Ghaffoori Iraqi Journal of Science, 2020, Special Issue, pp: 122-125
DOI: 10.24996/ijs.2020.51.1.16

e

/ ragi
Journal ‘_v,f
/‘*_/
ISSN: 0067-2904

On Existence and Uniqueness of an Integrable Solution for a Fractional
Volterra Integral Equation on R*

Faez N. Ghaffoori
Department of Mathematics, College of Basic Education, University of Mustansiriyah, Baghdad, Iraq

Received: 26/11/ 2019 Accepted: 15/ 3/2020

Abstract

In this paper, by using the Banach fixed point theorem, we prove the
existence and uniqueness theorem of a fractional Volterra integral equation in the
space of Lebesgue integrable L; (R*) on unbounded interval [0, ).
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1. Introduction

Since the last century, time-dependent problems of non-linear differential equations and integral
equation have been studied by many authors; see [1-7].

The subject of nonlinear fractional integral equation considered as an important branch of
mathematics because it is used for solving in many fields such as physics, engineering and economics
[1-4].

In this paper, we will prove the existence and uniqueness theorem of a fractional Volterra integral
equation in the space of Lebesgue integrable L, (R™) on unbounded interval [0, «0)of the type :

—(t-s a—1
x(©) = (O f(6 XY+ RO + [; =D £ (5,x(5))ds, @)
where 0 < a <1, t>0.
2. Preliminaries

Let R be the field of real number, R* be the interval [0,). If A is a Lebesgue measurable subset
of R, then the symbol mas(A) stands for the Lebesgue measure of A.

Further, we denote by L;(A) the space of all real functions, defined and Lebesgue measurable on the
set A. The norm of a function xe L, (A) is defined in the standard way by the formula,

lxll = 1L, ) = j () dt
A
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Obviously, L, (A) forms a Banach space under this norm. The space L, (A) is called the Lebesgue
space. In the case when A = R*, we write L; instead of L; (R*).

One of the most important operators studied in the nonlinear functional analysis is the so- called the
superposition operator [8]. Now, let us assume that A c R is a given interval bounded.

Definition 2.1 [8]: Assume that a function f(t,x) = f:1 X R — R satisfies the so-called Carathéodory
condition, i. e. it is measurable in t for any x € R and continuous in x for almost all t € I. Then to
every function x = x(t) which is measurable on I we may assign the function (Fx)(t) = f(t,x(t)),
t € 1. The operator F defined in such a way is said to be the superposition operator generated by the
function f.

Theorem 2.1 [9]

The superposition operator F generated by a function f maps continuously the space L(I) into
itself if and only if [f(t,x)| < a(t) + b|x| forall t € I and x € R, where a(t) is a function from
L(I) and b is a nonnegative constant.

This theorem was proved by Krasnoselskii [9] in the case when [is a bounded interval. The
generalization to the case of an unbounded interval I was given by Appell and Zabrejko [8].
Definition 2.2 [10] : A function f: A - R™, A c R™ is said to be Lipschitz continuous if there
exists a constant L, L > 0 (called the Lipschitz constant of f on A) such that
lf(x)—f)| <L|[x—y]| forallx,y € A.

Definition 2.3 [11] Let (X,d) be a metric space and T : X — X is called contraction mapping, if
there exist a number y < 1,suchthat: d(Tx,Ty) <yd(x,y), Vx,y €X.
Theorem 2.2 [12] : Let X be a closed subset of a Banach space E and T : X — X be a cont-raction,
then T has a unique fixed point.
Definition 2.4 [13]: Let [a, b] (—» < a < b < ) be a finite interval on the real axis R, the Riemann-
Liouville fractional integral I7+f of the order @ € C(R(a) > 0) is define by :

NIOE % ;([fgffa (t>a; R(@) >0).
Definition 2.5 [14] : Let[a,b] (—o <a < b <) be a finite interval on the real axis R, the
Riemann-Liouville fractional integral 17+ f of the order & € C(R(a) = 0) is define by :

n
D& f(D) =ﬁ (%) f;% (t>a;n=[R@)]+1)
where [R(a)] denotes the integral part of R(a). " i.e. [R(a)] it satisfies
[R(a)] < R(a) < [R(®)]+1."
3. Existence Theorem
Define the operator H associated with integral equation (1.1) which takes the following form:
Hx = Ax + Bx. (3.1)
where (Ax)(t) = g(t) f(t,x(t)),

(t-s) (t—s)“‘l

(Bx)(t) = h(t) + fote_T f (5,x(s))ds
= h(t) + KFx(t),

—(t=9)(t_g)a-1
where, (Kx)(t) = f;% x(s) ds,

Fx = f(t, x) are linear operators at superposition, respectively.
We shall treat the equation (3.1) under the following assumptions.
Assume that :

i) g:R* - R isabounded function such that : M = sup|g(t)],

ter*

and h:R* - R,suchthat h € L; (R").

ii) f:RT x R — R satisfies Lipschitz condition with positive constant L such that
If (&, x(6) — f(t,y(O)] < Llx(®) —y@)|, forall t € R™.

i) LM+ L <1.

Now, for the existence of a unique solution of our equation, we need to prove the following
theorem .
Theorem 3.1 : If the assumptions (i)-(iii) are satisfied, then the equation (1.1) has a unique solution,
where x € L;(R").
Proof : Firstly, we will prove that H : L; (R*) - L, (RY).
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Secondly, will prove that H is a contraction .
Consider the operator H as :
(t_s)(f—s)a_l

Hx(8) = g(©) f(&,x(0) + h(®) + [ 55" f (s,x(s))ds
Then our equation (1.1) becomes
x(t) = Hx(t).
We notice that by assumption (ii), we have
lf &0 =1f(x) — f(£,0) + f(t 0)]
< Iftx) = (£ 0)] + [f(8,0)]
<L|x—0|+ |f(t0)]
<L|x|+ a(t)
Where [f(t,0)] = a(t)
Toprovethat H:L; (RY) - L; (RY).
Let x € L;(RY),

then we have
—(t-s) (t—s)“_

J IHx(Olde = [ 19(OF (6 x(0) + h(©) + f; 52 (5, x(5))dslde
< [J1lg@If (& x®)|dt

© © —(t=s)(f_)a—1
+ [, Ih(®)]dt + [ fot%f(s,x(s))ds

< M [Fla(®) + Lix(®)]] dt + ||l

© oo e~ =) (g—g)a-1
+ ft=sTf(s,x(s))dt ds
_ o et (g-g)a-t

Let J= T

let X=t—s »dX =dt

where t=5s »X=0, t=w >X= o

dt

then ;

_ o et (p_g)a-t 1 P o~ Xya-1 = [@
V= L e AT g Jy e XY = 1=
Then, we get

Jy [Hx(@®)ldt < M [ [a(t) + Lix(®)]] dt + ||kl + [ f (s, x(s))|ds
< M llall + LM [lx(©)] dt + ||l + [Ta(s) + Llx(s)[]ds
< M llall + LM|lx]l + NIkl + llall + Lllx]|
< M llall + [lhll + llall + [LM + L] [ |x(2)|dt
Then
H:L;(RY) = L, (RM).
Secondly, we prove that H is a contraction.
Let x,y € L, [0,), then
fte_(t_s)(t—s)“_l

Jy 1Hx(®) = Hy@)ldt = [ 1g(Of (&, x(6)) + h(t) + [ —— = f(s,x(s))ds

~ 9O (Ly(©) = ht) = [ I £ (s, y(s)) dsde

< [y lg@IIf (£ x®) = f (&, y(®))]de
) e~ (=) (t—g)a-1
01 Sy e (s x())ds
— [ I (s, y(s)) st
< M [ LIx(t) - y(©)ldt

—(t—) _ _
+f000f0t e~ t=S)(t—s)a-1

r(a) |f(s,%(s)) = f(s,(s))| ds dt

< LMllx = yll + [, f (5,%()) = f(s,7(s))| ds
< LM|lx =yl + f; Llx(s) = y(s)| ds
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< LM|lx =yl + L f1x(s) = ()] ds
< LM|lx = yll + Lllx = yll < [LM + L ]llx = ylI

Hence, by using Banach fixed point theorem,
H has a unique point, which is the solution of the equation (1.1), where x € L, [0,0). m
Conclusion

In this paper, by using Banach fixed point theorem we proved the existence and uniqueness
theorem of a fractional nonlinear Volterra integral equation in the space of Lebesgue integrable
L, (R*) on unbounded interval [0, ) of the type :

t —(t=S)(+_\a—1
x(0) = 9O (6O A + f; =T £ (5,x()ds,
where 0 < a <1, t > 0.under the following assumptions :
i) g:R* - R isabounded function such that : M = sup|g(t)],
tert

and h:R* - R,suchthat h € L; (R").
ii) f:RT x R — R satisfies Lipschitz condition with positive constant L such that

If(t,x()) — f(t,y@®)]| < Llx() —y(t)|, forall t € R™.
i) LM +L <1.
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