
Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425
 DOI: 10.24996/ijs.2020.61.9.28

*Email: khalidsn82@yahoo.com
2418

Monitoring and Enhancement of Mobile System Performance

Khalid S. Noori*, Assmaa A. Fahad

Computer Science Department, College of Science, University of Baghdad, Baghdad, Iraq

Received: 3/12/2019 Accepted: 27/3/2020

Abstract
 Android operating system, since its first start, is growing very fast and takes a

large space in smart devices market. It is built and developed on Linux and designed

basically for touch screen devices such as, mobiles, tablets, etc. Mobile devices are

markedly complicated and feature-rich; therefore they are prone to reliability of

software and performance problems. Because of the small resources, smart devices,

such as CPU, RAM, suffer from problems. One of these problems is Software Aging

(SA). SA is recognized in long running OSs as a shortage in resources, performance

retreating, and finally failure. SA is looked at from two sides, namely the poor

response time of application which represents the end user side and the shortage in

metrics related to device resources, such as RAM and storage. In this paper, a set of

eight experiments is conducted to distinguish SA in Android mobiles. These

experiments are conducted to find the correlation between Launch Time (LT) with

RAM and storage metrics covered in this paper. Statistical methods, such as Mann

Kendall test, Sen’s slope, Spearman rank correlation, and Design of Experiment

(DOE) are used to prove the correlation statistically. These experiments assist to

detect SA, which will be helpful in the rejuvenation strategy of applications.

Keywords: Software Aging, Launch Time, Mann Kendall, Sen’s slope, Spearman

rank correlation, DOE.

 تحدين و مراقبة اداء نظام الموبايل

 أسماء عبدالله فهد, *خالد صباح نوري

العخاق, بغجاد ة العمهم، جامعة بغجاد،كمي ,دم عمهم الحاسهبق

 الخلاصة
نظام التذغيل انجرويج مشح بجايتو, يشسه بدخعة عالية و يأخح حيد كبيخ في سهق الاجيدة الحكية.

الانجرويج بشي و طهر عمى نظام الميشكذ و مرسم بذكل رئيدي للأجيدة ذات الذاشات القابمة لمسذ مثل,
فيي عخضة أجيدة السهبايل معقجة بذكل ممحهظ و غشية بالسيدات, لحلكمهحية, .. الخ. ايلات, الاجيدة الالسهب

والاعتسادية عمى البخامج. بدبب امتلاكيا لسرادر صغيخة مثل, وحجة السعالجة لسذاكل متعمقة بالاداء
هخة البخامج. السخكدية, ذاكخة الهلهج العذهائي, الخ فيي تعاني من مذاكل. واحجة من ىحه السذاكل ىي شيخ

يتم التعخف عمى شيخهخة البخامج في انظسة التذغيل العاممة لفتخات طهيمة من خلال الشقص في السهارد, تخاجع
الاداء, و اخيخا الفذل. شيخهخة البخامج يشظخ ليا من جانبين: وقت الاستجابة الزعيف لمبخامج و الحي يسثل

اصة بالجياز مثل, ذاكخة الهلهج العذهائي, و السداحة الخدنية و الشقص في السهارد الخ جانب السدتخجم,
لغخض تسييد شيخهخة البخامج تجارب يتم إجخاؤىا مجسهعة من ثسان, ىحا البحث .و التي تسثل جانب الشظام

ISSN: 0067-2904

mailto:khalidsn82@yahoo.com

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

2419

لغخض اثبات العلاقة بين وقت الانطلاق لمتطبيق تجخى تجارب ال . ىحهفي اجيدة السهبايل العاممة بالانجرويج
اختبار مان .بحثال و التي سيتم التخكيد عمييا في ىحالسقاييذ الخاصة بحاكخة الهلهج العذهائي و الخدن مع ا

ساس الختبة, و ترسيم التجارب أستخجمت لاثبات العلاقة أحرائياً. أكشجل, مشحجر سين, ارتباط سبيخمان عمى
جة في استخاتيجية اعادة الذباب ىحه التجارب تداعج في اكتذاف شيخهخة البخامج و التي تكهن ذا فائ

 لمتطبيقات.
1. Introduction

 Mobile Operating Systems (MOSs) are systems designed specifically for mobile phones, tablets,

and wearables. These are basically light weight OSs which requires low resources of power, storage

space, CPU, RAM, etc [1]. They encompass all the essential components in personal computers,

including WiFi, camera, video player, etc. , in addition to features useful for mobile use, such as the

Subscriber Identity Module (SIM) tray for telephony and data connection [2].

 Mobile OSs are built using various OS kernels, such as Linux, Unix, Windows, etc. The most

famous and trending mobile OSs in the market are Android and iOS [1].

 Android OS, just like other OSs, has many problems that include CPU utilization, power

consumption, security threats, and RAM shortage. But fast response time is one of the important

features that the user searches for. Poor response time, which is the representation of SA is one of

these problems that is related to RAM shortage.

 SA representations include resource exhaustion, performance degradation, and failure rising, from

which the customers are suffering [3, 4, 5]. SA is a progressive performance degradation phenomenon

or sudden failure of the system related to aging bugs such as fragmentation, accumulation of errors,

and resources’ exhaustion. It happens in long running systems that run applications for a long period

of time. SA can be seen from two points of view; first, the user’s view point which is represented by

the Launch Time (LT) of the application that is directly perceived by the user; second, the system’s

view point, which is represented by the system’s metrics. Different metrics are related to different

resources. Some of memory metrics are those of “totally free” and “totally used”, while some of the

storage metrics are those of “reads completed” and “writes completed”. These metrics are not

perceived directly by the user and are used to check the influence of them to the LT [4]. Many

software rejuvenation strategies are used to handle SA, such as system rebooting and application

restart [6].

The rest of this paper is structured as follows: Section 2 discusses the related work. Section 3 discusses

SA in resources and their metrics. Section 4 discusses testing utilities used to detect SA. Section 5

discusses statistical methods for SA detection process. Section 6 discusses the designed module of the

paper. Section 7 discusses the results of the experiments. Section 8 includes the conclusions.

2. Related work

 Application responsiveness is one of the main concerns of Android users which is caused by SA.

Many researches were conducted on SA for different Oss, such as Unix and Linux, but only few were

reported on Android system. This paper intends to provide an organized view of the recent

achievements of SA in Android system research to cope with the rapid changes mentioned above. This

paper focuses on investigating the recent evolutions of SA in Android system, concentrating on RAM

and storage, as well as understanding the current trends and the directions of future Android SA

research. The previous related works are described below.

An earlier work [7] introduced an empirical study to investigate the existence of SA in Android OS

under various circumstances. Collecting system memory information was performed through an

application developed for this purpose. Two Stress test experiments with fixed workload and

exponential workload were conducted on Android OS to discover the SA phenomena. Collecting

system information was performed every five minutes for twenty four hours for each experiment. In

both experiments, GC_CONCCURENT (garbage collection that is activated by Android OS when the

memory allocated is too large) was activated to collect garbage for releasing memory space when

memory leaking happens. As a result of experiments, the SA existed in Android OS under the

aforementioned stress tests. A previous article [8] considered the problem of SA in Android mobile

OS. An experimental methodology was suggested that uses statistical methods (Mann Kendall test,

one way Analysis Of variance (ANOVA), and Spearman’s rank correlation coefficient) to recognize

factors of the experimental plan. It involved an application set which represents application type to

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

2420

stimulate the system device, which represents the physical mobile with its H/W and S/W

configurations, workload and kill frequency. The experiment was performed every five and sixty

seconds, with configuration of workload events such as touches, switches, using Monkey tool and

storage space usage, in two modes, namely full and normal. Resource utilization metrics (memory and

storage) with system operations (garbage collection and tasks) were tested in relation with SA. In

addition, an empirical analysis was performed on recent Android devices and pointed out the

processes (System Server, Surface Flinger, and System UI) and components of Android OS (such as

Activity Manager) affected by SA. Metrics useful as indicators of SA to schedule software

rejuvenation actions were also tested. As a result of those experiments, it was recommended that

Android software rejuvenation should select a measurement-based approach to be familiar with the

workload conditions. An earlier report [9] determined the main objective of the research to discover

SA in and to study the influence of warm rejuvenation strategy (application restart) in Android OS. It

was concentrated on available memory as aging-related phenomena and utilized five experiments;

experiments one and two were conducted to confirm whether aging can happen in Android;

experiments three and four verified whether warm rejuvenation can work on Android aging recovery;

experiment five was performed to find out whether Android SA is reversible. Also, a mathematical

modelling (Markov chains) was implemented to predict the anticipated time for Android OS to go into

the aging condition. As a result of those experiments, the presence of aging in Android was noticed. In

addition, the warm rejuvenation (application restart) had a small influence on aging recovery or

alleviation process. The authors assumed that the only way to deal with this issue when occurs is to

reboot OS or use other unknown technology strategies that may be developed in the future.

3. SA Analysis and Metrics

This section will discuss the SA problem in main mobile resources such as RAM and storage.

A. SA in RAM

 RAM is a valuable resource, precisely on smart phones. It is a critical resource for attaining good

performance, but many studies showed that it is often affected by SA. Android provides a complicated

mechanism to manage memory, both at the kernel level and the Android frame work level Some of

these managements include application life cycle, application process caching, and reclaiming

memory through OOMK and LMK [8]. When an application exits, activity manager service does not

kill the process but instead places it in the Least Recently Used (LRU) list, in case the user returns to

use it again to minimize application response time. The majority of Android devices have a restricted

memory, and running applications in (out of memory) or (low memory) states will be high. Therefore,

when most of the applications are launched, Android needs to free memory that influences the

application LTs, which is the period between touching the application icon on screen (requesting an

activity) until the first view of contents of screen for interaction. The LT of application plays a pivotal

role in user experience of the application and, thus, memory metrics are included to analyse memory

usage in the experiments and their effects on application LT. List of some memory metrics are shown

in Table- 1[8].

Table 1- List of some memory metrics [8]

Metrics used
Measurement

unit
Description

Total Free KB The size of the unused physical memory

Free Cached KB The size of the physical memory that is used as cache memory

Free Cached

Proportional Set

Size (PSS)

KB
The size of the physical memory that is recently used by PSS of

cached processes (not in use)

Total Used KB The size of the used physical memory

Used PSS KB The size of the used physical memory by non-cached processes

Used Buffers KB The size of the used physical memory for file buffers

Used Shared

Memory
KB The size of the used physical memory by shared memory

Used Slab KB The size of the used physical memory by kernel to cache data

Lost RAM KB The size of the not free or used physical memory

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

2421

B. SA in Storage Space

 Internal storage is used to save files that are related to specific applications, where any other

application cannot have access to them. The Android system provides an individual directory (private)

for each application to organize any files the application requires [10]. The availability or not of

storage space in experiments (in terms of free space) may or may not influence the app LTs. Hence,

storage metrics are included to analyse the storage space usage. Some of storage metrics are shown in

Table- 2 [6].

Table 2- Some of storage metrics [6]

Metrics used Measurement unit Description

Reads Completed No. of reads
The total number of reads that are completed

successfully

Reads Merged No. of reads
The total number of reads which are adjacent to each

other may be merged for efficiency

Sectors Read No. of sectors The total number of sectors that are read successfully

Reading Time Milli second The total number of time that is spent by all reads

Writes

Completed
No. of writes

The total number of writes that are completed

successfully

Writes Merged No. of writes
The total number of writes which are adjacent to each

other may be merged for efficiency

Sectors Written No. of sectors The total number of sectors that are written successfully

Writing Time Milli second
The total number of milliseconds that is spent by all

writes

Read Completion

Time
Milli second/read The average amount of time doing I/O read operation

Write Completion

Time
Milli second/write The average amount of time doing I/O write operation

Weighted I/O

Time
Milli second

The number of I/O that are in progress times the number

of milliseconds spent doing I/O

4. SA Testing Utilities

 SA utilities that are used in the experiments to collect data include Monkey Tool [11], Dumpsys

tool [12], Logcat tool [13], ADB tool [14], and /proc File System [15].

5. SA Statistical Methods

 Several statistical methods are used to analyse the data collected over time. Some of statistical

methods used in this paper include Mann Kendall (MK) test [16], Sen’s slope estimator [16],

Spearman’s rank correlation coefficient [17], and Design Of Experiment (DOE) [18, 19].

6. The Designed Module

 The designed module of the paper consists of many parts, including experiment setup, experiment

design, experiment factors and levels, and experiment plan.

A. The Experiment Setup.

 The following represents a complete view of the experiment platform which consists of several

parts:

 The testbed: The conducted experiments were implemented on Samsung Note3 mobile phone

equipped with 3GB of RAM and 32GB of internal storage. The mobile was installed with an Android

5.0 Lollipop operating system. A PC computer with 8GB RAM and 500GB hard disk was used to send

user events and inject them into the mobile to gather the required information. The OS installed on the

PC was 64-bit Ubuntu 18.04.1 LTS.

 User events generator: to simulate user events, Monkey tool was used to generate such events like,

touch, motion, trackball, navigation, majornavigation, syskeys, appswitch, anyevent, flip, and

pinchzoom. In each experiment, 10,000 events were injected into the mobile with 500 milli second

(ms) throttle (delay) between each group of events. These events stress the mobile OS over a period of

time in order to accelerate the appearance of SA.

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

2422

 Test applications: Two sets of applications were used in the experiments, namely the third party

applications which were downloaded from play store. and system applications which were already

installed by the manufacturer and cannot be uninstalled in the mobile phone.

 Data collection: In this part, eight experiments were conducted with different combinations of

factors at each level. Each experiment was conducted t for one hour. During each experiment, five

applications (third party applications or system applications) were launched and killed periodically

every thirty seconds. A bash script was developed in order to launch and kill applications, generate

events, collect data, and save the collected data to files in order to analyse them later using statistical

methods mentioned in section 4. The collected data are:

- The applications LTs that are collected every thirty seconds and represent user perceived response

metrics.

- RAM and Storage information that is collected every thirty seconds and represent system perceived

response metrics.

In this paper, dumpsys, logcat and /proc were used to gather the aforementioned metrics. Statistical

methods were used for analysing the collected data to discover the existence of SA in the mobile.

B. The Experiment Design

 The experiment design (Figure-1) is passing through many steps. Collecting LTs of applications

with RAM and storage metrics information was performed every thirty seconds. The median value

was selected from the collected LTs of applications every thirty seconds at each time period. The MK

test and the Sen’s slope estimator were applied to the median LTs of applications with RAM and

Storage metrics information every thirty seconds to check for trends and finding the slopes,

respectively.

The Spearman’s rank correlation coefficient was applied between the slopes of RAM metrics and the

slopes of median LTs of applications collected every thirty seconds to find the metrics that affect the

LTs of applications. The same method was applied to the slopes of storage metrics and the slopes of

median LTs of applications collected every thirty seconds to find the metrics that affect the LTs of

applications.

Figure 1- The experiment design.

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

2423

C. The Experiment Factors and Levels

 To stress the Android OS broadly and to bring out the hidden SA issues, the tests were run under

many different configurations and stress applications, which represent the factors of the experiment

plan. Three factors were considered in this paper and derived the experiment plan by varying the

combinations of levels of these factors according to DOE (Table-3). A full factorial design of the

experiments conducted on the mobile was adopted (Table-4).

Table 3 – The experiment factors and levels

Factor Level Description

Application

third party

applications

- io.faceapp

- com.google.android.applications.translate

- com.newpower.apkmanager

- com.infraware.office.link

- org.videolan.vlc

System applications

- com.sec.android.applicationpopupcalculator

- com.sec.android.applicationclockpackage

- com.samsung.helphub

- com.android.mms

- com.sec.android.applicationmusic

Events
Events

Monkey tool sends touch, motion, trackball,

navigation, majornavigation, systemkeys, switch,

anyevent, flip, and pinchzoom

None Monkey tools is not sending events (not used)

Storage
Normal Default storage space

Full Ninety percent storage space

Table 4 - The experimental plan

Application Events Storage

third party applications Events Normal

System applications None Normal

System applications None Full

System applications Events Normal

third party applications Events Full

System applications Events Full

third party applications None Normal

third party applications None Full

7. Results and discussion

 In this stage, the Sen’s slope estimator for median LTs of applications, RAM metrics, and storage

metrics was computed statistically. These Sen’s slopes (values) were used to find the correlation

between LT degradation with RAM and storage metrics, using Spearman’s rank correlation coefficient.

The Spearman’s rank correlation coefficient was used to compute the correlation between median LT

slopes of applications and memory metrics slopes across all the conducted eight experiments. The

results of the correlation test are shown in Table-5. Correlation values between negative one to

positive one, except zero value, imply that the correlation exists as the LT and memory metric both

increase or decrease at the same time, or when one increases and the other decreases.

Table 5- Spearman’s rank correlation coefficient between median LT slopes and memory metrics

slopes

Memory metrics Spearman correlation coefficient P - value

Total Free -0.048 0.911

Free Cached 0.214 0.610

Free Cached PSS 0.286 0.493

Total Used 0.190 0.651

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

2424

Used PSS 0.095 0.823

Used Buffers 0.048 0.911

Used Shared Memory 0.203 0.630

Used Slab -0.657 0.156

Lost RAM -0.143 0.736

 By taking a significance level of 95% (α = 0.05), no one of memory metrics was found to be

correlated to LT in a statistical significance way, according to the p-values of the metrics (P>0.05).

The results of the correlation between LT and RAM metrics did not mean that there was no correlation

at all in all metrics, for two important reasons:

- The duration of the experiment, which was one hour, could be increased to many hours or

until the device will be in an unstable condition. This might show a correlation between LT and

memory metrics.

- The type of workload could also be a cause of this correlation result.

In the same manner, Spearman’s rank correlation coefficient was also used to compute the correlation

between median LT slopes of applications and storage metrics slopes across all experiments. The

results of the correlation are shown in Table-6. By taking a significance level of 95% (α = 0.05),

sectors read and reading time metrics were correlated to LT with a statistical significance (P-

value<0.05). The results of memory metrics were also affected by the duration of the experiment and

the type of the workload used during it.

Table 6- Spearman’s rank correlation coefficient between median LT slopes and storage metrics

slopes

Storage metrics Spearman correlation coefficient P - value

Reads Completed -0.690 0.058

Reads Merged -0.690 0.058

Sectors Read -0.786 0.021

Reading Time -0.738 0.037

Writes Completed -0.381 0.352

Writes Merged -0.595 0.120

Sectors Written -0.595 0.120

Writing Time -0.595 0.120

Read Completion

Time
None none

Write Completion

Time
-0.595 0.120

Weighted I/O Time -0.595 0.120

8. Conclusions

 Eight experiments with different factors and levels were conducted in order to recognize the

existence of SA in Android mobiles. LT, memory metrics, and storage metrics were used for the

detection of SA. The results of the experiments showed that none of memory metrics has an influence

on LT of the applications in experiments conducted every thirty seconds, according to p-values greater

than 0.05. Also it was noted that sectors read and reading time metrics were correlated to LT of the

applications in experiments conducted every thirty seconds.

References

1. Wukkadada, B., Nambiar, R. Nair, A. 2015. Mobile Operating System: Analysis and Comparison

of Android and iOS. International Journal of Computing and Technology, 2(7).
2. Yoon, Y. 2012. A Study on the Performance of Android Platform. International Journal on

Computer Science and Engineering (IJCSE), 4(04).

3. Huo, S., Zhao, D., Liu, X., Xiang, J., Zhong, Y. and Yu, H. 2018. Using machine learning for SA

detection in Android system. Tenth International Conference on Advanced Computational

Intelligence (ICACI), Xiamen, pp. 741-746.

4. Inas A., Sumaya S. and Safa A. 2016. “Using One-Class SVM with Spam Classification”, Iraqi

Journal of Science, 57(1B)): 501-506.

Noori and Fahad Iraqi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

2425

5. Ayad R. Abbas, Asaad R. Kareem, 2018. “Age Estimation Using Support Vector Machine”, Iraqi

Journal of Science, 59(3C): 1746-1756.

6. Weng, C., Zhao, D., Lu, L., Xiang, J., Yang, C. and Li, D. 2017. A Rejuvenation Strategy in

Android. IEEE International Symposium on Software Reliability Engineering Workshops

(ISSREW), Toulouse. pp. 273-279.

7. Zhao, Y. et al. 2015. An Experimental Study on SA in Android Operating System. 2
nd

International Symposium on Dependable Computing and Internet of Things (DCIT), Wuhan, pp.

148-150.

8. Cotroneo, D., Fucci, F., Iannillo, A..K, Natella, R. and Pietrantuono, R. 2016. SA Analysis of the

Android Mobile OS. IEEE 27th International Symposium on Software Reliability Engineering

(ISSRE), Ottawa, ON, pp. 478-489.

9. Weng, C., Xiang, J., Xiong, S., Zhao, D. and Yang, C. 2016. Analysis of SA in Android. IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW), Ottawa,

ON, pp. 78-83.

10. Data and file storage overview | Android Developers. 2019. Retrieved 31 October 2019, from

https://developer.android.com/guide/topics/data/data-storage.

11. UI/Application Exerciser Monkey | Android Developers. 2019. Retrieved 31 October 2019, from

https://developer.android.com/studio/test/monkey

12. Dumpy | Android Developers. 2019. Retrieved 31 October 2019, from

https://developer.android.com/studio/command-line/dumpsys

13. Logcat command-line tool | Android Developers. 2019. Retrieved 31 October 2019, from

https://developer.android.com/studio/command-line/logcat#alternativeBuffers

14. Android Debug Bridge (adb) | Android Developers. 2019. Retrieved 31 October 2019, from

https://developer.android.com/studio/command-line/adb#IntentSpec

15. Proc (5) - Linux manual page. 2019. Retrieved 31 October 2019, from http://man7.org/linux/man-

pages/man5/proc.5.html.

16. Gilbert, Richard O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van

Nostrand Reinhold Company Inc.

17. Corder, G.W. and Foreman, D.I. 2014. Nonparametric statistics: A step-by-step approach. John

Wiley & Sons Inc., second edition.

18. Montgomery, D.C. 2013. Design and Analysis of Experiments. John Wiley & Sons Inc., eighth

edition.

19. Wagner, J.R., Mount, E.M., Giles, H.F. 2013. Extrusion. Elsevier Inc.

https://developer.android.com/guide/topics/data/data-storage
https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3AGregory+W.+Corder
https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3ADale+I.+Foreman

