Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425
DOI: 10.24996/ijs.2020.61.9.28

o W

/.'xh‘f:'
Journal of
Science

S ———
ISSN: 0067-2904

Monitoring and Enhancement of Mobile System Performance

Khalid S. Noori*, Assmaa A. Fahad
Computer Science Department, College of Science, University of Baghdad, Baghdad, Iraq

Received: 3/12/2019 Accepted: 27/3/2020

Abstract

Android operating system, since its first start, is growing very fast and takes a
large space in smart devices market. It is built and developed on Linux and designed
basically for touch screen devices such as, mobiles, tablets, etc. Maobile devices are
markedly complicated and feature-rich; therefore they are prone to reliability of
software and performance problems. Because of the small resources, smart devices,
such as CPU, RAM, suffer from problems. One of these problems is Software Aging
(SA). SA is recognized in long running OSs as a shortage in resources, performance
retreating, and finally failure. SA is looked at from two sides, namely the poor
response time of application which represents the end user side and the shortage in
metrics related to device resources, such as RAM and storage. In this paper, a set of
eight experiments is conducted to distinguish SA in Android mobiles. These
experiments are conducted to find the correlation between Launch Time (LT) with
RAM and storage metrics covered in this paper. Statistical methods, such as Mann
Kendall test, Sen’s slope, Spearman rank correlation, and Design of Experiment
(DOE) are used to prove the correlation statistically. These experiments assist to
detect SA, which will be helpful in the rejuvenation strategy of applications.

Keywords: Software Aging, Launch Time, Mann Kendall, Sen’s slope, Spearman
rank correlation, DOE.

Jelisal) allsS o3} Adlpa g Cppaunl

3t s slaul , (G5 plua AA

Ghall alaas el Zaals caslall S, Cigulal) ogle aud

Ladal
ASH BeaY) B B S es b5 ddle dejun seb auly Ne ugym) dall ol
jie el AL AL @3 Beadl oty B pacan 5 oSl AU e ok g i gy
Lompe b N il die 5 Lisale IS0 53 Qligall Seal &1 L0 Enlll Bea¥) DAl
Aallad) ang ,die Bpin olad L) Gay mabdl e Aolae¥ly WL dabie JSlad
bl Aipied b (LA ol (e saals L SLae (g Sl g8 &, el sl 5813 ,A5K5)
el lsal) b el DA (e bl i) Allall Jaall Lalai) 3 malll Adsi0s e Capelll oy
Jier @3 5 gaball Cpnall Llaia¥) g sopmila (o L) et sl A3s30d . Ja haal 5, 6)Y)
1A Aaledl) 5, Ssdall zslgll 5815, e Sleally Ll Sl & il i) Caila
bl ddsind S sl Wshal ab clad Gl (e degene il 12 Ll cuils i A

*Email: khalidsn82@yahoo.com
2418

mailto:khalidsn82@yahoo.com

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

Gabill (B Cdy G 3D Gl Gasdl (a3 colatl sde a0V ALl Ll Seal b
Ole kil adll e b lgle 5S5l S SN g G 5 Slsdall Zslll 5510 Lalal) Genlaall as
Llaa] 200l Gl ceasial oylaill aseai 5, A0 Gelad e Glojie Bl ce jasie,Ja
CLal salel Ll 56 13 e 5 mebad) ASsiad GLES) 8 el st sl
calandall
1. Introduction

Mobile Operating Systems (MOSs) are systems designed specifically for mobile phones, tablets,
and wearables. These are basically light weight OSs which requires low resources of power, storage
space, CPU, RAM, etc [1]. They encompass all the essential components in personal computers,
including WiFi, camera, video player, etc. , in addition to features useful for mobile use, such as the
Subscriber Identity Module (SIM) tray for telephony and data connection [2].

Mobile OSs are built using various OS kernels, such as Linux, Unix, Windows, etc. The most
famous and trending mobile OSs in the market are Android and i0S [1].

Android OS, just like other OSs, has many problems that include CPU utilization, power
consumption, security threats, and RAM shortage. But fast response time is one of the important
features that the user searches for. Poor response time, which is the representation of SA is one of
these problems that is related to RAM shortage.

SA representations include resource exhaustion, performance degradation, and failure rising, from
which the customers are suffering [3, 4, 5]. SA is a progressive performance degradation phenomenon
or sudden failure of the system related to aging bugs such as fragmentation, accumulation of errors,
and resources’ exhaustion. It happens in long running systems that run applications for a long period
of time. SA can be seen from two points of view; first, the user’s view point which is represented by
the Launch Time (LT) of the application that is directly perceived by the user; second, the system’s
view point, which is represented by the system’s metrics. Different metrics are related to different
resources. Some of memory metrics are those of “totally free” and “totally used”, while some of the
storage metrics are those of “reads completed” and “writes completed”. These metrics are not
perceived directly by the user and are used to check the influence of them to the LT [4]. Many
software rejuvenation strategies are used to handle SA, such as system rebooting and application
restart [6].

The rest of this paper is structured as follows: Section 2 discusses the related work. Section 3 discusses
SA in resources and their metrics. Section 4 discusses testing utilities used to detect SA. Section 5
discusses statistical methods for SA detection process. Section 6 discusses the designed module of the
paper. Section 7 discusses the results of the experiments. Section 8 includes the conclusions.

2. Related work

Application responsiveness is one of the main concerns of Android users which is caused by SA.
Many researches were conducted on SA for different Oss, such as Unix and Linux, but only few were
reported on Android system. This paper intends to provide an organized view of the recent
achievements of SA in Android system research to cope with the rapid changes mentioned above. This
paper focuses on investigating the recent evolutions of SA in Android system, concentrating on RAM
and storage, as well as understanding the current trends and the directions of future Android SA
research. The previous related works are described below.

An earlier work [7] introduced an empirical study to investigate the existence of SA in Android OS
under various circumstances. Collecting system memory information was performed through an
application developed for this purpose. Two Stress test experiments with fixed workload and
exponential workload were conducted on Android OS to discover the SA phenomena. Collecting
system information was performed every five minutes for twenty four hours for each experiment. In
both experiments, GC_CONCCURENT (garbage collection that is activated by Android OS when the
memory allocated is too large) was activated to collect garbage for releasing memory space when
memory leaking happens. As a result of experiments, the SA existed in Android OS under the
aforementioned stress tests. A previous article [8] considered the problem of SA in Android mobile
OS. An experimental methodology was suggested that uses statistical methods (Mann Kendall test,
one way Analysis Of variance (ANOVA), and Spearman’s rank correlation coefficient) to recognize
factors of the experimental plan. It involved an application set which represents application type to

2419

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

stimulate the system device, which represents the physical mobile with its H/W and S/W
configurations, workload and kill frequency. The experiment was performed every five and sixty
seconds, with configuration of workload events such as touches, switches, using Monkey tool and
storage space usage, in two modes, namely full and normal. Resource utilization metrics (memory and
storage) with system operations (garbage collection and tasks) were tested in relation with SA. In
addition, an empirical analysis was performed on recent Android devices and pointed out the
processes (System Server, Surface Flinger, and System Ul) and components of Android OS (such as
Activity Manager) affected by SA. Metrics useful as indicators of SA to schedule software
rejuvenation actions were also tested. As a result of those experiments, it was recommended that
Android software rejuvenation should select a measurement-based approach to be familiar with the
workload conditions. An earlier report [9] determined the main objective of the research to discover
SA in and to study the influence of warm rejuvenation strategy (application restart) in Android OS. It
was concentrated on available memory as aging-related phenomena and utilized five experiments;
experiments one and two were conducted to confirm whether aging can happen in Android;
experiments three and four verified whether warm rejuvenation can work on Android aging recovery;
experiment five was performed to find out whether Android SA is reversible. Also, a mathematical
modelling (Markov chains) was implemented to predict the anticipated time for Android OS to go into
the aging condition. As a result of those experiments, the presence of aging in Android was noticed. In
addition, the warm rejuvenation (application restart) had a small influence on aging recovery or
alleviation process. The authors assumed that the only way to deal with this issue when occurs is to
reboot OS or use other unknown technology strategies that may be developed in the future.
3. SA Analysis and Metrics
This section will discuss the SA problem in main mobile resources such as RAM and storage.
A.SAin RAM

RAM is a valuable resource, precisely on smart phones. It is a critical resource for attaining good
performance, but many studies showed that it is often affected by SA. Android provides a complicated
mechanism to manage memory, both at the kernel level and the Android frame work level Some of
these managements include application life cycle, application process caching, and reclaiming
memory through OOMK and LMK [8]. When an application exits, activity manager service does not
kill the process but instead places it in the Least Recently Used (LRU) list, in case the user returns to
use it again to minimize application response time. The majority of Android devices have a restricted
memory, and running applications in (out of memory) or (low memory) states will be high. Therefore,
when most of the applications are launched, Android needs to free memory that influences the
application LTs, which is the period between touching the application icon on screen (requesting an
activity) until the first view of contents of screen for interaction. The LT of application plays a pivotal
role in user experience of the application and, thus, memory metrics are included to analyse memory
usage in the experiments and their effects on application LT. List of some memory metrics are shown
in Table- 1[8].

Table 1- List of some memory metrics [8]

Metrics used Measuur]rﬁment Description
Total Free KB The size of the unused physical memory
Free Cached KB The size of the physical memory that is used as cache memory
Free Cached . . .
Proportional Set KB The size of the p?;ilr?:clj mre(z)ngé)sr;/e ;h(a;t Oltsi:]eﬁiz;ly used by PSS of
Size (PSS) P
Total Used KB The size of the used physical memory
Used PSS KB The size of the used physical memory by non-cached processes
Used Buffers KB The size of the used physical memory for file buffers
Used Shared . .
Memory KB The size of the used physical memory by shared memory
Used Slab KB The size of the used physical memory by kernel to cache data
Lost RAM KB The size of the not free or used physical memory

2420

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

B. SA in Storage Space

Internal storage is used to save files that are related to specific applications, where any other
application cannot have access to them. The Android system provides an individual directory (private)
for each application to organize any files the application requires [10]. The availability or not of
storage space in experiments (in terms of free space) may or may not influence the app LTs. Hence,
storage metrics are included to analyse the storage space usage. Some of storage metrics are shown in

Table- 2 [6].

Table 2- Some of storage metrics [6]

Metrics used

Measurement unit

Description

Reads Completed

No. of reads

The total number of reads that are completed
successfully

Reads Merged

No. of reads

The total number of reads which are adjacent to each
other may be merged for efficiency

Sectors Read

No. of sectors

The total number of sectors that are read successfully

Reading Time Milli second The total number of time that is spent by all reads
Writes . The total number of writes that are completed
No. of writes
Completed successfully
Writes Merged No. of writes The total number of writes which are adjacent to each

other may be merged for efficiency

Sectors Written

No. of sectors

The total number of sectors that are written successfully

Writing Time

Milli second

The total number of milliseconds that is spent by all
writes

Read Completion

Milli second/read

The average amount of time doing 1/0 read operation

Time
Write %)r:;pletlon Milli second/write The average amount of time doing 1/0O write operation
Weighted 1/0O - The number of I/O that are in progress times the number
. Milli second - ;
Time of milliseconds spent doing 1/0

4. SA Testing Utilities

SA utilities that are used in the experiments to collect data include Monkey Tool [11], Dumpsys
tool [12], Logcat tool [13], ADB tool [14], and /proc File System [15].
5. SA Statistical Methods

Several statistical methods are used to analyse the data collected over time. Some of statistical
methods used in this paper include Mann Kendall (MK) test [16], Sen’s slope estimator [16],
Spearman’s rank correlation coefficient [17], and Design Of Experiment (DOE) [18, 19].
6. The Designed Module

The designed module of the paper consists of many parts, including experiment setup, experiment
design, experiment factors and levels, and experiment plan.
A. The Experiment Setup.

The following represents a complete view of the experiment platform which consists of several
parts:
e The testbed: The conducted experiments were implemented on Samsung Note3 mobile phone
equipped with 3GB of RAM and 32GB of internal storage. The mobile was installed with an Android
5.0 Lollipop operating system. A PC computer with 8GB RAM and 500GB hard disk was used to send
user events and inject them into the mobile to gather the required information. The OS installed on the
PC was 64-bit Ubuntu 18.04.1 LTS.
e User events generator: to simulate user events, Monkey tool was used to generate such events like,
touch, motion, trackball, navigation, majornavigation, syskeys, appswitch, anyevent, flip, and
pinchzoom. In each experiment, 10,000 events were injected into the mobile with 500 milli second
(ms) throttle (delay) between each group of events. These events stress the mobile OS over a period of
time in order to accelerate the appearance of SA.

2421

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

o Test applications: Two sets of applications were used in the experiments, namely the third party
applications which were downloaded from play store. and system applications which were already
installed by the manufacturer and cannot be uninstalled in the mobile phone.
e Data collection: In this part, eight experiments were conducted with different combinations of
factors at each level. Each experiment was conducted t for one hour. During each experiment, five
applications (third party applications or system applications) were launched and killed periodically
every thirty seconds. A bash script was developed in order to launch and kill applications, generate
events, collect data, and save the collected data to files in order to analyse them later using statistical
methods mentioned in section 4. The collected data are:
- The applications LTs that are collected every thirty seconds and represent user perceived response
metrics.
- RAM and Storage information that is collected every thirty seconds and represent system perceived
response metrics.
In this paper, dumpsys, logcat and /proc were used to gather the aforementioned metrics. Statistical
methods were used for analysing the collected data to discover the existence of SA in the mobile.
B. The Experiment Design

The experiment design (Figure-1) is passing through many steps. Collecting LTs of applications
with RAM and storage metrics information was performed every thirty seconds. The median value
was selected from the collected LTs of applications every thirty seconds at each time period. The MK
test and the Sen’s slope estimator were applied to the median LTs of applications with RAM and
Storage metrics information every thirty seconds to check for trends and finding the slopes,
respectively.
The Spearman’s rank correlation coefficient was applied between the slopes of RAM metrics and the
slopes of median LTs of applications collected every thirty seconds to find the metrics that affect the
LTs of applications. The same method was applied to the slopes of storage metrics and the slopes of
median LTs of applications collected every thirty seconds to find the metrics that affect the LTs of
applications.

sSa
_] methoedolozy

i

BAMN metics Launch times Storage metrics

[|
collected avery . I collected every I collected every
thirty seconds thirty seconds thirty seconds
selecting the
median value
l every time
period
':DD;Y'I"E ':;13”“ Applying Mann Applying Mann
__l er*.. Soan I kendzl and l kendzl and
sen's estimator A e etnation sen's astimator
RAM slopes Median launch
1 l times slopes I storage slopes
l i
2 3 . l
Applying I3 Applying
[Spearman rank = =l e e e o ———— | SpeanmanFank
—— correlation correlation
Detecting -
relevant RAM Dc';t?amit
I et | relevant storage

meatrics

Figure 1- The experiment design.

2422

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

C. The Experiment Factors and Levels

To stress the Android OS broadly and to bring out the hidden SA issues, the tests were run under
many different configurations and stress applications, which represent the factors of the experiment
plan. Three factors were considered in this paper and derived the experiment plan by varying the
combinations of levels of these factors according to DOE (Table-3). A full factorial design of the
experiments conducted on the mobile was adopted (Table-4).

Table 3 — The experiment factors and levels

Factor Level Description
- io.faceapp
third party - com.google.android.applications.translate
applications - com._newpower.ap_kma}nager
- com.infraware.office.link
Application - org.videolan.vic
- com.sec.android.applicationpopupcalculator
- com.sec.android.applicationclockpackage
System applications - com.samsung.helphub
- com.android.mms
- com.sec.android.applicationmusic
Monkey tool sends touch, motion, trackball,
Events Events navigation, _majorna_/igation, systemkeys, switch,
anyevent, flip, and pinchzoom
None Monkey tools is not sending events (not used)
Normal Default storage space
Storage -
Full Ninety percent storage space

Table 4 - The experimental plan

Application Events Storage

third party applications Events Normal

System applications None Normal
System applications None Full

System applications Events Normal
third party applications Events Full
System applications Events Full

third party applications None Normal
third party applications None Full

7. Results and discussion

In this stage, the Sen’s slope estimator for median LTs of applications, RAM metrics, and storage
metrics was computed statistically. These Sen’s slopes (values) were used to find the correlation
between LT degradation with RAM and storage metrics, using Spearman’s rank correlation coefficient.
The Spearman’s rank correlation coefficient was used to compute the correlation between median LT
slopes of applications and memory metrics slopes across all the conducted eight experiments. The
results of the correlation test are shown in Table-5. Correlation values between negative one to
positive one, except zero value, imply that the correlation exists as the LT and memory metric both
increase or decrease at the same time, or when one increases and the other decreases.

Table 5- Spearman’s rank correlation coefficient between median LT slopes and memory metrics
slopes

Memory metrics Spearman correlation coefficient P - value
Total Free -0.048 0.911
Free Cached 0.214 0.610
Free Cached PSS 0.286 0.493
Total Used 0.190 0.651

2423

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

Used PSS 0.095 0.823

Used Buffers 0.048 0.911
Used Shared Memory 0.203 0.630
Used Slab -0.657 0.156

Lost RAM -0.143 0.736

By taking a significance level of 95% (a = 0.05), no one of memory metrics was found to be
correlated to LT in a statistical significance way, according to the p-values of the metrics (P>0.05).
The results of the correlation between LT and RAM metrics did not mean that there was no correlation
at all in all metrics, for two important reasons:

- The duration of the experiment, which was one hour, could be increased to many hours or
until the device will be in an unstable condition. This might show a correlation between LT and
memory metrics.

- The type of workload could also be a cause of this correlation result.

In the same manner, Spearman’s rank correlation coefficient was also used to compute the correlation
between median LT slopes of applications and storage metrics slopes across all experiments. The
results of the correlation are shown in Table-6. By taking a significance level of 95% (o = 0.05),
sectors read and reading time metrics were correlated to LT with a statistical significance (P-
value<0.05). The results of memory metrics were also affected by the duration of the experiment and
the type of the workload used during it.

Table 6- Spearman’s rank correlation coefficient between median LT slopes and storage metrics
slopes

Storage metrics Spearman correlation coefficient P - value
Reads Completed -0.690 0.058
Reads Merged -0.690 0.058
Sectors Read -0.786 0.021
Reading Time -0.738 0.037
Writes Completed -0.381 0.352
Writes Merged -0.595 0.120
Sectors Written -0.595 0.120
Writing Time -0.595 0.120
Read Completion
: None none
Time
Write C_ompletlon -0.595 0.120
Time
Weighted 1/0 Time -0.595 0.120

8. Conclusions

Eight experiments with different factors and levels were conducted in order to recognize the
existence of SA in Android mobiles. LT, memory metrics, and storage metrics were used for the
detection of SA. The results of the experiments showed that none of memory metrics has an influence
on LT of the applications in experiments conducted every thirty seconds, according to p-values greater
than 0.05. Also it was noted that sectors read and reading time metrics were correlated to LT of the
applications in experiments conducted every thirty seconds.

References

1. Wukkadada, B., Nambiar, R. Nair, A. 2015. Mobile Operating System: Analysis and Comparison
of Android and iOS. International Journal of Computing and Technology, 2(7).

2. Yoon, Y. 2012. A Study on the Performance of Android Platform. International Journal on
Computer Science and Engineering (IJCSE), 4(04).

3. Huo, S., Zhao, D., Liu, X., Xiang, J., Zhong, Y. and Yu, H. 2018. Using machine learning for SA
detection in Android system. Tenth International Conference on Advanced Computational
Intelligence (ICACI), Xiamen, pp. 741-746.

4. Inas A., Sumaya S. and Safa A. 2016. “Using One-Class SVM with Spam Classification”, lraqi
Journal of Science, 57(1B)): 501-506.

2424

Noori and Fahad Iragi Journal of Science, 2020, Vol. 61, No. 9, pp: 2418-2425

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Ayad R. Abbas, Asaad R. Kareem, 2018. “Age Estimation Using Support Vector Machine”, Iraqi
Journal of Science, 59(3C): 1746-1756.

Weng, C., Zhao, D., Lu, L., Xiang, J., Yang, C. and Li, D. 2017. A Rejuvenation Strategy in
Android. IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Toulouse. pp. 273-279.

Zhao, Y.et al. 2015. An Experimental Study on SA in Android Operating System. 2™
International Symposium on Dependable Computing and Internet of Things (DCIT), Wuhan, pp.
148-150.

Cotroneo, D., Fucci, F., lannillo, A..K, Natella, R. and Pietrantuono, R. 2016. SA Analysis of the
Android Mobile OS. IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE), Ottawa, ON, pp. 478-489.

Weng, C., Xiang, J., Xiong, S., Zhao, D. and Yang, C. 2016. Analysis of SA in Android. IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), Ottawa,
ON, pp. 78-83.

Data and file storage overview | Android Developers. 2019. Retrieved 31 October 2019, from
https://developer.android.com/guide/topics/data/data-storage.

Ul/Application Exerciser Monkey | Android Developers. 2019. Retrieved 31 October 2019, from
https://developer.android.com/studio/test/monkey

Dumpy | Android Developers. 2019. Retrieved 31 October 2019, from
https://developer.android.com/studio/command-line/dumpsys

Logcat command-line tool | Android Developers. 2019. Retrieved 31 October 2019, from
https://developer.android.com/studio/command-line/logcat#alternativeBuffers

Android Debug Bridge (adb) | Android Developers. 2019. Retrieved 31 October 2019, from
https://developer.android.com/studio/command-line/adb#IntentSpec

Proc (5) - Linux manual page. 2019. Retrieved 31 October 2019, from http://man7.org/linux/man-
pages/man5/proc.5.html.

Gilbert, Richard O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van
Nostrand Reinhold Company Inc.

Corder, G.W. and Foreman, D.l. 2014. Nonparametric statistics: A step-by-step approach. John
Wiley & Sons Inc., second edition.

Montgomery, D.C. 2013. Design and Analysis of Experiments. John Wiley & Sons Inc., eighth
edition.

Wagpner, J.R., Mount, E.M., Giles, H.F. 2013. Extrusion. Elsevier Inc.

2425

https://developer.android.com/guide/topics/data/data-storage
https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3AGregory+W.+Corder
https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3ADale+I.+Foreman

