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Abstract 
     Edge computing is proved to be an effective solution for the Internet of Things 

(IoT)-based systems. Bringing the resources closer to the end devices has improved 

the performance of the networks and reduced the load on the cloud. On the other 

hand, edge computing has some constraints related to the amount of the resources 

available on the edge servers, which is considered to be limited as compared with 

the cloud. In this paper, we propose Software-Defined Networking (SDN)-based 

resources allocation and service placement system in the multi-edge networks that 

serve multiple IoT applications. In this system, the resources of the edge servers are 

monitored using the proposed Edge Server Application (ESA) to determine the state 

of the edge server and, therefore, the acceptable services by each server. Benefiting 

from the information gathered by ESA, the service offloading decision would be 

taken by the proposed SDN Non-core Application (SNA) in a way that ensures an 

efficient load distribution and better resources utilization for the edge servers. A 

Weighted Aggregated Sum Product Assessment Method (WASPAS) was used to 

determine the best edge server. The proposed system was compared with a non-SDN 

system and showed improvement in the performance and the utilization of resources 

of the edge servers. Furthermore, the request handling time was considerably 

reduced and settled in constant rates for a different number of devices. 

 

Keywords: Edge computing, Software Defined Networking, Internet of Things, 

Resource Allocation, Containerization. 

 
متعددة خوادم حافة بالإستعانة لمعتمدة على إنترنت الأشياء في بيئة اتوظيف الخدمات للأنعمة 

 بالشبكات المعرفة بالبرمجيات
 

, مصطفى إسماعيل سلمان*إيمان معفر علي  

 قدؼ ىشجسة الحاسبات, كلية اليشجسة, جامعة بغجاد, بغجاد, العخاق
 الخلاصة

لقج أُثبت  بالتجارب أن حؾسبة الحافة ىي حل فعال يسكؽ استخجامو مع الأنغسة السعتسجة على إنتخنت      
لغخض تحديؽ أداء الذبكات وتقليل الحسل على الدحابة، وذلػ عؽ طخيق تقخيب السؾارد مؽ  (IoT)الأشياء 

تعلق بكؼِ السؾارد الستاحة في خؾادم الأجيدة الظخفية، ولكؽ ىشاك بعض القيؾد التي تؾاجييا حؾسبة الحافة ت
الحافة، والتي تعتبخ محجودة بالسقارنة مع الدحابة. اقتخحشا في ىحا البحث نغاماً لتخريص السؾارد وتؾعيف 

، والتي تخجم تظبيقات (SDN)الخجمات في بيئة متعجدة خؾادم حافة بالإستعانة بالذبكات السعخفة بالبخمجيات 
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نت الأشياء. مؽ خلال ىحا الشغام يسكؽ مخاقبة مؾارد خؾادم الحافة بإستخجام تظبيق متعجدة معتسجةً على إنتخ 
السقتخح لتحجيج حالاتيا، وبالتالي تحجيج الخجمات السلائسة والسقبؾلة لكل خادم حافة.  (ESA)خادم الحافة 

بإتخاذ القخار  (SNA)غيخ الأساسي  SDN، يقؾم تظبيق ESAبالإستفادة مؽ السعلؾمات التي يتؼ جسعيا مؽ 
السشاسب لتخحيل الخجمات الى الؾجية السلائسة بظخيقة تزسؽ تؾزيع الحسل بذكل فعال بيؽ خؾادم الحافة 
وإستغلال أفزل للسؾارد. في ىحا التظبيق يتؼ استخجام طخيقة التقجيخ التجسيعي السخجح لحاصل الجسع 

الشغام السقتخح مع الشغام بجون وجؾد لتحجيج أفزل خادم حافة. تست مقارنة نتائج  (WASPAS)والزخب 
وأعيخت الشتائج تحدشاً في أداء واستغلال مؾارد خؾادم الحافة. علاوةً على ذلػ، فإن الشغام السقتخح  SDNالــ

  ساعج على تقليل وقت معالجة طلبات الخجمات واستقخاره بسعجلات ثابتة لأعجاد مختلفة مؽ الأجيدة الظخفية. 
1. Introduction 

     The recent years have witnessed vast growth in the information and communication technologies. 

The Internet of Things (IoT) technology is considered as the base stone for the development of smart 

cities, smart grid, smart factory, smart health care, etc. By using IoT technology, different devices can 

connect and share information [1, 2]. Every day, a huge number of IoT devices generate a massive 

amount of data. These data need to be stored, processed, and analyzed. As the resources’ capabilities 

of these devices are very limited, cloud computing provided the needed resources for these data to be 

processed and stored [3]. However, cloud computing has some limitations related to the transmission 

latency and allocation of resources [4]. The location of the cloud Data Centers (DCs) and the 

conditions of the network connection might affect the transmission latency, power consumption, and 

bandwidth utilization, and therefore affect the Quality of Service (QoS) and user experience [5]. As a 

solution for these problems, Edge Computing has been introduced. Edge Computing technology has 

supported cloud computing by bringing the resources closer to the network edge [6]. Instead of 

sending all the IoT devices’ data to far located cloud DCs, some of the data can be processed in local 

distributed edge servers, fog, or cloudlets. This can reduce the load on the cloud DCs and ensures 

better latency, link utilization, and more efficient energy consumption [7].  

     For further improvement in the performance of such networks, the Software Defined Network 

(SDN) is used. SDN is a technology that decouples the control plane from the data plane and 

centralizes the network intelligence in a single component which is called the SDN controller. The 

SDN controller is responsible for specifying the flows in the network. Hence, it can improve traffic 

distribution in the edge network and reduce the load on the cloud DC. Furthermore, the SDN 

controller can take the responsibility of service discovery and service placement in the edge by 

discovering the suitable edge servers. This can carry some of the burdens on the edge servers and the 

end devices and, therefore, improves the performance of the network and increases the QoS [8].  

     As expected, edge servers have limited hardware capabilities as compared with cloud DC. Using 

virtual machines (VMs) to run microservices or services with limited resources needs may lead to 

inefficient resources’ utilization. For this reason, Virtualization might not be the best mechanism to 

use. Containerization, which is an OS-level Virtualization, can be the proposer alternative. With 

Containerization, microservices/services can run in containers and consume only the required amount 

of resources, hence improving the overall hardware utilization of edge servers [9].  

     This paper presents an SDN-based resource allocation and service placement mechanism in an 

Edge-Cloud environment. In the proposed system, the SDN controller is responsible for offloading 

services to an edge server or the cloud. The suitable destination to offload the service will be 

determined according to the priority of the service, the resources’ usage of the edge servers, and the 

load on the edge servers. By leveraging the Containerization mechanism, edge servers will run 

services/microservices inside containers. Docker containers are used as a Containerization platform. 

The main contributions of this work are: 

• Reducing the total time for handling IoT service’s requests by presenting an efficient SDN assisted 

offloading mechanism to determine the convenient edge server for each service/microservice using 

multiple-criteria decision-making (MCDM) algorithms. 

• Specifying the servers state, which would determine the acceptable and suspended services for the 

edge server by monitoring the resources’ usage of the edge servers. 
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• Ensuring an efficient service distribution and load balancing between edge servers to improve the 

performance of the services/microservice and to grant a better utilization of the edge servers’ 

resources. 

The rest of the paper will be organized as follows. Section 2 displays a summary of the related works. 

Section 3 presents the proposed system architecture and the tools and technologies used in the system. 

A detailed description of the system implementation and methodology is presented in section 4. 

Results and discussion are presented in section 5, and the conclusion is drawn in section 6. 

2. Related Works 

     The literature is rich with resources that have studied the Edge Computing technology and the 

positive aspects of using it with Cloud Computing. It is proved in almost all researches, that the use of 

Edge Computing has improved the performance of IoT-Cloud platforms. Authors in an earlier work 

[10] presented a fog-based IoT-healthcare system. The results showed an improvement in network 

delay and energy consumption. Other authors [11, 12] introduced smart home systems based on Fog-

Cloud environment. In another study [13], the authors suggested a smart campus system to enhance 

real-time service provisioning and application management. With Edge-Cloud computing, problems of 

resource allocation and service placement in the edge network have appeared. Many resources have 

discussed these subjects. For example, Minh et al. presented a service placement approach in Fog-

Cloud environment in which services could be processed in the Cloud, Fog, or IoT devices, depending 

on their requirements. The proposed approach showed a reduction in latency, energy consumption, and 

network load [1]. On the other hand, Lui et al proposed a multi-objective Mixed Integer Linear 

Programming (MILP) model to select an optimal Cloudlet from multiple Cloudlets. In the proposed 

model, the nearest Cloudlet with the highest mean reward and the lowest latency is preferred. The 

measured results were based on storage and bandwidth [14]. In another investigation [15], Xu et al 

suggested a model that breaks services to multiple subsets according to the request start time and 

detects spare space in the computing nodes. Nodes with the lowest and enough spare space are 

selected. Furthermore, they proposed a load balancing scheme in which workloads can be migrated 

from computing nodes with high resources’ usage to others with lower resources’ usage. In another 

work [16], the authors proposed a VM scheduling method in Fog-Cloud environment with VM live 

migration for load balancing. An application-aware workload allocation scheme was also proposed 

[17]. The applications handled by VMs are optimally allocated in the closest suitable cloudlets. The 

results showed improvement in the response time. Zhao et al presented edge resources allocation 

algorithms for multiple applications to minimize average service response time. The results were 

measured and compared on three algorithms, where the Clustering-Based Heuristic Edge Resource 

Allocation (CHERA) was preferred due to its higher computational efficiency [18].  

     Other studies suggested the use of SDN to reduce network congestion and delay. Aujla et al [19] 

presented a workload slicing scheme and an energy-aware inter-DC migration control scheme using 

SDN with the Stackelberg game to provide an optimal inter-DC migration. The results were evaluated 

depending on energy consumption, delay, Service-Level Agreement (SLA) violation, and migration 

rate. Other authors [7] proposed a healthcare system using SDN for forward/reverse data offloading 

and flow management across multi-region edge DC. The results were measured depending on delay, 

complexity, and number of handovers. 

3. System Architecture 

     The system architecture is composed of three layers, as shown in Figure-1. The first layer contains 

various types of IoT devices. The second layer contains edge servers with different hardware 

capabilities distributed in a local region close to the IoT devices. Furthermore, it contains an SDN 

controller that is responsible for the flow management and service offloading among the end devices, 

the edge servers, and the cloud. The third layer contains the cloud DC which is assumed to have huge 

resources.  
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3.1. Edge Servers with Containerization Mechanism 

     The recent years have shown a transformation in the style of application development, from 

monolithic stand-alone applications to microservices. Microservice is an architectural style that splits a 

single application to small parts, each of which runs as an independent process [20, 21]. Every 

microservice is responsible for a specific task. Microservices can be executed in multiple machines 

and communicate with each other using specific APIs [22]. For such cases, Containerization is 

considered as the best solution for running microservices/services with limited needs. Containers are 

faster and more lightweight than VMs, which ensures better resources’ utilization, less overhead, 

better versioning control, and an improved overall system and network performance [23].  In the 

proposed system, the all edge server supports Docker Containerization. For each 

microservices/services, there would be a Docker image. These Docker images would be available in 

the edge servers that provide the service. Using Docker images, an edge server would run a container 

for each required service, as shown in Figure-2. 

 
Figure 2- Microservices deployment with Docker containerization. 

3.2. SDN-based Service Management Model 

     In the Edge-Cloud environment that supports various types of applications with enormous 

services/microservices and a large number of IoT devices, the use of SDN will have positive effects 

not only on the flow management but also on the service discovery and placement. Considering an IoT 

device requests a service that requires a quick response time. With multiple edge servers in the 

 

Figure 1- The layered architecture of the proposed system. 
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proximity of the device, it is a big challenge to know which is the best edge server that provides the 

service and responds with a minimum delay. In such a case, the IoT device should send the request to 

all reachable edge servers and wait for a response. The device would not be able to know which is the 

least overloaded edge server or edge server with the least link delay. Using SDN, service discovery 

would be easier. The SDN controller would have complete information about the edge servers which 

includes the server state and the amount of the available resources, while it can also route traffic into 

the least congested paths. Furthermore, it can monitor the edge servers’ resources state and balance the 

load between the edge servers [8].   

4. The proposed System: Methods and Algorithms 

By considering the issues and solutions discussed in the previous section, this work proposes a system 

that facilitates service discovery between IoT devices and edge servers in the edge network and 

ensures load balancing between edge servers. The following subsections present an extensive 

description of the proposed methods and the implementation of the system. 

4.1. SDN Assisted Service Placement in Multi-Edge Environment (SASPME)  

The proposed system has two parts, shown in Figure-3, which are the Edge Server Application (ESA) 

and the SDN Non-core Application (SNA). The following subsections describe each part of the 

system. 

 
A. The Edge Server Application (ESA) 

ESA would run inside each edge server. It has connections with the SNA and the IoT devices. The 

main parts of ESA shown in Figure-3 are described below.  

1) Edge Statistics: monitors the state of the edge server and the utilization of resources and gathers 

information about services. It has three sockets, as described below. 

•SDN-Edge client socket: it registers the edge server in the SNA and sends the total resources 

information and the available services in the edge server. 

•Edge Resources Information client socket: it sends information about the edge resources’ utilization 

(CPU percentage, available memory, free disk space), the number of running services, and the server 

state (overloaded or normal). Furthermore, it sends a list of suspended services. When the resources’ 

utilization of the edge server exceeds a specific limit, ESA would check the amount of the resources 

utilized by each service. If a service usage of a specific resource would increase the usage of this 

resource above the acceptable limit, then this service would be added to the suspended services list. 

•Edge Services Information client socket: it would send information about running and exited services 

(containers). The information includes the container name, IoT IP, minimum and maximum CPU 

usage, minimum and maximum memory usage, the container start time, minimum and maximum 

execution time (for exited containers), and the container state. The container state will determine 

whether a service (container) is running for a long time. 

2) Service Request Manager: it is responsible for managing IoT requests received from SNA on the 

Service Request server socket, which receives the IoT request forwarded from the SNA and generates 

a token for each IoT device-service request. 

 

Figure 3- The proposed SASPME (the software design of SNA and ESA). 
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3) IoT Connection Manager: it manages the connection with IoT devices, it has the IoT connection 

server socket that receives connections from the IoT devices, and runs containers for services after 

checking the IoT token. 

4) Migration Manager: it has a server socket which would receive notification from SNA to reject an 

IoT device-service, when SNA decides to migrate (horizontally offload) a service from this edge 

server to another edge or the cloud. 

5) ESA Database Manager: is responsible for ESA database management (insertion, deletion, and 

adaptation of the data). 

B. The SDN Non-core Application (SNA) 

SNA would be responsible for the service placement in the edge-cloud network. SNA has connections 

with the ESA in the edge servers and with the IoT devices, as shown in Figure-3. The details of each 

part are described below. 

1) SDN-Edge Connection: it creates a thread that receives connections from edge servers and gets 

information about the total resources of the edge server and the available services. 

2) Edge Resources Information: it creates a thread that receives information about the edge server 

resources’ utilization, the number of running services, suspended services list, and server state. If the 

server is overloaded (CPU/memory usage exceeds 80%), SNA would not offload new services to this 

edge server, and it would decide whether to migrate (horizontally offload) some services to another 

edge or to the cloud. 

3) Edge Services Information: it creates a thread that collects information about services in the edge 

servers to manage services migration. It has two sockets. 

•Services Information server socket: it receives information about running and exited services from 

each edge server. 

•Service Migration client socket: it sends a notification to the edge server to reject an IoT device 

connected to a specific service. 

4) SDN-IoT Connection: it receives connections from the IoT devices. According to the priority of the 

service, SNA would decide whether to offload it to an edge server or the cloud. Moreover, it would 

choose the best edge server according to the resources’ utilization, number of running services, and 

distance between each edge and the IoT devices. 

5) Service Request Handler: it sends the IoT device request to the best destination (edge or cloud), 

receives a token from the edge server, and forwards it back to the IoT device. 

6) SNA Database Manager: is responsible for SNA database management (insertion, deletion, and 

adaptation of the data). 

4.2. SASPME Offloading Schemes 

The proposed system has two schemes for service offloading, namely the vertical offloading and 

horizontal offloading. Both are described below. 

A. Vertical offloading 

When an IoT device requests service for the first time, it would send a request to SNA which would 

estimate the best destination to offload the service. The following steps describe the vertical offloading 

scheme shown in Figure-4. 

1. SNA should have information about the total resources of each edge server connected to the 

network, and it should receive periodic updates from edge servers about server state and resources’ 

utilization. 

2. IoT devices would send service requests to SNA. The request should include the name and the 

priority of the service. Priority will determine whether a service is delay-sensitive or delay-tolerant. 

According to the priority of the service, SNA will decide whether to offload it to an edge server or the 

cloud. Delay-sensitive services would be offloaded to an edge server, while delay-tolerant services 

would be offloaded to the cloud. 

3. For delay-sensitive services, SNA should offload the service to the best edge server. An MCDM 

model is used to estimate the best edge server. 

4. After estimating the best edge server, SNA would forward the IoT request to that server. When the 

edge server receives the request, it would generate a token for this request (IoT device-service) and 

send it back to SNA. 

5. SNA would forward the response received from the edge server to the end device. The IoT device 

can then start the connection with the edge server. 
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6. The IoT device would connect to the edge server. While receiving the IoT connection, the edge 

server would check the token. If tokens match, the edge server would start the container of the service, 

and the IoT device would be able to send its data to be processed in that container. 

 
B. Horizontal offloading (migration) 

In this case, services would be migrated (horizontally offloaded) from one edge server to another or 

from one edge server to the cloud. The following steps describe the horizontal offloading scheme that 

is shown in Figure-5. 

1. When the state of an edge server is changed to overloaded, SNA will check the currently running 

services in that edge server. For services that are running for a long time, if they are exploiting high 

resources, they would be migrated (horizontally offloaded) to the cloud or, if they do not need high 

resources, they would be migrated to another edge server. Otherwise, no services would be offloaded 

to that edge server, until the state of the edge server is changed to normal. 

2. After the decision has been taken to migrate a service, SNA would inform the edge server by 

sending the service name and the IP of the IoT device which had requested the service. The edge 

server would reject any future connection from this IoT device to that specific service. 

3. If the edge server has rejected the IoT device connection, the IoT would request the service again 

from SNA. SNA would offload the service to a new edge server or the cloud according to the previous 

decision. 

 

Figure 4- Vertical offloading (actions taken from receiving a service request until service 

launching). 
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Figure 5- Horizontal offloading (actions taken when an edge server reaches an overloaded state). 

 

Edge Servers’ State Determination and Suspended Services Selection 

     Exhausting the resources of an edge server may lead to degradation in the performance of all the 

running services. Therefore, monitoring the resources in edge servers will help SNA to determine the 

state of the edge servers and balance the load between them. Considering multiple edge server 

environment, let E be a set of the edge servers connected to the network, where ei is an element in the 

set and n is the number of the elements in E. Let S be a set of services provided by each edge server in 

E, where si is an element in the set and m is the number of elements in S. The memory and CPU usage 

of every ei in E is denoted by Mei and Cei. It is important to ensure that Mei and Cei do not reach high 

limits. ESA should periodically check these values. As presented in Algorithm-1, when Mei and Cei 

exceed 70% of their limits, ESA would determine which services to be suspended depending on their 

needs for resources. The decision is taken according to jsi, ksi, lsi, and msi, which represent maximum 

memory, minimum memory, maximum CPU, and minimum CPU utilization, respectively. Services 

that are added to suspended list SL, would be sent to SNA. MF and CF are flags that indicate the state 

of the memory and CPU in edge servers. When Mei or Cei exceed the limits specified in Algorithm-1, 

MF/CF would be set to True and the state of the edge server would be “overloaded”. Otherwise, if 

both of them is False, the state of the edge server would be “normal”. 
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Algorithm 1: edge server’s state estimation and suspended services selection 

Requires: E, S, Mei, Cei, TMei, jsi, ksi, lsi, msi            ► (TMei : total memory of ei) 

Ensures: SL, MF, CF 

1: SL ← None, MF ← False, CF ← False 

2: if Mei > 70% then 

3:    for si ∈ S do 

4:  if ((jsi > (TMei - Mei)) and (ksi > (TMei - Mei))) or ((ksi + jsi)/2 > (TMei - Mei)) then 

5:       SL ← si 

6:  end if 

7:     end for 

8: else if Mei > 90% then 

9:     for si ∈ S do 

10:  if (jsi > (TMei - Mei)) or (ksi > (TMei - Mei)) then 

11:       SL ← si 

12:       MF ← True 

13:  end if 

14:    end for 

15: end if 

16: if Cei > 70% then 

17:   for si ∈ S do 

18:  if (((lsi + Cei) > 75%) and ((msi + Cei) > 75%)) or (((lsi + msi)/2 + Cei) > 75%) then 

19:        SL ← si 

20:  end if 

21:    end for 

22: else if Cei > 80% then 

23:   for si ∈ S do 

24:  if ((lsi + Cei) > 83%) or ((msi + Cei) > 83%) then 

25:        SL ← si 

26:        CF ← True 

27:  end if 

28:   end for 

29: end if 

30: return SL, MF, CF 

4.3. Estimation of The Best Edge Server 

     In SASPME, SNA would periodically receive information about resources’ utilization from all 

edge servers. To estimate the most suitable edge server for an IoT service request, SNA would decide 

according to the available resources, the load on the edge server, and the distance between the edge 

servers and the IoT device. To compare such divergent types of data, MCDM algorithms are used. 

With MCDM, multiple alternatives are evaluated and ranked depending on multiple criteria [24, 25]. 

In the proposed system, edge servers (alternatives) would be ranked according to the number of 

running services, CPU usage, available memory free disk space, and the distance between the edge 

servers and the IoT devices to estimate the most suitable edge server. The inputs of the decision matrix 

are shown in Table-1. 

 

Table 1- The inputs of the decision matrix. 

 
No. of 

Running 

Services 

CPU 

Percentage 
Available 

Memory 
Available 

Storage 
Distance 

Edge server 1 X11 X12 X13 X14 X15 
Edge server 2 X21 X22 X23 X24 X25 
Edge server 3 X31 X32 X33 X34 X35 
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Because the data are in different types, the matrix should be normalized first to be comparable. The 

normalization procedure used in this work is the same as previously described [24]. 

For beneficial criteria, i.e. available memory and available storage, where higher values are desired, 

we have 

X`ij = 
   

         
  (1) 

For non-beneficial criteria, i.e. the number of running services, CPU percentage, and distance, where 

lower values are desired, we have 

X`ij = 
         

   
  (2) 

In this work, the weighted aggregated sum product assessment (WASPAS) method is used. This 

method is a combination of the Weighted Sum Method (WSM) and the Weighted Product Method 

(WPM). These methods are detailed below. 

A. Weighted Sum Method (WSM) 

It is a simple method in which each criterion has a specific weight wj. The sum of all the weights 

should be equal to one. It is calculated according to the following equation. 

Qi(1) = ∑            (3) 

The results are sorted in a descending order, and the highest result would represent the best choice. 

B. Weighted Product Method (WPM) 

It is similar to WSM but with some differences. Multiplication is used instead of addition, and the 

criterion is raised to the power of the weight, as shown in the equation below. 

Qi(2) = ∏       
  

     (4) 

After sorting the results in a descending order, the highest result would represent the best choice. 

C. Weighted Aggregated Sum Product Assessment Method (WASPAS) 
This method is a combination of the WSM and WPM. The following equation presents a joint 

generalized criterion of weighted aggregation of additive and multiplicative methods. 

Q = 0.5 Qi(1) + 0.5 Qi(2) = 0.5 ∑           + 0.5 ∏       
  

                (5) 

Same as the previous methods, results are sorted in a descending order, and the alternative (edge 

server) with the highest result would be the best choice. 

5. Results and Discussion 

     To test the effectiveness of the proposed system, experiments were implemented for two cases: 1) 

without using the SDN controller; 2) using the SDN controller. The first case includes ESA only. IoT 

devices would send requests to all reachable edge servers using broadcast messages. The IoT device 

would choose the edge server with a quick response time without considering the distance and the load 

on that edge server. In the second case, the proposed SASPME (SNA and ESA) would be 

implemented. The experiments were executed using two physical machines. The first machine is used 

to run the SDN controller (Onos) and three VMs, with a VM for each edge server. The second 

physical machine is used to run two VMs, one is for the Cloud and the other is for IoT devices. The 

specifications of the physical machines and VMs are presented in Table-2. All VMs in the system are 

connected to a Mininet network that has an Openflow enabled switch. These networks are connected 

through Generic Routing Encapsulation (GRE) tunnels. Figure-6 shows the system setup. The results 

were measured for a different number of devices (10, 20, 30, 40, and 50) in both cases. Each device 

requests a single service. To explain the impact of running various types of services on the resources’ 

utilization of the edge servers, three types of services were implemented. An edge detection service 

that implements edge detection algorithms, RSA (Rivest–Shamir–Adleman), and SHA-3 (Secure Hash 

Algorithm 3) cryptography algorithms were used. The time between a device request and another was 

randomly selected between 7ms and 20ms. Each device will reconnect to the edge server at a random 

time between 1 to 3 minutes. The next subsections present the results collected from both cases. 
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     The CPU and memory utilization were measured for both cases. In the first case, the type of service 

for IoT device was chosen randomly and requests were sent directly to edge servers. The IoT devices 

offloaded their data to the edge server with the quickest response time. The results in Figure-7 show an 

inequitable load distribution between edge servers. Edge server 1 was in an overloaded state for a long 

time, while edge servers 2 and 3 remained in a normal state where the CPU and Memory usage were 

mostly in low rates. Overloaded and normal states are represented by 0 and 1, respectively. 

Furthermore, the services running in an overloaded edge server are prone to failures or can negatively 

affect the performance of these services. In the second case, when SNA and ESA are used, the 

resources of edge servers were utilized more efficiently and the edge servers were in a normal state all 

the time. Resources’ utilization of edge servers was measured and sent to SNA every 30 Seconds. The 

resources’ utilization measurement, collected from the edge servers, have improved future offloading 

decisions and assured an efficient services distribution. The resources’ utilization and the state of edge 

servers, along with the number of running devices in all edge servers for 10 devices in both cases are 

shown in Figures-(7 and 8), respectively. 

Table 2- Specifications of physical machines and VMs. 

Physical Machines VMs in Each Physical Machine 
Processor – Intel Core i7-8550u CPU @1.80 

GHz ×8 
Memory – 16 GB 

Disk – 1TB 
Operating system – Ubuntu 18.04.3 LTS (64-

bit) 

Processor – Intel Core i7-8550u CPU @1.80 

GHz ×2 
Memory – 2 GB 

Disk – 70GB 
Operating system – Ubuntu 18.04.3 LTS (64-

bit) 

Processor – Intel Core i5-4210u CPU @1.70 

GHz 2.40 
Memory – 8 GB 
Disk – 512GB 

Operating system – Windows 10 Pro (64-bit) 

Processor – Intel Core i5-4210u CPU @1.70 

GHz ×2 
Memory – 2 GB 

Disk – 70GB 
Operating system – Ubuntu 18.04.3 LTS (64-

bit) 

 

 

Figure 6- System Setup (connections between the physical and the virtual machines). 
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Figure 7- Resources usage of the edge servers using ESA. 
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Figure 8- Resources usage of the edge servers using ESA and SNA. 

     The request handling time was measured for five experiments with a different number of devices. 

In the first case, the total request handling time was measured by the period in which an IoT device 

sends a service request and receives a response from an edge server. Figure-9, which presents the 

average request handling time for different devices using ESA only, shows that the average request 

handling time rose in varying rates by increasing the number of IoT devices. In this case, the IoT 

requests is broadcasted to all the edge servers and they should all respond to each received request, 
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even though it may not be completed. This has increased the overhead on the edge servers, and 

therefore, it has increased the request handling time. 

 
     In the second case, the offloading destination would be determined by the priority of the requested 

service. Therefore, the time to handle requests received from IoT devices would depend on the 

destination estimation time and the connection time between SNA and ESA. For delay-sensitive 

services, the request handling time would include the time to choose the best edge server and the time 

to forward the request to that edge server. As shown in Figure-10, the time to estimate the best edge 

server was relatively close in all cases. Figure-11 shows the average time to forward the request to the 

edge server. 

 
Requests for delay-tolerant services would be directly forwarded to the Cloud. In this case, the request 

handling time would depend only on the time to forward the request to the Cloud. As shown in Figure-

12, the average request handling time using ESA and SNA shows a considerable improvement as 

 

Figure 9- Average request handling time using ESA. 

 

Figure 10-The time to estimate the best edge server. 

 

Figure 11- The average time to forward requests to edge servers. 
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compared with the previous case. Also, by increasing the number of devices, the average request 

handling time remained in convergent rates. In this case, the number of requests sent to each edge 

server was notably reduced as compared with the previous case. Hence, the average request handling 

time is minimised. 

 
6. Conclusions 

     In this paper, we have focused on resources allocation for IoT services in the edge networks. The 

proposed SASPME system aims to improve the performance of the IoT-based applications by 

allocating computational resources for the delay-sensitive services in the edge servers. In SASPME, 

the SDN application is proposed to reduce the overhead on the edge servers by taking the 

responsibility of handling the IoT requests and taking the offloading decision to the best destination. 

The experiments showed that gathering information related to the available computational resources 

from the edge servers in short periods of time can improve the decision making and, hence, ensure a 

more balanced load distribution between the edge servers, although it may increase the load on the 

link. The WASPAS method, used in the SDN application, is an effective solution to estimate the best 

edge server depending on different criteria. Furthermore, containerization is used in the edge servers to 

ensure efficient utilization of resources. SASPME is compared with a non-SDN system. We conclude 

that, for a different number of devices, the SASPME can reduce the total time for handling requests, 

improve the resources’ utilization, and distribute the load more efficiently. 
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