
Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318
 DOI: 10.24996/ijs.2021.62.1.29

__

*Email: h.tareq1205@coeng.uobaghdad.edu.iq

308

Dynamic Fault Tolerance Aware Scheduling for Healthcare System on Fog

Computing

Hadeel T. Rajab

*
, Manal F. Younis

Department of Computer, College of Engineer, University of Baghdad, Baghdad, Iraq

Received: 4/12/2020 Accepted: 15/3/2020

Abstract

 Internet of Things (IoT) contributes to improve the quality of life as it supports

many applications, especially healthcare systems. Data generated from IoT devices

is sent to the Cloud Computing (CC) for processing and storage, despite the latency

caused by the distance. Because of the revolution in IoT devices, data sent to CC has

been increasing. As a result, another problem added to the latency was increasing

congestion on the cloud network. Fog Computing (FC) was used to solve these

problems because of its proximity to IoT devices, while filtering data is sent to the

CC. FC is a middle layer located between IoT devices and the CC layer. Due to the

massive data generated by IoT devices on FC, Dynamic Weighted Round Robin

(DWRR) algorithm was used, which represents a load balancing (LB) algorithm that

is applied to schedule and distributes data among fog servers by reading CPU and

memory values of these servers in order to improve system performance. The results

proved that DWRR algorithm provides high throughput which reaches 3290 req/sec

at 919 users. A lot of research is concerned with distribution of workload by using

LB techniques without paying much attention to Fault Tolerance (FT), which

implies that the system continues to operate even when fault occurs. Therefore, we

proposed a replication FT technique called primary-backup replication based on

dynamic checkpoint interval on FC. Checkpoint was used to replicate new data from

a primary server to a backup server dynamically by monitoring CPU values of

primary fog server, so that checkpoint occurs only when the CPU value is larger

than 0.2 to reduce overhead. The results showed that the execution time of data

filtering process on the FC with a dynamic checkpoint is less than the time spent in

the case of the static checkpoint that is independent on the CPU status.

Keywords: Fault tolerance, Data replication, Checkpointing, Reliability, Fog

computing, Task scheduling.

الديناميكي مع الجدولة الديناميكية لنظام الرعاية الصحية على الحوسبة الضبابيةالخطأ تدامح

 يونسمنال فاضل ، *هديل طارق رجب

 .، كمية اليشجسة، جامعة بغجاد، بغجاد، العخاقالحاسباتقدػ
 الخلاصة

في تحديؼ نؽعية الحياة حيث يجعػ العجيج مؼ التطبيقات وخاصة أنعسة ،(IoT)يداىػ انتخنيت الاشياء
(لمسعالجة CCيتػ إرسال البيانات الشاتجة مؼ أجيدة إنتخنت الأشياء إلى الحؽسبة الدحابية) الخعاية الرحية.

والتخديؼ عمى الخغػ مؼ الكسؽن الشاتج عؼ السدافة. بدبب الثؽرة في أجيدة إنتخنت الأشياء ، زادت البيانات
. نتيجة لحلغ ، ىشاك مذكمة أخخى تزاف إلى زمؼ الانتقال وىي زيادة الازدحام عمى الذبكة CCالسخسمة إلى

ISSN: 0067-2904

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

309

لحل ىحه السذاكل نعخًا لقخبيا مؼ أجيدة إنتخنت الأشياء ، (FC) حؽسبة الزباب. تػ استخجام الدحابية
نعخًا . CC وطبقةىي طبقة متؽسطة تقع بيؼ أجيدة إنتخنت الأشياء FC .CCوترفية البيانات السخسمة إلى

 Dynamic Weighted خؽارزميةتػ استخجام ، CCقبل IoTلمبيانات السخسمة مؼ أجيدة FCلاستكبال
Round (DWRR) Robin (والتي تسثل خؽارزمية مؽازنة التحسيلLB التي تدتخجم لججولة وتؽزيع)

البيانات بيؼ خؽادم الزباب عؼ طخيق قخاءة قيػ وحجة السعالجة السخكدية والحاكخة الخاصة بيحه الخؽادم مؼ
 / req تؽفخ إنتاجية عالية ترل إلى DWRR. أثبتت الشتائج أن خؽارزمية أجل تحديؼ أداء الشعام

sec0923 الكثيخ مؼ الأبحاث بتؽزيع عبء العسل باستخجام تقشيات تيتػ .مدتخجمًا 212عشجLB دون إيلاء
الحي يذيخ إلى استسخار الشعام في العسل حتى عشج حجوث (FTالى التدامح مع الخطأ) الكثيخ مؼ الاىتسام

الأساسي لمشدخ الستساثل استشادًا -لمشدخ الستساثل تدسى الشدخ الاحتياطي FTلحلغ ، اقتخحشا تقشية الخطأ.
تػ استخجام نقطة التفتيش لتكخار البيانات الججيجة مؼ . FCإلى الفاصل الدمشي لشقطة التفتيش الجيشاميكية عمى

السخكدية لخادم الخادم الأساسي إلى خادم الشدخ الاحتياطي ديشاميكيًا مؼ خلال مخاقبة قيػ وحجة السعالجة
الزباب الأساسي بحيث تحجث نقطة التفتيش ىحه فقط عشجما تكؽن قيسة وحجة السعالجة السخكدية أكبخ مؼ

مع نقطة تفتيش ديشاميكية FCأظيخت الشتائج أن وقت تشفيح عسمية ترفية البيانات عمى . لتقميل الحسل 3.9
 تة التي لا تيتػ لحالة وحجة السعالجة السخكدية.أقل مؼ الؽقت الحي يقزيو في حالة نقطة التفتيش الثاب

Introduction

 IoT allows the connection of different things such as sensors and cellular phones via the Internet

[1]. There are numerous transmission protocols used for Machine to Machine (M2M) communication,

such as Message Queuing Telemetry Transport Protocol (MQTT) and Hypertext Transport Protocol

(HTTP) [2]. Cloud Computing (CC) is the easiest way to gather and process data generated from IoT

devices by connecting these devices to cloud servers [3]. According to Cisco, the humans will use

more than 50 billion IoT devices/sensors that were planned to be linked to the Internet by 2020, as

shown in Figure-1. Also, researchers estimated the number of these things to reach 1 trillion by 2025

[4, 5]. Massive amount of data will be produced by the exponential growth of IoT (edge) devices

located nearby from users. As a result of that and the remote location of cloud servers from edge

devices, several challenges appear in IoT systems, including network congestion, data loss, and higher

latency [6]. Thus, a computing paradigm called Fog Computing (FC) was proposed to process data

generated from IoT (edge) devices in real-time [5].

Figure 1- Global change of number of Internet connected devices [7].

 A server may run slowly during data processing due to the massive amount of data. Therefore, the

Load Balancing (LB) technique was used, which is a procedure to distribute the workload statically

and dynamically across available servers in the cloud environment. It contributes to increase the

throughput of the system and reduce energy consumption. The load balancer is a server used to

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

310

implement the LB technique by redirecting requests or workload among available servers to enhance

system performance [8]. LB technique in the FC environment is the same operation as in the CC

environment, except that Fog Load Balancing (FLB) is closer to IoT (edge) devices and has a better

response time as compared to the Cloud Load Balancing (CLB). However, a remarkable problem

arises by the possibility of the occurrence of fault. Although LB techniques are used, there is not much

attention and alertness to Fault Tolerance (FT) in recent times [9]. FT means the process of executing

system tasks which continues even when a fault occurs. A fault is an abnormal state of the component

or system that leads to failure [10]. Due to large amount of data that must be processed in the fog

servers before it goes to cloud, it is necessary to provide reliability to fog servers in case of failure

occurrence, as in the failure of fog servers, especially if these data are critical. Therefore, this paper

proposes an FT architecture on fog servers for healthcare data generated from edge devices (sensors).

 Related Works

 There are many techniques that have been used to achieve FT and LB, some of which are discussed

as follows.

Ryuji et al. [11] presented results for the non-replication fault tolerance which was applied to protect

only data coming from the sensor to the fog server. Thus, the data is directed to the active server but

does not provide protection for the data inside the fog server when a fault occurs during processing.

Berkin and Oznur [12] presented many periodic checkpoint algorithms on primary-backup replication

and compared them for improving checkpoint time. Nevertheless, all the algorithms used were static

without paying attention to the state of the server during the execution of tasks, which resulted in

overhead and increased the execution time.

Al-Joboury and Al-Hemiary [13] provided a mechanism to monitor healthcare data in real-time and

reduce the congestion on the cloud network. This was achieved by sending the pulse (heartbeat) sensor

messages by MQTT protocol to the fog server. These data were then filtered on fog server every 30

minutes by selecting max., min., and avg. values. Then, the data were sent directly to the cloud.

However, this paper did not apply a dynamic LB technique to distribute data to more than one fog

server, taking into account the current state of servers.

 The remainder of the present paper is arranged as an illustration of the system architecture of FC

that consists of three layers: IoT (edge) devices, fog, and cloud layer. Then, we present an overview

of the importance of using the LB technique and clarify the differences among its types. After that, the

importance of the technique used in this paper to achieve fault tolerance is illustrated. Then, we

discuss the proposed system. Finally, we present the results and conclude the paper.

The system architecture consists of three layers: IoT (edge) devices, fog, and cloud layer, as shown in

Figure-2.

Figure 2- Integrated IoT, fog, and cloud layered architecture.

1. IoT (edge) Devices Layer for Healthcare System

 IoT is a trendy technology used in the field of wireless telecommunications that was invented by

Kevin Ashton in 1999 to create a bridge connection between physical world and digital world through

the Internet. IoT technology is dealing with physical objects that refer to 'things' linked to the Internet

such as wireless sensors, actuators, and microcontrollers (MCUs), which enables these things to gather

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

311

and exchange data via Internet connection [14]. IoT is a commonly used technology that supports

many applications that contribute to improve various areas of life, especially the medical field

through healthcare applications. IoT-medical devices, such as medical sensors, are wearable and

attached to patient's body. With the usage of IoT-medical devices, specialists can monitor medical

parameters such as heartbeat, body temperature, etc. Thus, the number of patient’s visits to the

hospital will be reduced [15]. In this paper, a heartbeat sensor was used.

2. Fog Layer

 FC represents an intermediate layer which functions as a bridge located between IoT (edge) devices

and cloud servers. FC was proposed by Cisco in 2012. It presents computing, processing, and

temporary storage, where FC is slightly similar to an CC so that it works to bring the cloud services

close to IoT (edge) devices [16]. In this paper, FC was proposed to reduce the latency because the fog

server is closer to IoT (edge) devices and, thus, it provides monitoring for heartbeat messages on the

fog server using data monitoring applications. In addition, FC minimizes congestion on cloud network

by sending only the necessary messages from fog-to-cloud (F2C).

3. Cloud Layer

 CC is a technology used to store and process data. The access to it is via the Internet rather than the

computer’s hard drive. CC is a shared pool of computing and permanent storage resources that can be

obtained on-demand and is dynamically present to the users. A cloud server is also called a virtual

server because one of the advantages of the cloud is virtualization. CC increases data reliability, unlike

desktop computing. When using CC, if the personal computer crashes, all data are still present in the

cloud, but when using desktop computing, if a hard disk crashes, all valuable data are destroyed [17].

Load Balancing Techniques

 Load balancing is a technique used to enhance performance by distributing the workload across

various nodes [18]. It is applied to improve throughput and response time, realize efficient resource

utilization, avert bottlenecks, and reduce energy consumption [18, 19].

 LB techniques are classified, according to system state, into two categories:

1. Static load balancing [19]: Static LB technique does not depend on the current system state;

therefore, it works well only when the load fluctuation in the servers is low. The main drawback of the

static LB technique is that the current system state is not taken into account during decision making

and, thus, the workload is distributed equally between servers.

2. Dynamic load balancing [19, 20]: In a dynamic LB technique, decision making is taken based

on the current system state. As a result, the workload is not always equally distributed between

servers. In this technique, the state information is exchanged between servers and consequently the

workload is distributed between servers. Therefore, a dynamic LB technique always provides a better

load balancing solution. Hence, in this paper, the dynamic LB technique is used.

Fault Tolerance

 FT is the ability of the system to remain operating even when the fault occurs. It is primarily used

to improve system uptime and ameliorate its reliability and availability. FT is a very important and

desirable property that should be available in all applications, especially in critical applications [21].

When the reliability of service is low, it implies that its efficiency will also decrease and the customers

will be waiting for a long time for service [22]. Because FC represents an intermediate layer between

IoT (edge) devices and cloud servers, it is very important to provide FT and reliability on the fog

servers [23]. Therefore, in this paper, the FT technique, based on replication, is used on fog servers.

Data replication has many benefits, including FT, and improves data availability at the same time,

which increases system strength [24]. FT technique based on replication implies that data are

replicated to numerous servers and, if one of the host servers fails, the data are processed successfully

as long as there are other copies of the data on other servers [25]. Active replication indicates that the

same data are sent to more than one server at the same time. Nevertheless, this method has many

disadvantages that are affecting the network performance by increasing traffic in-network and may

obstruct the connection in real-time within the network. In addition, active replication leads to

overwork of all servers [26]. Therefore, the replication technique used to achieve fault tolerance in this

paper is called primary-backup replication or active/passive (A/P) replication. This implies that all

data will be transferred first to one server, called the primary server. Then, a checkpoint receives data

coming to the primary server every period of time and sends them to another server, called the backup

server. By using this technique, the traffic during sending data to the fog server (primary server) will

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

312

be reduced and, thus, data (heartbeat messages) can be monitored in real-time on fog server. An

additional importance of using checkpoint for each period of time is to avoid the repetition of sending

all data of primary server to the backup server. As a result, the amount of data sent is reduced and,

thus, the speed of sending data to the backup server will increase.

 The main contribution of this paper is to implement a checkpoint to send only new data to a backup

server, based on a dynamic interval by monitoring CPU values of the primary fog server. This method

contributes to the reduction of the impact of the checkpoint process on increasing the time of the

process of filtering the sensor data. Figure-7 illustrates the results. In addition, the Dynamic Weighted

Round Robin (DWRR) algorithm will be employed on fog servers in this paper and, consequently, it

will increase throughput and reduce the amount of data to be checked and filtered on fog servers.

The Proposed System

 The proposed system consists of three layers: the IoT (edge) device layer represented by heartbeat

sensor, the fog layer to process data, and the cloud layer to permanently store data sent from the fog

server.

From Sensors to Fog Server

 A real pulse sensor is placed on the patient's thumb to sense the heartbeat. The pulse sensor will

measure the patient's pulses through a given time period. In this paper, patient's pulse is measured

every 30 s (time is set during programming) and all values generated will be transferred by the MQTT

protocol to the fog server. Only necessary messages will be immediately sent to the cloud.

 Fog Environment

 The proposed system is represented by the presence of FC within a particular building, like

Baghdad University, Department of Computer Engineering.

 The fog server temporarily stores data of the heartbeat sensor. These data live within the fog server

for 30 minutes. Hence, every 30 minutes, the messages sent to the fog server are filtered by extracting

the maximum, minimum, and average values. These values are sent to the cloud in real-time, while the

remaining data are deleted from it, as shown in the Figure-3. Thus, the congestion on cloud network

was reduced because instead of sending all messages generated from the sensor to cloud, only three

messages will be sent to the cloud for the purpose of permanent storage.

Figure 3- Sequence diagram of data filtering in fog server

 Because of the usage of a very large number of sensors that send data to the fog server, a burden on

the server is caused. Therefore, it is necessary to take into account the improvement of system

performance by distributing the load through more than one server. In addition, the approach used to

provide protection for data when it arrives at servers is very important. Therefore, in this section, the

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

313

structure of the proposed healthcare system to distribute and protect the data on the fog servers will be

illustrated, as shown in Figure-4.

 In this paper, VirtualBox is used to create Virtual Machines (VMs) that represent virtual fog

servers so as to create the desired number of servers in the fog environment.

 Two types of NoSQL databases are used; Redis database on the proxy load balancer, because it is

lightweight and very fast for messages broker, and CouchDB on the fog servers because it has an FT

storage engine for the safety of data.

Figure 4- The proposed healthcare system for distribution and protection of the data on the fog

servers.

 Two fog servers are used in this proposed system to distribute the load transmitted from the

sensors. To distribute these data, a proxy load balancer is used.

Proxy Load Balancer: The data generated by a real pulse sensor are transmitted through the MQTT

protocol, which is a lightweight protocol. MQTT protocol is based on the publish/subscribe (Pub/Sub)

paradigm where publishers represent data generated from sensors or any IoT device, while subscribers

represent data of consumers, so that the Pub/Sub paradigm is met by a central node called broker [27].

The topology of the MQTT protocol consists of three parts: Publisher(s), Broker, and Subscriber(s).

First, the Publisher(s) sends data to the MQTT Broker for publishing to an address that is called

“topic”. Then, the Subscriber(s) subscribes to the MQTT broker for this topic [28]. The broker

intercedes the exchange of messages between the publishers and subscribers, as performed by

Mosquitto which is an open-source MQTT broker. Mosquitto provides a lightweight manner to

execute messages using the Pub/Sub paradigm. It is appropriate for IoT messaging uses, such as

sensors that have low power, microcontrollers, mobile devices, and embedded devices [29, 30].

Mosquitto broker is installed on the proxy load balancer server. In this proxy server, after subscribing

messages by Mosquitto broker, the load is scheduled among Fog Server1 (FS1) and Fog Server2 (FS2)

by using the DWRR algorithm. DWRR algorithm depends on the CPU and memory values of fog

servers (FS1 and FS2). Fog servers connect to Redis DB that is located on the proxy load balancer

server. Proxy uses the Redis database to receive the values of resources (CPU and memory) which are

sent from FS1 and FS2. The sorting stage begins with the retrieval of CPU and memory values of FS1

and FS2 from the Redis DB and the comparison of these values. Based on these values, the proxy load

balancer server distributes the load on FS1 and FS2, as shown in Figure-4. Thus, if FS1 has CPU and

memory values larger than those of FS2, then the weight of messages sent from the proxy load

balancer to FS1 is larger than the weight of those of the FS2. DWRR algorithm is illustrated as a

flowchart in Figure-5.

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

314

 After data are distributed based on the DWRR algorithm, data in the fog servers will be preserved

by using the primary-backup replication, also called the active/passive (A/P) replication technique.

Figure 5- DWRR algorithm flowchart

Fault Tolerance on Fog Servers: Active or primary servers are FS1 and FS2, whereas passive or

backup servers are Backup Server1 (BS1) and Backup Server2 (BS2), as shown in Figure-4. BS1 is a

backup server for FS1, whereas BS2 is a backup server for FS2. If FS1 and FS2 servers are fault, then

BS1 and BS2 servers are activated to do the work of the active servers. The primary server sends data

to the backup server continuously, but to avoid repeating sending all the data previously sent to the

backup server, the checkpoint is used to distinguish the new data sent to the primary server and that

only new data is sent to the backup server. This is caused by periodically comparing data access time

to the primary server. If the time of incoming data is greater than the time of the last previous

checkpoint occurred, it implies that the data are new and will be sent to the backup server without re-

sending all the data previously sent to this server. In the FS1 and FS2, the data checkpoint continues

with a periodic interval (static checkpoint interval) even during the time of the data filtering process,

which may affect the execution time of the filtering process of data to be sent to the cloud in real-time

if the fog server is weak. It was observed by experiments that when the data filtering (every 30 min)

occurs with a continuation of the checkpoint of data coming to the server, the data filtering time is

greatly affected when the remaining CPU value is 0.2 or less. Therefore, dynamic checkpoint is used

by reading the CPU amount of fog servers (FS1 and FS2). If the value of the remaining CPU value is

0.2 or less, the checkpoint is stopped dynamically and returns as soon as the remaining CPU value is

greater than 0.2, as shown in the dynamic checkpoint algorithm of the primary server. The dynamic

checkpoint interval will contribute for reducing the execution time of the data filtering process in the

fog servers.

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

315

 Each backup server sends a request to its primary server every interval time in order to detect the

failure when it occurs. Hence, when the primary server does not send a reply to the backup server, it

implies a primary server failure. At that time, the backup server is activated to filter data that were sent

from the primary server and store the IP address of the backup server in Redis DB, in the place of the

server's IP address that stopped working for a purpose to receive data coming from the MQTT proxy.

Results

 In the suggested system, two objectives are achieved. First, increasing the throughput by balancing

a workload on fog servers. The workload generated by IoT sensors and transmitted based on MQTT

protocol was distributed on fog servers. The locust tool was used to generate additional load on the fog

environment to measure the throughput. Throughput is the number of requests a server responds to per

second. Figure-6 illustrates throughput comparison between DWRR algorithm and a static algorithm,

which is called Round Robin (RR) algorithm that sequentially distributes workload by haproxy on fog

servers. The throughput results for both algorithms were obtained in Figure-6 by using the locust tool.

In the DWRR algorithm, the workload generated from the locust tool is sent to the proxy load

balancer, where this proxy distributes the workload among fog servers dynamically based on CPU and

memory values of these servers. Whereas in the RR algorithm, the workload is sent to the haproxy to

distribute it statically among fog servers without taking into account fog servers’ state during

distribution. It is noticeable that the throughput of DWRR from the beginning is higher than that of the

RR. This increase is more prominent at 567 users where the throughput of DWRR reaches 220

requests per second, while the throughput of RR reaches only 70 req/sec. DWRR throughput continues

to increase so that the throughput at 594 users reaches to 780 req/sec, while in RR it is up to 400

req/sec. After that, throughput for RR is increased slightly, reaching 1680 req/sec, while in DWRR it

reaches 1410 req/sec at 651 users. Then, DWRR again outperforms RR; at 794 users the DWRR

reaches 2755 req/sec while RR reaches 2390 req/sec. RR reaches 2382.4 req/sec at 807 users and stops

because of the limitation of haproxy which cannot handle more users. DWRR throughput at the same

number of users (807) reaches to 2700 req/sec and continues to increase to a maximum of 3290

req/sec at 919 users.

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

316

Figure 6- Throughput of the MQTT proxy on fog computing

 The second goal is to ensure that data is filtered and sent to the cloud in real time by reducing an

overhead that may result from synchronization of the filter and checkpoint, so that increased workload

will increment the implementation time of an application.

 As shown in Figure-7, time of execution of data filtering is checked in the case of the static and

dynamic checkpoints. It is observed that when a checkpoint is made during fixed intervals (static), a

very large overhead will be generated, especially when the CPU value is less than or equal to 0.2, then

checkpoint with dynamic intervals is used. The results of the static checkpoint were measured by

checkpointing the data located on CouchDB every fixed interval, even when the data filtering time

occurs, which in turn often causes fatigue to the fog server. Whereas the results of the dynamic

checkpoint are measured by check pointing the data only when the CPU value is larger than 0.2. When

the number of data in the database is equal to 200, the time taken to filter data and extract max., min.,

and avg. values only in the dynamic checkpoint is equal to 1515 ms, while the time taken in the static

checkpoint is 2145 ms. When the number of data is 350, the time taken to filter data at a dynamic

checkpoint is 1781 ms, while the time taken at a static checkpoint is 2222 ms. In case that the number

of data is 500, the time at the dynamic checkpoint is 1816 ms, while the that at the static checkpoint is

2229 ms. When the data number reaches 650, the time at the dynamic checkpoint is equal to 1876 ms,

while that at the static checkpoint is 2319 ms.

 It is noted that there is a clear difference in the time spent for data filtering process in the fog servers

between dynamic and static checkpoints.

Figure 7- Execution time of data filtering

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

317

Conclusions

 Major challenges arise when vary large amount of data is generated, resulting from the frequent use

of IoT devices, increased latency due to the distance of the cloud, in addition to the increment

congestion on the cloud network. Therefore, the proposed system in the present study suggests a new

edge-fog-cloud technique with features of low time execution and high throughput. Then data

protection in the fog environment was ensured, which is the most important advantage in order to

protect the data in case of a fault in the server, especially for the healthcare data. It is concluded that

the throughput of the DWRR algorithm is greater than that of the RR algorithm. However, despite the

increased throughput in the fog environment, this feature does not work for data protection in the

event of a failure in the fog server. Thus, the technique called primary-backup or active/passive (A/P)

replication is used based on dynamic checkpoint interval. The dynamic checkpoint interval contributes

to reducing the time spent for the data filtering process in the fog servers by stopping the checkpoint

when the CPU value is equal or less than 0.2. In the future, the proposed system can be developed by

increasing the number of backup servers so that the data will be replicated in more than one server,

which leads to increased reliability.

References

1. Bibani O., Mouradian C., Yangui S., Glitho R.H., Gaaloul w., H-Alouane N.B., Morrow M. and

Polakos P. 2016. A Demo of IoT Healthcare Application Provisioning in Hybrid Cloud/Fog

Environment. IEEE. DOI: 10.1109/CloudCom.2016.0081.

2. Çorak B.H., Okay F.Y., Güzel M., Murt Ş. and Ozdemir S. 2018. Comparative Analysis of IoT

Communication Protocols. IEEE. DOI: 10.1109/ISNCC.2018.8530963.

3. Gusev M. and Dustdar S. 2018. Going Back to the Roots—The Evolution of Edge Computing, An

IoT Perspective. IEEE, 22(2). DOI: 10.1109/MIC.2018.022021657.

4. Zhang P., Liu J. K., Richard Yu F., Sookhak M., Ho Au M. and Luo X. 2018. A Survey on

Access Control in Fog Computing. IEEE, 56(2). DOI: 10.1109/MCOM.2018.1700333.

5. Dastjerdi A. V. and Buyya R. 2016. Fog Computing: Helping the Internet of Things Realize Its

Potential. IEEE, 49(8). DOI: 10.1109/MC.2016.245.

6. Cai J., Luo Y., Zheng F., Zhang J., and Luo Q. 2019. Research and Application of Intelligent

Internet of Vehicles Model Based on Fog Computing. IEEE. DOI: 10.1109/ITNEC.2019.8729045.

7. Ahmed E., Yaqoob I., Hashem I. A. T., Khan I., Ahmed A. I. A., Imran M. and Vasilakos A. V.

2017. The role of big data analytics in Internet of Things. Computer Networks. doi:

10.1016/j.comnet.2017.06.013.

8. Duggal A.K. and Dave M. 2020. A Comparative Study of Load Balancing Algorithms in a Cloud

Environment. Springer. doi.org/10.1007/978-981-15-0222-4_10.

9. Abdulhamid S. M., Abd Latiff M. S., Madni S. H. H. and Abdullahi M. 2016. Fault tolerance

aware scheduling technique for cloud computing environment using dynamic clustering

algorithm. Springer, 29: 279. doi.org/10.1007/s00521-016-2448-8.

10. Gupta R., Kamal R. and Suman U. 2017. A QoS-supported approach using fault detection and

tolerance for achieving reliability in dynamic orchestration of web services. Springer.

doi.org/10.1007/s41870-017-0066-z.

11. Oma R., Nakamura S., Duolikun D., Enokido T. and Takizawa M. 2019. Fault-Tolerant Fog

Computing Models in the IoT. Springer. doi.org/10.1007/978-3-030-02607-3_2.

12. Guler B. and Ozkasap O. 2017. Analysis of Checkpointing Algorithms for Primary-Backup

Replication. IEEE.

13. Al-Joboury I. M. and Al-Hemiary E. H. 2017. F2CDM: Internet of Things for Healthcare

Network Based Fog-to-Cloud and Data-in-Motion Using MQTT Protocol. Springer.

doi.org/10.1007/978-3-319-68179-5_32.

14. Stergiou C. and Psannis K. E. 2016. Recent advances delivered by Mobile Cloud Computing and

Internet of Things for Big Data applications: a survey. doi.org/10.1002/nem.1930.

15. Sony P. and Sureshkumar N. 2019. Concept-Based Electronic Health Record Retrieval System in

Healthcare IOT. Springer. doi.org/10.1007/978-981-13-0617-4_17.

16. Mahmud R., Kotagiri R. and Buyya R. 2018. Fog Computing: A Taxonomy, Survey and Future

Directions. Springer. doi.org/10.1007/978-981-10-5861-5_5.

https://ieeexplore.ieee.org/author/37085833904
https://ieeexplore.ieee.org/author/37273487800
https://ieeexplore.ieee.org/author/37393782200
https://ieeexplore.ieee.org/author/37320017600
https://ieeexplore.ieee.org/author/37296467700
https://doi.org/10.1109/CloudCom.2016.0081
https://ieeexplore.ieee.org/author/38542666500
https://ieeexplore.ieee.org/author/37085660143
https://ieeexplore.ieee.org/author/37086508980
https://ieeexplore.ieee.org/author/37408569700
https://doi.org/10.1109/ISNCC.2018.8530963
https://ieeexplore.ieee.org/author/37267275000
https://doi.org/10.1109/MIC.2018.022021657
https://ieeexplore.ieee.org/author/37086003472
https://doi.org/10.1109/MCOM.2018.1700333
https://ieeexplore.ieee.org/author/37681258100
https://ieeexplore.ieee.org/author/37267557900
https://doi.org/10.1109/MC.2016.245
https://ieeexplore.ieee.org/author/37086832220
https://ieeexplore.ieee.org/author/37086830282
https://ieeexplore.ieee.org/author/37086831448
https://ieeexplore.ieee.org/author/37086853400
https://ieeexplore.ieee.org/author/37086833140
https://doi.org/10.1109/ITNEC.2019.8729045
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Stergiou%2C+Christos
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Psannis%2C+Kostas+E
https://doi.org/10.1002/nem.1930

Rajab and Younis Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 308-318

318

17. Khaled Salah Mohamed. 2019. IoT Cloud Computing, Storage, and Data Analytics. Springer.

doi.org/10.1007/978-3-030-18133-8_4.

18. Chawla A. and N. S. Ghumman N. S. 2018. Package-Based Approach for Load Balancing in

Cloud Computing. Springer. doi.org/10.1007/978-981-10-6620-7_9.

19. Kumar P. and Kumar R. 2019. Issues and Challenges of Load Balancing Techniques in Cloud

Computing: A Survey. ACM, 51(6). doi>10.1145/3281010.

20. Puthal D., Obaidat M. S., Nanda P., Prasad M., Mohanty S. P. and Zomaya A. Y. 2018. Secure

and Sustainable Load Balancing of Edge Data Centers in Fog Computing. IEEE, 56(5).

DOI: 10.1109/MCOM.2018.1700795.

21. 21. Souza A., Papadopoulos A. V., Bolivar L. T., Gilbert D. and Tordsson J. 2018. Hybrid

Adaptive Checkpointing for Virtual Machine Fault Tolerance. IEEE. DOI: 10.1109 /IC2E.

2018.00023.

22. Madani S. S. and Jamali S. 2018. A Comparative Study Of Fault Tolerance Techniques In Cloud

Computing. International Journal Of Research In Computer Applications And Robotics.

23. Mohamed, N., Al-Jaroodi J. and Jawhar I. 2019. Towards Fault Tolerant Fog Computing for IoT-

Based Smart City Applications. IEEE. DOI: 10.1109/CCWC.2019.8666447.

24. Qaim W. B. and Özkasap Ö. 2019. State-of-the-Art Data Replication Techniques in IoT-Based

Sensor Systems. IEEE. DOI: 10.1109/GLOCOMW.2018.8644438.

25. Oma R., Nakamura S., Enokido T. and Takizawa M. 2018. Hybrid Replication Schemes of

Processes in Energy-Efficient Server Clusters. Springer. DOI 10.1007/978-3-319-65521-562.

26. Eckhart M. and Ekelhart A. 2018. A Specification-based State Replication Approach for

Digital Twins. ACM. doi.org/10.1145/3264888.3264892.

27. Bacco M., Boero L., Cassará P., Colucci M., Gotta A., Marchese M. and Patrone F. 2019. IoT

Applications and Services in Space Information Networks. IEEE.

28. La Marra A., Martinelli F., Mori P., Rizos A. and Saracino A. 2017. Improving MQTT by

Inclusion of Usage Control. Springer. doi.org/10.1007/978-3-319-72389-1_43.

29. Jutadhamakorn P., Pillavas T., Visoottiviseth V., Takano R., Haga J. and Kobayashi D. 2017.

A Scalable and Low-Cost MQTT Broker Clustering System. IEEE. DOI: 10.1109 /INCIT.

2017.8257870.

30. Tantitharanukul N., Osathanunkul K., Hantrakul K., Pramokchon P. and Khoenkaw P. 2017.

MQTT-Topics Management System for Sharing of Open Data. IEEE. DOI: 10.1109/ ICDA MT

.2017.7904935.

https://dl.acm.org/author_page.cfm?id=99659346037&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=99659346037&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=99658996794&coll=DL&dl=ACM&trk=0
https://doi.org/10.1145/3281010
https://ieeexplore.ieee.org/author/37085355987
https://ieeexplore.ieee.org/author/37269460700
https://ieeexplore.ieee.org/author/37651452400
https://ieeexplore.ieee.org/author/37086027796
https://ieeexplore.ieee.org/author/37267241800
https://ieeexplore.ieee.org/author/37268553900
https://doi.org/10.1109/MCOM.2018.1700795
https://ieeexplore.ieee.org/author/37086380918
https://ieeexplore.ieee.org/author/37085714222
https://ieeexplore.ieee.org/author/37665925700
https://ieeexplore.ieee.org/author/37545385400
https://doi.org/10.1109/IC2E.2018.00023
https://doi.org/10.1109/IC2E.2018.00023
https://ieeexplore.ieee.org/author/37305018000
https://ieeexplore.ieee.org/author/38350711800
https://ieeexplore.ieee.org/author/37316378600
https://doi.org/10.1109/CCWC.2019.8666447
https://ieeexplore.ieee.org/author/37294966400
https://doi.org/10.1109/GLOCOMW.2018.8644438
https://doi.org/10.1109/INCIT.2017.8257870
https://doi.org/10.1109/INCIT.2017.8257870
https://doi.org/10.1109/ICDAMT.2017.7904935
https://doi.org/10.1109/ICDAMT.2017.7904935

