Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540
DOI: 10.24996/ijs.2020.61.6.32

" o W

1 rdddgt
1
Journal of

Ncwence

N/
ISSN: 0067-2904

SDN-assisted Service Placement for the loT-based Systems in Multiple
Edge Servers Environment

Iman Mudhafar Ali", Mustafa Ismael Salman
Department of Computer Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

Received: 3/12/2019 Accepted: 15/3/2020

Abstract

Edge computing is proved to be an effective solution for the Internet of Things
(loT)-based systems. Bringing the resources closer to the end devices has improved
the performance of the networks and reduced the load on the cloud. On the other
hand, edge computing has some constraints related to the amount of the resources
available on the edge servers, which is considered to be limited as compared with
the cloud. In this paper, we propose Software-Defined Networking (SDN)-based
resources allocation and service placement system in the multi-edge networks that
serve multiple 10T applications. In this system, the resources of the edge servers are
monitored using the proposed Edge Server Application (ESA) to determine the state
of the edge server and, therefore, the acceptable services by each server. Benefiting
from the information gathered by ESA, the service offloading decision would be
taken by the proposed SDN Non-core Application (SNA) in a way that ensures an
efficient load distribution and better resources utilization for the edge servers. A
Weighted Aggregated Sum Product Assessment Method (WASPAS) was used to
determine the best edge server. The proposed system was compared with a non-SDN
system and showed improvement in the performance and the utilization of resources
of the edge servers. Furthermore, the request handling time was considerably
reduced and settled in constant rates for a different number of devices.

Keywords: Edge computing, Software Defined Networking, Internet of Things,
Resource Allocation, Containerization.

Ll ABla aafpd Baatia Ay B oLdY) i) o fadinal) Ll cilaadl) Cadigs
Gl ll 48 pall Gl

Olabes Jiland] (hban , (o ilha Ol
Ghall ,aaiy sk drals Auatighl LIS, Cilanslall davia acd

Laday
il e saciadl ¥l ge anhitinl o€a Jlad oo Bl Zuss of colaall et
Oo Dlsall Cai guh ge @lldy el e daal) Qg il ol Geas g sl (I0T) el
plsd b Al Slsall o (lam Bilall g Logalss A 25l (s dllia oK1y ddyll) gaY)
Caalagig 3))gall um Lalas Candl 130 (8 Lin) L dlaadl e 4)Ralls Bagane a3 Al cdilal)
Gl 2285 lly ((SDN) Slimasally 4 yeall SISl leial Aila o5 Saeie Ay & Slardl)

*Email: mustafa.i.s@coeng.uobaghdad.edu.iq
1525

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

Gl aladids Ailal adled 3)lse Al S ol 13 DA (e el cjul e Sadiee 5o
Al aols (9 Agially 2Dl cleadl) s Jlly clgiWla wastl £l ((ESA) dlall aola
DDAl a5l (SNA) bl e SDN ks agis (ESA (a lgaan ay Al Clagleal) (e 82l
Blall adsd o Jld I8 Jeall mj el Al L) dgagl) I @laatll den il il
peall dealal masall rseatll i) diph aladiu) S Gulall 13 8ol Jeadl Dlasas
J5ag (s alail) e o jal) AUl <Al A3lke casd LAdla aals Juadl aaanl (WASPAS) Cojall
o) alatll ol celld e Bdle sl adlsd 3lse Dlitialy elal 3 Loas gl <upglils SDN

Lyl 56aY) (e dilide dlacY Al C¥ e ophiiuly cileadll bl dalles cdy s e acls

1. Introduction

The recent years have witnessed vast growth in the information and communication technologies.
The Internet of Things (IoT) technology is considered as the base stone for the development of smart
cities, smart grid, smart factory, smart health care, etc. By using l0oT technology, different devices can
connect and share information [1, 2]. Every day, a huge number of IoT devices generate a massive
amount of data. These data need to be stored, processed, and analyzed. As the resources’ capabilities
of these devices are very limited, cloud computing provided the needed resources for these data to be
processed and stored [3]. However, cloud computing has some limitations related to the transmission
latency and allocation of resources [4]. The location of the cloud Data Centers (DCs) and the
conditions of the network connection might affect the transmission latency, power consumption, and
bandwidth utilization, and therefore affect the Quality of Service (QoS) and user experience [5]. As a
solution for these problems, Edge Computing has been introduced. Edge Computing technology has
supported cloud computing by bringing the resources closer to the network edge [6]. Instead of
sending all the IoT devices’ data to far located cloud DCs, some of the data can be processed in local
distributed edge servers, fog, or cloudlets. This can reduce the load on the cloud DCs and ensures
better latency, link utilization, and more efficient energy consumption [7].

For further improvement in the performance of such networks, the Software Defined Network
(SDN) is used. SDN is a technology that decouples the control plane from the data plane and
centralizes the network intelligence in a single component which is called the SDN controller. The
SDN controller is responsible for specifying the flows in the network. Hence, it can improve traffic
distribution in the edge network and reduce the load on the cloud DC. Furthermore, the SDN
controller can take the responsibility of service discovery and service placement in the edge by
discovering the suitable edge servers. This can carry some of the burdens on the edge servers and the
end devices and, therefore, improves the performance of the network and increases the QoS [8].

As expected, edge servers have limited hardware capabilities as compared with cloud DC. Using
virtual machines (VMs) to run microservices or services with limited resources needs may lead to
inefficient resources’ utilization. For this reason, Virtualization might not be the best mechanism to
use. Containerization, which is an OS-level Virtualization, can be the proposer alternative. With
Containerization, microservices/services can run in containers and consume only the required amount
of resources, hence improving the overall hardware utilization of edge servers [9].

This paper presents an SDN-based resource allocation and service placement mechanism in an
Edge-Cloud environment. In the proposed system, the SDN controller is responsible for offloading
services to an edge server or the cloud. The suitable destination to offload the service will be
determined according to the priority of the service, the resources’ usage of the edge servers, and the
load on the edge servers. By leveraging the Containerization mechanism, edge servers will run
services/microservices inside containers. Docker containers are used as a Containerization platform.
The main contributions of this work are:

* Reducing the total time for handling IoT service’s requests by presenting an efficient SDN assisted
offloading mechanism to determine the convenient edge server for each service/microservice using
multiple-criteria decision-making (MCDM) algorithms.

» Specifying the servers state, which would determine the acceptable and suspended services for the
edge server by monitoring the resources’ usage of the edge servers.

1526

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

» Ensuring an efficient service distribution and load balancing between edge servers to improve the
performance of the services/microservice and to grant a better utilization of the edge servers’
resources.

The rest of the paper will be organized as follows. Section 2 displays a summary of the related works.
Section 3 presents the proposed system architecture and the tools and technologies used in the system.
A detailed description of the system implementation and methodology is presented in section 4.
Results and discussion are presented in section 5, and the conclusion is drawn in section 6.

2. Related Works

The literature is rich with resources that have studied the Edge Computing technology and the
positive aspects of using it with Cloud Computing. It is proved in almost all researches, that the use of
Edge Computing has improved the performance of loT-Cloud platforms. Authors in an earlier work
[10] presented a fog-based loT-healthcare system. The results showed an improvement in network
delay and energy consumption. Other authors [11, 12] introduced smart home systems based on Fog-
Cloud environment. In another study [13], the authors suggested a smart campus system to enhance
real-time service provisioning and application management. With Edge-Cloud computing, problems of
resource allocation and service placement in the edge network have appeared. Many resources have
discussed these subjects. For example, Minh et al. presented a service placement approach in Fog-
Cloud environment in which services could be processed in the Cloud, Fog, or 10T devices, depending
on their requirements. The proposed approach showed a reduction in latency, energy consumption, and
network load [1]. On the other hand, Lui et al proposed a multi-objective Mixed Integer Linear
Programming (MILP) model to select an optimal Cloudlet from multiple Cloudlets. In the proposed
model, the nearest Cloudlet with the highest mean reward and the lowest latency is preferred. The
measured results were based on storage and bandwidth [14]. In another investigation [15], Xu et al
suggested a model that breaks services to multiple subsets according to the request start time and
detects spare space in the computing nodes. Nodes with the lowest and enough spare space are
selected. Furthermore, they proposed a load balancing scheme in which workloads can be migrated
from computing nodes with high resources’ usage to others with lower resources’ usage. In another
work [16], the authors proposed a VM scheduling method in Fog-Cloud environment with VM live
migration for load balancing. An application-aware workload allocation scheme was also proposed
[17]. The applications handled by VMs are optimally allocated in the closest suitable cloudlets. The
results showed improvement in the response time. Zhao et al presented edge resources allocation
algorithms for multiple applications to minimize average service response time. The results were
measured and compared on three algorithms, where the Clustering-Based Heuristic Edge Resource
Allocation (CHERA) was preferred due to its higher computational efficiency [18].

Other studies suggested the use of SDN to reduce network congestion and delay. Aujla et al [19]
presented a workload slicing scheme and an energy-aware inter-DC migration control scheme using
SDN with the Stackelberg game to provide an optimal inter-DC migration. The results were evaluated
depending on energy consumption, delay, Service-Level Agreement (SLA) violation, and migration
rate. Other authors [7] proposed a healthcare system using SDN for forward/reverse data offloading
and flow management across multi-region edge DC. The results were measured depending on delay,
complexity, and number of handovers.

3. System Architecture

The system architecture is composed of three layers, as shown in Figure-1. The first layer contains
various types of loT devices. The second layer contains edge servers with different hardware
capabilities distributed in a local region close to the 10T devices. Furthermore, it contains an SDN
controller that is responsible for the flow management and service offloading among the end devices,
the edge servers, and the cloud. The third layer contains the cloud DC which is assumed to have huge
resources.

1527

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

Layer 3

Layer 2 ‘
Edge a
Server 1 |~
- ‘\

CI - 4 —
Layer 1 o [:] @

Finiire 1- The lavered architectiire of the nronnsed svstem

3.1. Edge Servers with Containerization Mechanism

The recent years have shown a transformation in the style of application development, from
monolithic stand-alone applications to microservices. Microservice is an architectural style that splits a
single application to small parts, each of which runs as an independent process [20, 21]. Every
microservice is responsible for a specific task. Microservices can be executed in multiple machines
and communicate with each other using specific APIs [22]. For such cases, Containerization is
considered as the best solution for running microservices/services with limited needs. Containers are
faster and more lightweight than VMs, which ensures better resources’ utilization, less overhead,
better versioning control, and an improved overall system and network performance [23]. In the
proposed system, the all edge server supports Docker Containerization. For each
microservices/services, there would be a Docker image. These Docker images would be available in
the edge servers that provide the service. Using Docker images, an edge server would run a container
for each required service, as shown in Figure-2.

Edge Server

Docker Daemon

Images | Containers
ESA
ol Re jes
niceos

docker run mircoservice1

-~

~m

Figure 2- Microservices deployment with Docker containerization.
3.2. SDN-based Service Management Model
In the Edge-Cloud environment that supports various types of applications with enormous
services/microservices and a large number of IoT devices, the use of SDN will have positive effects
not only on the flow management but also on the service discovery and placement. Considering an loT
device requests a service that requires a quick response time. With multiple edge servers in the

1528

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

proximity of the device, it is a big challenge to know which is the best edge server that provides the
service and responds with a minimum delay. In such a case, the 10T device should send the request to
all reachable edge servers and wait for a response. The device would not be able to know which is the
least overloaded edge server or edge server with the least link delay. Using SDN, service discovery
would be easier. The SDN controller would have complete information about the edge servers which
includes the server state and the amount of the available resources, while it can also route traffic into
the least congested paths. Furthermore, it can monitor the edge servers’ resources state and balance the
load between the edge servers [8].

4. The proposed System: Methods and Algorithms

By considering the issues and solutions discussed in the previous section, this work proposes a system
that facilitates service discovery between I0T devices and edge servers in the edge network and
ensures load balancing between edge servers. The following subsections present an extensive
description of the proposed methods and the implementation of the system.

4.1. SDN Assisted Service Placement in Multi-Edge Environment (SASPME)

The proposed system has two parts, shown in Figure-3, which are the Edge Server Application (ESA)
and the SDN Non-core Application (SNA). The following subsections describe each part of the
system.

SNA p————————— { ESA

acon i & } |

SNA Conmchon Coneection Hande Focnsfrimame]
dge Server
asauroes infa

Datatose
Edge Rescurces Edge Resyress o

SONoT S0N-loT Connecinn
Cannecsion Hendbr

Servica Rogquest

Mandor

Figure 3- The proposed SASPME (the software design of SNA and ESA).

A. The Edge Server Application (ESA)

ESA would run inside each edge server. It has connections with the SNA and the IoT devices. The
main parts of ESA shown in Figure-3 are described below.

1) Edge Statistics: monitors the state of the edge server and the utilization of resources and gathers
information about services. It has three sockets, as described below.

*SDN-Edge client socket: it registers the edge server in the SNA and sends the total resources
information and the available services in the edge server.

*Edge Resources Information client socket: it sends information about the edge resources’ utilization
(CPU percentage, available memory, free disk space), the number of running services, and the server
state (overloaded or normal). Furthermore, it sends a list of suspended services. When the resources’
utilization of the edge server exceeds a specific limit, ESA would check the amount of the resources
utilized by each service. If a service usage of a specific resource would increase the usage of this
resource above the acceptable limit, then this service would be added to the suspended services list.
*Edge Services Information client socket: it would send information about running and exited services
(containers). The information includes the container name, 10T IP, minimum and maximum CPU
usage, minimum and maximum memory usage, the container start time, minimum and maximum
execution time (for exited containers), and the container state. The container state will determine
whether a service (container) is running for a long time.

2) Service Request Manager: it is responsible for managing 10T requests received from SNA on the
Service Request server socket, which receives the 10T request forwarded from the SNA and generates
a token for each loT device-service request.

1529

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

3) loT Connection Manager: it manages the connection with 10T devices, it has the 10T connection
server socket that receives connections from the 10T devices, and runs containers for services after
checking the 10T token.

4) Migration Manager: it has a server socket which would receive notification from SNA to reject an
loT device-service, when SNA decides to migrate (horizontally offload) a service from this edge
server to another edge or the cloud.

5) ESA Database Manager: is responsible for ESA database management (insertion, deletion, and
adaptation of the data).

B. The SDN Non-core Application (SNA)

SNA would be responsible for the service placement in the edge-cloud network. SNA has connections
with the ESA in the edge servers and with the 10T devices, as shown in Figure-3. The details of each
part are described below.

1) SDN-Edge Connection: it creates a thread that receives connections from edge servers and gets
information about the total resources of the edge server and the available services.

2) Edge Resources Information: it creates a thread that receives information about the edge server
resources’ utilization, the number of running services, suspended services list, and server state. If the
server is overloaded (CPU/memory usage exceeds 80%), SNA would not offload new services to this
edge server, and it would decide whether to migrate (horizontally offload) some services to another
edge or to the cloud.

3) Edge Services Information: it creates a thread that collects information about services in the edge
servers to manage services migration. It has two sockets.

Services Information server socket: it receives information about running and exited services from
each edge server.

Service Migration client socket: it sends a notification to the edge server to reject an loT device
connected to a specific service.

4) SDN-IoT Connection: it receives connections from the 10T devices. According to the priority of the
service, SNA would decide whether to offload it to an edge server or the cloud. Moreover, it would
choose the best edge server according to the resources’ utilization, number of running services, and
distance between each edge and the 10T devices.

5) Service Request Handler: it sends the IoT device request to the best destination (edge or cloud),
receives a token from the edge server, and forwards it back to the loT device.

6) SNA Database Manager: is responsible for SNA database management (insertion, deletion, and
adaptation of the data).

4.2. SASPME Offloading Schemes

The proposed system has two schemes for service offloading, namely the vertical offloading and
horizontal offloading. Both are described below.

A. Vertical offloading

When an IoT device requests service for the first time, it would send a request to SNA which would
estimate the best destination to offload the service. The following steps describe the vertical offloading
scheme shown in Figure-4.

1. SNA should have information about the total resources of each edge server connected to the
network, and it should receive periodic updates from edge servers about server state and resources’
utilization.

2. 10T devices would send service requests to SNA. The request should include the name and the
priority of the service. Priority will determine whether a service is delay-sensitive or delay-tolerant.
According to the priority of the service, SNA will decide whether to offload it to an edge server or the
cloud. Delay-sensitive services would be offloaded to an edge server, while delay-tolerant services
would be offloaded to the cloud.

3. For delay-sensitive services, SNA should offload the service to the best edge server. An MCDM
model is used to estimate the best edge server.

4. After estimating the best edge server, SNA would forward the 10T request to that server. When the
edge server receives the request, it would generate a token for this request (IoT device-service) and
send it back to SNA.

5. SNA would forward the response received from the edge server to the end device. The IoT device
can then start the connection with the edge server.

1530

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

6. The loT device would connect to the edge server. While receiving the 10T connection, the edge
server would check the token. If tokens match, the edge server would start the container of the service,
and the 10T device would be able to send its data to be processed in that container.

Docker Registry

cmen -
-l 3 e =3 ol
Litss | Bins Libs / Bins | Mcroservice) g Wicroservice nfill Service Request Handler

: Lo e
10T Connection Manager
» @Docker Englne# Migration Hander

Operating System

Edge Server

ESA
4b
6o

Ecge Server Edge Server 2

a3
SON-IoT Conmecticn
Handies

ib
SON-EdgeServer
Connection Handler
Mictoservice1 Request te
RE - Edge Resources
‘ [1 .3,4 (2) gx / Information Handiar
- ~'v\ (.‘-‘

| Tl L SEN.
=3 ' Ll
—y Edge Setver Response Services information

e

SNA
2
SON-Edoas
b e [e "Ll TV
0T Service Request
: i Handier
4b
Bes: Edge Server

Handies Estimatar

Figure 4- Vertical offloading (actions taken from receiving a service request until service
launching).

B. Horizontal offloading (migration)
In this case, services would be migrated (horizontally offloaded) from one edge server to another or

from one edge server to the cloud. The following steps describe the horizontal offloading scheme that
is shown in Figure-5.

1. When the state of an edge server is changed to overloaded, SNA will check the currently running
services in that edge server. For services that are running for a long time, if they are exploiting high
resources, they would be migrated (horizontally offloaded) to the cloud or, if they do not need high
resources, they would be migrated to another edge server. Otherwise, no services would be offloaded
to that edge server, until the state of the edge server is changed to normal.

2. After the decision has been taken to migrate a service, SNA would inform the edge server by
sending the service name and the IP of the IoT device which had requested the service. The edge
server would reject any future connection from this 10T device to that specific service.

3. If the edge server has rejected the I0T device connection, the 10T would request the service again
from SNA. SNA would offload the service to a new edge server or the cloud according to the previous

decision.

1531

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

Docker Registry

Docker Images Contsiner | Cortanes n 15 ESA

- Eebiacs
Microsenice Dot
Sk > |n-~' S

Libs / Bins Libs / Bins Service Request Handler

->

2

| e

Lms /Bins _tvs ! Brs
loT Connection Manager
. 1)
» Docker Engine Migration Handler

Edos Server |

Operating System

Edge Server

SNA

SON-EdgeServer SON-IoT Cennecton
Comettion Hander Hancler

1b

= Mizrosenice! Request
H & Edge Rascurtes 6T Servce Anguest
g [3) \\IR 375,‘/" Informaton Hade g
T e
[Lod < .,:_(:‘!\’/.,
- SDN
\ Baahbd)
® v
‘ Edos Server Resporse Haut o "

Figure 5- Horizontal offloading (actions taken when an edge server reaches an overloaded state).

;
|

Edge Servers’ State Determination and Suspended Services Selection

Exhausting the resources of an edge server may lead to degradation in the performance of all the
running services. Therefore, monitoring the resources in edge servers will help SNA to determine the
state of the edge servers and balance the load between them. Considering multiple edge server
environment, let E be a set of the edge servers connected to the network, where ¢; is an element in the
set and n is the number of the elements in E. Let S be a set of services provided by each edge server in
E, where s; is an element in the set and m is the number of elements in S. The memory and CPU usage
of every g; in E is denoted by Me; and Ce;. It is important to ensure that Me; and Ce; do not reach high
limits. ESA should periodically check these values. As presented in Algorithm-1, when Me; and Ce;
exceed 70% of their limits, ESA would determine which services to be suspended depending on their
needs for resources. The decision is taken according to js;, ks;, Is;, and ms;, which represent maximum
memory, minimum memory, maximum CPU, and minimum CPU utilization, respectively. Services
that are added to suspended list SL, would be sent to SNA. MF and CF are flags that indicate the state
of the memory and CPU in edge servers. When Meg; or Ce; exceed the limits specified in Algorithm-1,
MF/CF would be set to True and the state of the edge server would be “overloaded”. Otherwise, if
both of them is False, the state of the edge server would be “normal”.

1532

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

Algorithm 1: edge server’s state estimation and suspended services selection

Requires: E, S, Me;, Ce;, TMeg;, jsi, ks;, Isi, ms;

» (TMe;: total memory of &;)

Ensures: SL, MF, CF
1: SL < None, MF « False, CF « False
2: if Me;> 70% then

3. forsieSdo

4: if ((si> (TMe;- Mej)) and (ks; > (TMe; - Mej))) or ((ks; + jsi)/2 > (TMe; - Mej)) then
5: SL « s

6: end if

7. end for

8: else if Me;> 90% then

9: forsieSdo

10: if (jsi> (TMe; - Mgy)) or (ks; > (TMe; - Megy)) then
11: SL «s;

12: MF <« True

13: end if

14: end for

15: end if

16: if Ce; > 70% then

17: fors;e Sdo

18: if (((Is; + Ce;) > 75%) and ((ms; + Ce;) > 75%)) or (((Is; + ms;)/2 + Ce;) > 75%) then
19: SL «;

20: end if

21: end for

22: else if Ce; > 80% then

23: forsie Sdo

24: if ((Is; + Cej) > 83%) or ((ms; + Ce;) > 83%) then
25: SL «s;

26: CF <« True

27: end if

28: end for

29: end if

30: return SL, MF, CF

4.3. Estimation of The Best Edge Server

In SASPME, SNA would periodically receive information about resources’ utilization from all

edge servers. To estimate the most suitable edge server for an 10T service request, SNA would decide
according to the available resources, the load on the edge server, and the distance between the edge
servers and the 10T device. To compare such divergent types of data, MCDM algorithms are used.
With MCDM, multiple alternatives are evaluated and ranked depending on multiple criteria [24, 25].

In

the proposed system, edge servers (alternatives) would be ranked according to the number of

running services, CPU usage, available memory free disk space, and the distance between the edge
servers and the 10T devices to estimate the most suitable edge server. The inputs of the decision matrix
are shown in Table-1.

Table 1- The inputs of the decision matrix.

No. c.)f CPU Available Available .
Running Distance
. Percentage Memory Storage
Services
Edge server 1 X1 X1 X3 Xia Xis
Edge server 2 Xo1 X2, Xo3 Xoa Xos
Edge server 3 Xa1 X3 Xaz Xaa Xss

1533

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

Because the data are in different types, the matrix should be normalized first to be comparable. The

normalization procedure used in this work is the same as previously described [24].

For beneficial criteria, i.e. available memory and available storage, where higher values are desired,

we have

= 1)
MAXi(Xi]-)

For non-beneficial criteria, i.e. the number of running services, CPU percentage, and distance, where

lower values are desired, we have

X'ij

MINi(Xi]-)
Xij=—""7")
Xij
In this work, the weighted aggregated sum product assessment (WASPAS) method is used. This
method is a combination of the Weighted Sum Method (WSM) and the Weighted Product Method
(WPM). These methods are detailed below.
A. Weighted Sum Method (WSM)
It is a simple method in which each criterion has a specific weight w;. The sum of all the weights
should be equal to one. It is calculated according to the following equation.
Qi = Xj=1 X'3jW; 3)
The results are sorted in a descending order, and the highest result would represent the best choice.
B. Weighted Product Method (WPM)
It is similar to WSM but with some differences. Multiplication is used instead of addition, and the
criterion is raised to the power of the weight, as shown in the equation below.
Qi =[j=1(X'j)™ 4)
After sorting the results in a descending order, the highest result would represent the best choice.
C. Weighted Aggregated Sum Product Assessment Method (WASPAS)
This method is a combination of the WSM and WPM. The following equation presents a joint
generalized criterion of weighted aggregation of additive and multiplicative methods.
Q =05 Qi(]_) +0.5 Qi(z) =05 Z]‘=1 X\l]W] +0.5 H]‘:l(X\i]‘)Wj (5)
Same as the previous methods, results are sorted in a descending order, and the alternative (edge
server) with the highest result would be the best choice.
5. Results and Discussion
To test the effectiveness of the proposed system, experiments were implemented for two cases: 1)
without using the SDN controller; 2) using the SDN controller. The first case includes ESA only. 10T
devices would send requests to all reachable edge servers using broadcast messages. The loT device
would choose the edge server with a quick response time without considering the distance and the load
on that edge server. In the second case, the proposed SASPME (SNA and ESA) would be
implemented. The experiments were executed using two physical machines. The first machine is used
to run the SDN controller (Onos) and three VMs, with a VM for each edge server. The second
physical machine is used to run two VVMs, one is for the Cloud and the other is for 10T devices. The
specifications of the physical machines and VMs are presented in Table-2. All VMs in the system are
connected to a Mininet network that has an Openflow enabled switch. These networks are connected
through Generic Routing Encapsulation (GRE) tunnels. Figure-6 shows the system setup. The results
were measured for a different number of devices (10, 20, 30, 40, and 50) in both cases. Each device
requests a single service. To explain the impact of running various types of services on the resources’
utilization of the edge servers, three types of services were implemented. An edge detection service
that implements edge detection algorithms, RSA (Rivest-Shamir—Adleman), and SHA-3 (Secure Hash
Algorithm 3) cryptography algorithms were used. The time between a device request and another was
randomly selected between 7ms and 20ms. Each device will reconnect to the edge server at a random
time between 1 to 3 minutes. The next subsections present the results collected from both cases.

1534

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

Table 2- Specifications of physical machines and VMs.

Physical Machines VMs in Each Physical Machine
Processor — Intel Core i7-8550u CPU @1.80 Processor — Intel Core i7-8550u CPU @1.80
GHz x8 GHz x2
Memory — 16 GB Memory — 2 GB
Disk — 1TB Disk — 70GB
Operating system — Ubuntu 18.04.3 LTS (64- Operating system — Ubuntu 18.04.3 LTS (64-
bit) bit)
Processor — Intel Core i5-4210u CPU @1.70 Processor — Intel gﬁrzeig—4210u CPU @1.70
GHz 2.40
Memory — 2 GB
Memory — 8 GB .
Disk — 512GB Disk - 70GB
Operating system — Windows 10 Pro (64-bit) Operating system bLtht)>untu 18.04.3 LTS (64-

loT R

ey | Edge Serverl

|] N X = -#
e e
P — Edge Server2

Mininet Topology

PC2 l

Edge Serverd

Ones

PC1

Figure 6- System Setup (connections between the physical and the virtual machines).

The CPU and memory utilization were measured for both cases. In the first case, the type of service
for loT device was chosen randomly and requests were sent directly to edge servers. The 10T devices
offloaded their data to the edge server with the quickest response time. The results in Figure-7 show an
inequitable load distribution between edge servers. Edge server 1 was in an overloaded state for a long
time, while edge servers 2 and 3 remained in a normal state where the CPU and Memory usage were
mostly in low rates. Overloaded and normal states are represented by 0 and 1, respectively.
Furthermore, the services running in an overloaded edge server are prone to failures or can negatively
affect the performance of these services. In the second case, when SNA and ESA are used, the
resources of edge servers were utilized more efficiently and the edge servers were in a normal state all
the time. Resources’ utilization of edge servers was measured and sent to SNA every 30 Seconds. The
resources’ utilization measurement, collected from the edge servers, have improved future offloading
decisions and assured an efficient services distribution. The resources’ utilization and the state of edge
servers, along with the number of running devices in all edge servers for 10 devices in both cases are
shown in Figures-(7 and 8), respectively.

1535

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

a) CPU usage of edge servers (10 devices)

100
s 80
1']
o 60
Z
= 40
=
b
& 20
0
0.0 1.0 20 30 4.0 50 6.0 7.0 8.0
Time [min.]
e Edge Server] w=—=Edge Server2 sw===Edge Server 3
b) Memory usage of edge servers (10 devices)
= 100
=
§ 60
2 40
o
5 2
=
F o
< 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Time [min.)
e Edge Server 1 ===Edge Server2 === Edge Server 3
¢) State of edge servers (10 devices)
g !
T
o
e
5 0
v 0.0 1.0 2.0 30 4.0 5.0 6.0 7.0 8.0
Time [min.]
e Fdge Server 1| === Edge Server2 = = = Edge Server 3
d) Number of running services in edge servers (10 devices)
3 3
5 s
g p
: g 5]
5 o HENEm = 2 0
E 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
7 Time [min.]

S Edge Server | ®Edge Server 2 W Edge Server 3

Figure 7- Resources usage of the edge servers using ESA.

1536

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

a) CPU usage of edge servers (10 devices)
. 100
£ w0
&
g o
o 40
20
- 0
0.0 1.0 20 3.0 40 5.0 6.0
Time [min.]
wwnEdge Server | ==—=Edge Server2 ~~-=Edge Server 3
100 b) Memory usage of edge servers (10 devices)
s
T80
X o
5 —— /\ —_—
S 40
= 20
=3
T O
= 0.0 1.0 20 3.0 4.0 5.0 6.0
Time [min.)
w——Edge Setver | w—=Edge Server2 == Edge Server 3
¢) State of edge servers (10 devices)
g .
2
=
e
-]
2 0
=
b 0.0 1.0 20 30 40 5.0 6.0
Time [min.]
e Bdge Server | === Edge Server2 = = =~ Edge Server }
d) Number of running services in edge servers (10 devices)
g 6
=
ggl lIIIII II 'III
i, ot LT
0.0 1.0 20 3.0 4.0 5.0 6.0
Tiume [min.)
#Edge Server 1 wEdge Server 2w Edge Server 3

Figure 8- Resources usage of the edge servers using ESA and SNA.

The request handling time was measured for five experiments with a different number of devices.
In the first case, the total request handling time was measured by the period in which an 10T device
sends a service request and receives a response from an edge server. Figure-9, which presents the
average request handling time for different devices using ESA only, shows that the average request
handling time rose in varying rates by increasing the number of loT devices. In this case, the loT
requests is broadcasted to all the edge servers and they should all respond to each received request,

1537

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

even though it may not be completed. This has increased the overhead on the edge servers, and
therefore, it has increased the request handling time.

3500 328567837
30223617

194417049

1500 1279.45
10634

Total Request Hundling Time [ms]

Number of Devices

10Devices =20Devices =30Devices md0Devices m50 Devices

Figure 9- Average request handling time using ESA.

In the second case, the offloading destination would be determined by the priority of the requested
service. Therefore, the time to handle requests received from loT devices would depend on the
destination estimation time and the connection time between SNA and ESA. For delay-sensitive
services, the request handling time would include the time to choose the best edge server and the time
to forward the request to that edge server. As shown in Figure-10, the time to estimate the best edge
server was relatively close in all cases. Figure-11 shows the average time to forward the request to the
edge server.

25

' 204
=20
B 1S 13.8666667 1255 13.74
210
<
c
5 5
e 0
.:. Number of Devices
=
® 10 Davices w20 Dewices 30 Devices wd0 Devices = 50 Devices
Fiaure 10-The time to estimate the best edae server.
— 100 90.96667
2 $0.46
= 80 69.1
Z 6
&z
= 40
=
E 20
2 2
Z Number of Devices
=
® 10 Devices ®m20 Devices 30 Devices m40Devices =350 Devices

Fiaure 11- The averaae time to forward reauests to edae servers.
Requests for delay-tolerant services would be directly forwarded to the Cloud. In this case, the request
handling time would depend only on the time to forward the request to the Cloud. As shown in Figure-
12, the average request handling time using ESA and SNA shows a considerable improvement as

1538

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

compared with the previous case. Also, by increasing the number of devices, the average request
handling time remained in convergent rates. In this case, the number of requests sent to each edge
server was notably reduced as compared with the previous case. Hence, the average request handling
time is minimised.

300

398.1 3652 305.966667 376233

:.\
S

ter
3

8

g

Average Requost Handling Time
[ms]

(=]

Number of Devices

10 Devices 20 Devices ® 30 Devices ®30Devices = 50 Devices

Figure 12- The average request handling time using ESA and SNA.

6. Conclusions
In this paper, we have focused on resources allocation for 10T services in the edge networks. The

proposed SASPME system aims to improve the performance of the loT-based applications by

allocating computational resources for the delay-sensitive services in the edge servers. In SASPME,

the SDN application is proposed to reduce the overhead on the edge servers by taking the

responsibility of handling the 10T requests and taking the offloading decision to the best destination.

The experiments showed that gathering information related to the available computational resources

from the edge servers in short periods of time can improve the decision making and, hence, ensure a

more balanced load distribution between the edge servers, although it may increase the load on the

link. The WASPAS method, used in the SDN application, is an effective solution to estimate the best

edge server depending on different criteria. Furthermore, containerization is used in the edge servers to

ensure efficient utilization of resources. SASPME is compared with a non-SDN system. We conclude

that, for a different number of devices, the SASPME can reduce the total time for handling requests,

improve the resources’ utilization, and distribute the load more efficiently.

References

1. Minh, Q.T., Nguyen, D.T., Le, AV., Nguyen, H.D. and Truong, A. 2017. Toward Service
Placement on Fog Computing Landscape, 4™ NAFOSTED Conference on Information and
Computer Science, November 24-25, Hanoi, Vietnam. Doi:10.1109/NAFOSTED.2017.8108080

2. He, Y., Yu, F.R, Zhao, N., Leung, V.C.M. and Yin, H. 2017. Software-Defined Networks with
Mobile Edge Computing and Caching for Smart Cities: A Big Data Deep Reinforcement Learning
Approach, IEEE Communications Magazine, 55(12): 31-37. DOI: 10.1109/MCOM.2017.1700246

3. Abbas M. N., Attea B. A., and Kadhim N. J. 2018. Evolutionary Based Set Covers Algorithm with
Local Refinement for Power Aware Wireless Sensor Networks Design, Iragi Journal of Science,
59(4A): 1959-1966. D0i:10.24996/ijs.2018.59.4A.20

4. Aazam, M., Khan, I, Alsaffar, A.A. and Huh, E. 2014. Cloud of Things: Integrating Internet of
Things with Cloud Computing and the Issues Involved, International Bhurban Conference on
Applied Sciences & Technology, January 14-18, Islamabad, Pakistan. Doi: 10.1109/IBCAST
.2014.6778179

5. Ghani R. F., and Ajrash A. S. 2018. Quality of Experience Metric of Streaming Video: A survey,
Iragi Journal of Science, 59(3B): 1531-1537. D0i:10.24996/ijs.2018.59.3B.19

6. Li, S., Zhang, N., Lin, S., Kong, L., Katangur, A., Khan, M.K., Ni, M. and Zhu, G. 2018. Joint
Admission Control and Resource Allocation in Edge Computing for Internet of Things, IEEE
Network, 32(1): 72-79. Doi: 10.1109/MNET.2018.1700163

7. Aujla, G.S., Chaudhary, R., Kaur, K., Garg, S., Kumar, N. and Ranjan, R. 2019. SAFE: SDN
Assisted Framework for Edge-Cloud Interplay in Secure Healthcare Ecosystem, IEEE
Transactions on Industrial Informatics, 15(1): 469-480. Doi: 10.1109/T11.2018.2866917

8. Baktir, A.C., Ozgovde, A. and Ersoy, C. 2017. How Can Edge Computing Benefit from Software-

1539

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Ali and Salman Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1525-1540

Defined Networking: A Survey, Use Cases & Future Directions, IEEE Communications Surveys &
Tutorials, 19(4): 2359-2391. Doi: 10.1109/COMST.2017.2717482

Mufoz, R., Vilalta, R., Yoshikane, N., Casellas, R., Martinez, R., Tsuritani, T. and Morita, I. 2018.
Integration of 10T, Transport SDN, and Edge/Cloud Computing for Dynamic Distribution of loT
Analytics and Efficient Use of Network Resources, Journal of Lightwave Technology, 36(7):
1420-1428. Doi: 10.1109/JLT.2018.2800660

Mahmud, R., Koch, F.L. and Buyya, R. 2018. Cloud-Fog Interoperability in loT-enabled
Healthcare Solutions, 19" International Conference on Distributed Computing and Networking,
January 4-7, Varanasi, India. Doi: 10.1145/3154273.3154347

Yassine, A., Singh, S., Hossain, M.S. and Muhammad, G. 2019. 10T Big Data Analytics for Smart
Homes with Fog and Cloud Computing, Future Generation Computer Systems, 91: 563-573. Doi:
10.1016/j.future.2018.08.040

Javaid, N., Butt, A.A,, Latif, K. and Rehman, A. 2019. Cloud and Fog based Integrated
Environment for Load Balancing using Cuckoo Levy Distribution and Flower Pollination for
Smart Homes, International Conference on Computer and Information Sciences (ICCIS), April 3-
4, Sakaka, Saudi Arabia. Doi: 10.1109/1CCISci.2019.8716467

Tang, C., Xia, S., Liu, C., Wei, X., Bao, Y. and Chen, W. 2019. Fog-Enabled Smart Campus:
Architecture and Challenges, International Conference on Security and Privacy in New Computing
Environments, April 13-14, Tianjin, China. Doi: 10.1007/978-3-030-21373-2_50

Liu, L. and Fan, Q. 2018. Resource Allocation Optimization based on Mixed Integer Linear
Programming in the Multi-cloudlet Environment, IEEE Access, 6: 24533-24542. Doi: 10.1109/
ACCESS.2018.2830639

Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., Sun, X. and Liu, A. X. 2018. Dynamic
Resource Allocation for Load Balancing in Fog Environment, Wireless Communications and
Mobile Computing, 2018: 6421607. Doi: 10.1155/2018/6421607

Xu, X., Liu, Q., Qi, L., Yuan, Y., Dou, W. and Liu, A.X. 2018. A Heuristic Virtual Machine
Scheduling Method for Load Balancing in Fog-Cloud Computing, IEEE 4" International
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on
High Performance and Smart Computing, (HPSC) and IEEE International Conference on
Intelligent Data and Security (IDS), May 3-5, Omaha, NE, USA. Doi: 10.1109/BDS /HPSC
/1DS18.2018.00030

Fan, Q. and Ansari, N. 2018. Application Aware Workload Allocation for Edge Computing based
loT, IEEE Internet of Things Journal, 5(3): 2146-2153. Doi: 10.1109/J10T.2018.2826006

Zhao, L., Wang, J., Liu, J. and Kato, N. 2019. Optimal Edge Resource Allocation in loT-Based
Smart Cities, IEEE Network, 33(2): 30-35. Doi: 10.1109/MNET.2019.1800221

Aujla, G.S., Kumar, N., Zomaya, A.Y. and Ranjan, R. 2018. Optimal Decision Making for Big
Data Processing at Edge-Cloud Environment: An SDN Perspective, IEEE Transactions on
Industrial Informatics, 14(2): 778-789. Doi: 10.1109/T11.2017.2738841

Taherizadeh, S., Stankovski, V. and Grobelnik, M. 2018. A Capillary Computing Architecture for
Dynamic Internet of Things: Orchestration of Microservices from Edge Devices to Fog and Cloud
Providers, Sensors, 18(9): 2938. Doi: 10.3390/s18092938

Buzato, F.H.L., Goldman, A. and Batista, D. 2018. Efficient Resources Utilization by Different
Microservices Deployment Models, 17" International Symposium on Network Computing and
Applications (NCA), November 1-3, Cambridge, MA, USA. Doi: 10.1109/NCA.2018.8548346
Fernandez, J., Vidal, I. and Valera, F. 2019. Enabling the Orchestration of 10T Slices through Edge
and Cloud Microservice Platforms, Sensors, 19(13): 2980. Doi: 10.3390/s19132980

Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah, N. and Chen, Y. 2018. Orchestration of
Microservices for 10T Using Docker and Edge Computing, IEEE Communications Magazine,
56(9): 118-123. Doi: 10.1109/MCOM.2018.1701233

Karande, P., Zavadskas, E.K. and Chakraborty, S. 2016. A study on the ranking performance of
some MCDM methods for industrial robot selection problems, International Journal of Industrial
Engineering Computations, 7(3): 399-422. Doi: 10.5267/j.ijiec.2016.1.001

Nermend K., Piwowarski M., and Borawski M. 2020. Decision Making Methods in Comparative
Studies of Complex Economic Processes Management, Iragi Journal of Science, 61(3): 652-664.
DOI: 10.24996/ijs.2020.61.3.22.

1540

