x_ﬂ 'y_dl'u_c'v hl_ dy ;hZ_ !d 6_/1 ,a _dl’
b ma d p(X) pcd1 Ko T-T, _ Hep d1
b=2m=—,p= - ,Re JKk=-5%,0 = ,Pr==£ =
dl’ d1 'p l[lC u d12l T1 TO K y Sl]) (10)

c? _ _ Bg(T1-Ty)d, 2 24 _&J
iy N = EcPr Gr = BELTRG N, = (m K) o=Tt

where Re, §,0,Gr, Pr,v,Ec,k, N,m are the number of Reynolds, the dimensionless number of
waves, the permeability parameter, the Grashof number, the Prandtl number, the kinematic viscosity,
the Eckert number, Darcy number, the parameter of perturbation, and the non-uniform parameter,
respectively.
Then we defined the relationship between the stream function ¥ (x,y) and the two velocity
components_u, v by

2 2
o a
M=—B°# 1 Fc =

_ s
u=5,,v= Sax ...(11)

By making use of the dimensionless quantities of Eq. 10 into Egs. 4-8, the mass equation is
satisfied, and the non- dimensional momentum, energy equations, and the extra stress tensor
components are derived below

d
Re8<(u+1)%+v%>— +665"" ;;y— N;2(u + 1) + GroSina ...(12)
3 v Ov ) _ _0p 0y 20 12
Re § ((u+1) 6x+v6y>_ ay+5 3y +6 o K5 v+ 8GrfCosa ...(13)
29, ) _ (522%0 2 v)?
Repro (s %4 v%g) = (5258 +529) + 200w ((32) +5(3)
gu 529v) 4N 2
+N(ay+6 ax) + 2+ 1) ..(14)
25 Shp (D v d\)\ou
Sxx_1+/11<1+ a (uax+66y)>ax --(19)
where sy, = sy, and
1 82, v a\\(ou ov
Sxy_1+,11<1+ a ( +66y)>(ay+6ax) (16)
_ =26 cdi, 0 ,vad ou
Syy_1+ll 1+ ( a g@) @ ...(17)

By taking into consideration the low Reynolds number approximations, the long wavelength, and
Eqg.11, in Egs. 12 — 17, we obtain that

Zz ﬁZTZ— N;%(u+ 1) + GréSina ...(18)
g (19)

oy
Eqg. 19 indicates that the pressure vector p is independent of y coordinate and that it depends only on x
coordinate.
826 ou\?> N 2
(20)
and
1 0u
Sxy = 141, 0y
While the dimensionless boundary conditions take the form

..(21)
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2—;’1: =-1,0=0 aty =h;(x,t) =1+ m(x +t) + aSin(2nx)
...(22)
?3_15 =—-1,0=1 aty =hy(x,t) = —d —m(x +t) — bSin(2nx + ¢)

I11. Volumetric Flow Rate

The instantaneous volume flow in the fixed frame of coordinate (X,Y, t) is given by

Q= f;f U (X,Y,b)dY ...(23)
in which H ; and H , are depending on (x, t).

While in the moving frame, the flow becomes steady with respect to the reference (x,y). The
expression of the volumetric flow rate becomes

hy _ ,_ _ _ h
q=[f, u®y)dy=[,*cdiudy ..(24)

By substituting Eq.9 into Eq.23 and with Eq.24, the relation between the volumetric flow rates in
the two frames is given by

— H. _ _ h _ _ — —

Q=f;12 (u+c)dy:fh12 (@+c)dy =q+c(H,— Hy) ...(25)
The one periodic time- mean flow (T = %) for the peristaltic wave is given by

Q=7 J, Qdi=2 [[(q+c(h, —h)dy=q+1+d ...(26)

The dimensionless time- mean flow ® and F are introduced in the fixed and wave coordinates,
respectively, as follows

o=2 |, F=4 .27
F =[50 = (hy) = (ko) ..(28)

By employing Eq.28, we derive the following dimensionless relationship
O = F —aSin(2nx) — bSin(2nx + ¢) ...(29)
2. Solution of the problem

Eqs.18 and 20 are nonlinear differential equations which are impossible to determine an exact
solution; Thus, we can use a perturbation technique. We expand u, 8, F and p for small values of
perturbation parameter N as follows
u=uy+uN+--
0 =6y+6,N+ -
F=Fy+FN+--

p=po+piN+

By substituting Eq.30 into Eqgs.18 and 20, we conclude that the following different order systems will
be gained.
1. Zero order system
Consider the system of zero order

...(30)

dpg _ 1 dP*ug 2 .
% T 3y N;“(ug + 1)Gro,Sina, ...(31)
By differentiating the above equation we get

1 93y, . 20ug 96y (. _
AT 1", + Gr 3y Sina =0, ...(32)
226, _
2y = 0 ...(33)

associated with the following boundary conditions

uy=-1, =0 aty=hy

ug=-1, =1 aty=h2}

By solving the above system, the closed form of zero order solution will be obtained as below
0o = C; +y(y,

...(34)
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e =d +GrySinaC2 e_le\/lMldl_l_ eYN1J1t+dig, C = hqy C, = 1
0 3 N2 NiJ1+2; NiJ1+a;, ~ 17 hy—hy "2 hy—h,'

dl — _((eh1N11/1+11+h2N1,/1+Al GTSiTlCZCZ
(—eh1N11)1+ll + eh2N11)1+2.1 + thlm _ thlm))/((ethlﬁl'f/‘ll _ eh2N11/1+/‘11 —
eZh1N1«/1+l1+th1«/1+ﬂ1 + eh1N1«/1+l1+2th1«/1+A1)N12))’

d2 =

(GrSinaCz (_eh1N11/1+11 + eh2N11/1+Al + eh1N11/1+Al+h2N1,/1+11h1N1 /1 +/11 _
ethl‘/l"'Al"'thl‘/1+’11h2N1 /1 + ll))/((ethl‘/Hll _ ehZNl‘/l'“ll _ 6,2th1,/1+A1+h2N11/1+/11 +
ethl‘/1+11+2h2N1‘/1+11)N12) ,

d; = —((e?MNV 1+ GrSinaC, — e2"2 NV 1+ GrSinaC, — eMN VM GrSinaCyhy N1 + A4/
((_eh1N1‘/1+/11 + ehaN1V1+21 4 eZh1N1\/1+Al+h2Nl,/1+/11 _ eh1N1M+2h2N1M)N13m))’

2. First order system
The concluded first order system is given as

dpy _ 1 9%u, _ 2 ,
x — 1iA. 097 N “uq + Gré,Sine,
...(35)
L Py 20w o g
AT 1", + Gr 3y Sina = 0, ...(36)
%0, _ _ &)2 1 2
dy?2 - (6y2 k (uO + 1) ’ (37)

associated with the following boundary conditions

u;=0, 6,=0 aty=h

u; =0, 6,=0 atyzhz}

The closed form for the solution are obtained, by applying Mathematica 10 program, as follows

0, = d, + yds + —————— (—Gr2y*Sina®CZN2(1 + ;)% — 4Gry3SinaCy (1 + d3)Nt (1 +
12KNP(1+44)?

11)? = 3e NI G2 N2 (1 + kNZ (1 + 1)) — 3e2YNiVI+t g2 N2 (1 + kNZ(1 + 4,)) +
24e YNVt hd, (1 4 d3)NEJ1 + A, + GrSinaC, + yN;/1+ A, — kNZ2(1 + 1,))),

...(38)

u, =
e—le 1+1151 ele 1+).152

53 T TN itk + Ny J1+A,

1 _ Fos i —2yN;J1+A 203
24kN3 (1+1,)2 (=1+ Cos2a + iSin2a) ( eV GrCosad Ny

e 2YN1y 1+’11GrSinadi13) (1+ kN? + kNZA,) +
! (—1+ Cos2a + iSin2a) (—iezleV HhiGrCosadi NG — e2YNi1th GrSinad%Nf’)

24kN3(142,)2

Where

53 -

- z4k1v;’(11+/11)2 (=1+ Cos2a + iSin2a) (—ie_Zth” 4 GrCosad? NG —

e 2N GrSingd?NG ) (1 + kNZ + kNZA,) —
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! (—1 + Cos2a + iSin2a) (—iez’llNlV “hGrCosadiNG —

24kN3(142,)2
2hy Ny /142 . 2773 2 2 _ 1 _ 1. 4 _1g. 4
e2hiNy 1GrSinads Ny ) (1 + kNf + kNfAq) AN A ( ; [Cos3ah; 4Sm3ah1) ,

(i4 =

1 1
hi—h, ( 12kNS(1+14)2

d3)NF T+ 71 + GrSinaCy (=2 + hoNyyT+ A7 + kNZ(1 + m))))

hy (—Gr2Sina?CZhiNZ (1 + A1) — 4GrSinaC, — 24eMNiVithd, [ (1 +

d5 — _((e—2h1N1«/1+11—2th11/1+ﬂ1 (—4862h1N1‘/1+’11+h2N1‘/1+’11GrSinaC2d1/(12k(h1
— ha)NP (1 + 41)%))

The values of coefficients(C3, C4,Cs,Cg) are large and non-constant. They are calculated by
applying the boundary conditions in Eqg.38 using Mathematica 10 programs.
3. Graphical Discussion

This part of the work explains the plotted outcomes of all the important parameters (e.g. parameter
of permeability o, the Grashof number Gr, the Hartman number, porosity parameter k, the Jeffrey
parameter A, parameter of perturbation N, phase difference parameter ¢, non-uniform parameter m)
on the velocity distribution, temperature profile, heat transfer rate, and the streamline contours.
1. Velocity Profile

The velocity curve was drawn for fixed values of {x = 0.1,t = 0.1} and the graphs show that the
behavior of velocity distribution is parabolic in nature. Figure-1a detects the variation of u(y) curve
upon different values of Hartman number M. One can conclude that u(y) values decreases against the
enhancement of M magnitude. Two different reactions of the porosity parameter k impact on u(y) are
seen, i.e. an increase on u(y )curve in the central part of the channel is observed for ascending values
of k, while a reduction function near the upper and lower walls are noticed (Figure-1b). The impact of
Gershof number on velocity curve is plotted in Figure-2a. It is observed that the velocity curve grows
up with the increase in the value of Gershof parameter. From Figure-2b, we conclude an increasing
effect of Jeffrey parameter 1,0n the velocity axial. A descending behavior on the velocity profile is
noticed due to the increase in the phase difference parameter ¢ (Figure-3a). In Fig.3b, the impact of
the perturbation parameter N on u(y) is illustrated, indicating an increase along the length of the
channel.

@ (b)
f‘

k=03
k=04

021

020 +

08 10 12 14 16

Figure 1- Velocity profile with various magnitudes of (a) Hartman number M, (b) Porosity
parameter x , for fixed values of parameters {¢ =n/10,a =n/6,a=0.7,b=1,d=0.1,N =
0.1,6r=1,0 =0.2,m = 0.2,A, = 0.5}.
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(b)

050

045 -

040 -

035 -

Figure 2- Velocity profile with various magnitudes of (a) Gershof number Gr, (b) Jeffrey parametera,
, for fixed values of parameters {¢ =n/10,a =n/6,a=0.7,b=1,d =0.1,N =0.1,0 =
02,m=02M=0.1,k=0.2}.

(@ 0

Figure 3- Velocity profile with various magnitudes of (a) phase difference parameter ¢, (b)
perturbation parameter N, for fixed values of parameters {&« = 7/6,a =0.7,b =1,d =0.1,Gr =
1,06 =0.2,m=0.2,14; =0.5M = 0.1,k = 0.2}.
2. Temperature Distribution

Figures 4-6 show the manner of the temperature distribution for various values of
(Gr,M, k, N, 1, and m). One can observe from these figures that 6 (y) attains a maximum value in the
central part of the channel. Figure-4a depicts that the increment of Gershof number tends the
temperature curve 6(y) to increase. Figure-4b shows the reverse of the reaction of Hartman number
on 8(y) profile. It is found that when the value of M rises the temperature distribution enlarges. When
the magnitude of porosity parameter x is high, a remarkable resistance in temperature curve is
produced (Figure-5a). The behavior of the perturbation parameter N on temperature profile is sketched
in Figure-5b, demonstrating that the enhancement in N causes an increase in 8(y) magnitude. Higher
values of Jeffery parameter A, cause an enhancement in the temperature profile (Figure-6a). Similar
observations are made with ascending values of non-uniform parameter m against 6(y), i.e. the
generation of more heat and hence the increase of 8(y) (Figure-6b).

@ )

12 Fm

12 £

105 10

o N b O ©
T T T T T
o N A~ O ©
T T T T

-15 -10 -05 00 05 10 15 -20 -15 -10 -05 00 05 10 15
y y

Figure 4- Temperature profile with various values of (a) Gershof number, (b) Hartman number , for
fixed values of parameters {a =n/6,a=0.7,b=1,d=0.1,“N=0.1",¢ = g,G) =02, “‘m=
0.27,44 = 0.5,k = 0.2}.
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80 F 10 F T T
60 | 8t
6+
< 40 - >
4
20 + of
Okt . . . . . e Ot A . . . . \ A
~15 ~10 ~05 0.0 05 10 15 -15 -10 —-05 0.0 0.5 10 15
Yy y

Figure 5- Temperature profile with various values of (a) Porosity parameter x, (b) perturbation
parameter N, for fixed values of parameters {a =n/6,a=07,b=1,d=01“N=01",¢ =

2,0=02,"m=02"4; =0.5M=01,6r = 0.2}.

@ (b)
20 E T T T T
30 F
15 .
25 ¢
- 20 F < 10
15 E
10 F 5h
5
O | & . . . . . -
-15 -10 -05 0.0 05 10 15
y

Figure 6- Temperature profile with various values of (a) Jeffery number A;, (b) non-uniform
parameter m, for fixed values of parameters {a =n/6,a=07,b=1,d=01“N=01",¢ =

2,0=02,k=02,M=01,6r= 0.2}.

3. Heat transfer rate

Figures-(7-9) show the flow structure of heat transfer coefficient Z(x) at the wall y = h,, for
various magnitudes of parameters (M, b, N, Gr, k, m). We noticed that the heat transfer profile takes an
oscillatory type. Figures- 7a, b and 8a, b display the effect of Hartman number, amplitude of upper
wall b, perturbation parameter N, and Gershof number Gr on heat transfer Z(x) profile. One can
notice the mixed behavior for the heat transfer profile against ascending values of M, b, N,and Gr
along the length of the channel; i.e. the profile increases in the upper part of the x- axis and decreases
downwards. Whereas a decreasing function above the x-axis and an increasing function below it are
observed through the uplifting values of porosity parameter k (Figure-9a). It is noticed that there is a
considerable increment in heat transfer profile for higher values of non-uniform parameter m (Figure-
9b).

4 e . . - 10 F

e . ol

4
= -2t - 1 ,;
z —— M=01 = 00 N 7
-4 F - _ 3
~ M=07 ‘,~ o

M=14 | —05 [
_sf — M=23 |
~10 L ‘ ‘ J -10 L ‘
-10 -05 00 05 10 -10 -05

Figure 7- Heat transfer profile with various values of (a) Hartman number M, (b) Amplitude
parameter of the upper wall, for fixed values of parameters {a =n/6,a=07m=0.1,d =

0.1,“N=01"¢ = g,@ =02,k=0214=01,6r = 0.2}.

3350



Salman and Ali Iragi Journal of Science, 2020, Vol. 61, No. 12, pp: 3342-3354

- i.O - (3.5 00 O.é lb - i.O — 6.5 0.0
X X
Figure 8- Heat transfer profile with various values of (a) Perturbation parameter N, (b) Gershof
number Gr, for fixed values of parameters {« =7/6,a=0.7, “m=0.1",d =0.1,M =0.1, “¢p =
/37,0 =0.2,k =0.2,4, = 0.1,b = 0.2}.
(a) | )
10 F 3

2F
o5 [ s \
— ¥ % S - = \
= 00 %\\ % Z o
™ ¥ N Y Nk =01
--= m=02 == =07
-05 ]
et me03 of cme k= 14]

— m=04 k=23
-10 b . . o . . . . 4
-10 -05 0.0 0.5 10 -10 -05 0.0 05 10
X X

Figure 9- Heat transfer profile with various values of (a) Porosity parameter x, (b) Non-uniform
parameter m, for fixed values of parameters {&« =7/6,a =0.7,N =0.1,d =0.1,M =0.1,¢ =
/3,0 =0.2,6r = 0.2,1; = 0.1,b = 0.2}.

4. Trapping Phenomena

The formation of internally circulating bolus that is enclosed by streamlines is known as trapping,
which is moving along the peristaltic waves. Figures- 10-14 are presented to illustrate the behavior of
different parameters on streamlines via Hartman number M, porosity parameter k, Gershof number
Gr, perturbation parameter N, and Jeffrey parameter A;. It can be deduced from Figure-10 that upon
decreasing the effect of Hartman number on the flow, the size of the trapped bolus decreases while its
number remains constant. The action of porosity parameter on the trapped bolus is recorded in Figure-
11. The magnitude of the trapping bolus shrinks in size while higher number of bolus is created. It is
noted from Figure-12 that the values of trapped bolus, as well as its number, are moderately enhanced
. The ascending magnitude of perturbation parameter N causes an increase in both size and number of
trapped bolus (Figure-13). The behavior of flow against the variation of Jeffrey parameter A, is
recorded in Figure-14. The plot shows that the increase in A, values causes an enhancement in the
magnitude of trapped bolus, while its number is reduced.
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Figure 10- Stream function with various values of Hartman number M = {0.6,0.9} d for fixed values
of parameters {a« =n/3,a=04,m=0.2,d =0.6,Gr =1,¢ = g,(a =0.2,k=09,4, =05,b =

0.5,N = 0.1}.
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Figure 11- Stream function with various values of porosity parameter ¥ = {0.1,0.2} for fixed values
of parameter {a =n/3,a=04,m=10.2,d=0.7,6r=1,¢ =n/8,0=02,M =11, =0.2,b =
0.5,N = 0.1}.
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Figure 12- Stream function with various values of Gershof number Gr = {1,3} for fixed values of
parameters {&« = n/3,a = 04,m =0.2,d =0.6,k =09,¢ =1n/6,0 =0.2,M =0.8,4, =0.2,b =

0.5,N = 0.1}.
9 (h)

-10 -05 00 05 10 15
X

Figure 13- Stream function with various values of perturbation parameter N = {0.1, 0.3} for fixed

values of parameter {a =7/3,a=04,m=02,d=0.7,k=0.1,¢ =7n/8,0=02,M =11, =

0.2,b =0.5,Gr =1}
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Figure 14- Stream function with various values of Jeffery number A; = {0.1,0.6} for fixed values of

parameter {a@ =7n/3,a=04,m=0.2,d =0.6,k =0.1,¢p =n/6,0=02,M =0.8,N =0.1,b =

0.5,Gr = 1}.

4. Conclusions

In this investigation the effects of heat transfers and porous medium on the peristaltic transport of
MHD Jeffrey fluid in an inclined tapered asymmetric channel are approximately determined using the
perturbation technique, after simplifying the governing equation and energy equation depending on
long wavelength assumption and small Renold number approximation. The significant outcomes of
this study are listed below.
1. Velocity distribution has a parabolic behavior in nature, and it rises in the central part of channel
and reduces due the impact of Hartman number, while an opposite behavior is seen via the effect of
perturbation parameter. An increasing action in the central part of the channel and a reduction result
near the walls are observed due to the increment of porosity parameter.
2. Gershof number and Jeffery number have the same effect of increasing the velocity profile.
3. Temperature distribution becomes higher in magnitude due to the effect of Hartman number,
Gershof number, and perturbation parameter; however, it is diminished upon ascending values of
porosity parameter.
4. The results of heat transfer rate show an oscillatory graphical picture due to contraction and
expansion of peristaltic waves along the walls of the channel.
5. A mixed behavior for the absolute value of heat transfer is noticed across the peristaltic waves due
to an increment in M, Gr, and k, but an increasing effect for the non-uniform parameter m is depicted
on Z(x).
6. The size of the trapping bolus decreases upon an increment of Hartman number, while the bolus
reduces in size and increases in number as the porosity parameter enhances.
7. The effects of Gr, N and A,are opposite to one another, i.e. the magnitude of the bolus and number
of circulations is increased with the increase in the magnitude of Gr and N, whereas it is decreased
via the increase of Jeffery number values.
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