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Abstract 

     Increasing hydrocarbon recovery from tight reservoirs is an essential goal of oil 

industry in the recent years. Building real dynamic simulation models and selecting 

and designing suitable development strategies for such reservoirs need basically to 

construct accurate structural static model construction. The uncertainties in building 

3-D reservoir models are a real challenge for such micro to nano pore scale 

structure. Based on data from 24 wells distributed throughout the Sadi tight 

formation. An application of building a 3-D static model for a tight limestone oil 

reservoir in Iraq is presented in this study. The most common uncertainties 

confronted while building the model were illustrated. Such as accurate estimations 

of cut-off permeability and porosity values. These values directly affect the 

calculation of net pay thickness for each layer in the reservoir and consequently 

affect the target of estimating reservoir initial oil in place (IOIP). Also, the main 

challenge to the static modeling of such reservoirs is dealing with tight reservoir 

characteristics which cause major reservoir heterogeneity and complexities that are 

problematic to the process of modeling reservoir simulation. Twenty seven porosity 

and permeability measurements from Sadi/Tanuma reservoir were used to validate 

log interpretation data for model construction. The results of the history matching 

process of the constructed dynamic model is also presented in this paper, including 

data related to oil production, reservoir pressure, and well flowing pressure due to 

available production.  

 

Keywords: Tight Reservoir, Static Model, Dynamic model, History matching, 

Reservoir Quality. 
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ليا يمثل تحدي  جيهلهجيحيث قمة نفاذيتيا ومداميتيا وتركيبيا المعقد وغير المتجانس جعل من بناء مهديل 
ثلاثي الابعاد لمكمن كمدي عراقي يمثل مكمن قميل النفاذيو  جيهلهجيج كبير, في ىذا البحث تم تطبيق نمهذ

لقيم  غير تقميدي وتم عرض اكثر النقاط التي تؤدي الى عدم الدقو في بناء المهديل مثل دقة حداب حد القطع
 النفاذيو والمداميو والتي تؤثر بذكل مباشر عمى حداب سمك الطبقو المنتجو في حدابات المحتهى النفطي

اضافو الى صعهبة التعامل مع البيانات المدخمو لبناء المهديل ليذه المكامن المعقده وغير  الاولي داخل المكمن
 المتجاندو.

1. Introduction 

     Prediction of future reservoir performance needs accurate construction of 3-D static models for 

reliable evaluation of the reservoir to achieve efficient management. Accurate characterization of the 

formation is the main step in building a static model. Distinguishing formation’s net to gross ratios of 

pore and grain geometry and size reflects reservoir complex structure and aids in the accurate 

construction of the geological model [1]. Apaydin et al.[2] proposed critical parameters in tight 

reservoir modeling, which include sand body geometry, water saturation permeability, and hydraulic 

fracturing. Fine gridding and upscaling also have direct effects on the results of static model [3]. 

Understanding tight reservoir heterogeneities and avoiding mistakes in the main input data (porosity, 

permeability, and saturation) allows better construction and visualization of 3-D static models [4]. Abd 

El-Aziz et al.[5] proposed several recommendations to develop a 3-D model for a high heterogeneous 

limestone reservoir by improving reservoir layering through seismic data interpretation. Hajizadeh et 

al.[6] proposed a method to be applied to high heterogeneous tight reservoirs by dividing the reservoir 

to a proper rock typing based on hydraulic flow unit method to accurately recognize between different 

geological rock types and net to gross ratio. Dealing with tight reservoir properties is a real challenge 

in static and dynamic model building. These properties are represented by the ultralow permeability, 

nano pore throat size, high initial reservoir pressure, and increasing effective stress during reservoir 

depletion. A general workflow to model a complex tight carbonate reservoir is given by Gomes et 

al.[7], Bovan et al.[8], Darhim and Ibrahim [9], Kevin et al.[10]. The details of geological and 

structural information necessary to introduce a dynamic model are mentioned in the following 

paragraphs. 

2. Geological Background 
     Sadi/Tanuma reservoir was discovered in 1976 and located in Halfaya oil field southern east Iraq. 

A shallow water carbonates deposit was developed in this field during early to late Cretaceous and 

also during Oligocene to early Miocene. This effective water development was supported by the 

location of Halfaya field in the west of Persian Gulf Basin and to the east of Arabic Continental 

Shield. In general, Halfaya field was deposited in a mid-outer shelf of a carbonate open platform. 

Within the regional geology, Sadi and Tanuma reservoirs are in the same sedimentary cycle where 

they developed in the environments of ramp platform, with a tested formation to be oil-bearing. Sadi 

formation is mainly deposited on a NW-SW stretching sub-basin. The average thickness of Sadi 

formation is from 120m to 130m. It is subdivided into 2 layers: Sadi- A and Sadi- B. Sadi-B includes 

B1, B2 and B3, which are distributed continuously in the contact area, and is an oil-bearing layer. 

Vertically, Sadi-B3 has 4 sublayers according to the variation in lithology, electricity and 

petrophysical properties, namely Sadi-B3-U1, Sadi-B3-U2, Sadi- B3-U3 and Sadi-B3-U4. Tanuma 

formation is mainly 13-18m thick. The evaluation indicates that the thickness values of each layer are 

about 51 m for Sadi-A, 28 m for Sadi-B1, 30 m for Sadi-B2 , 20 m for Sadi-B3, and about 13m for 

Tanuma reservoir [11]. The lithology of Sadi-B and Tanuma formations was examined based on the 

cores and thin sections from the one cored wells. Rock quality varies vertically in these two 

formations. Sadi-B1 and Sadi-B2 are relatively tight but their cores still show oil stain. Cores in Sadi 

B3 have good oil stain and consist of enlarged pore spaces. Cores from the upper interval of Tanuma 

also show good oil stain. A continuous marl layer with a thickness of 2-6 m exists between Sadi-B3 

and the underlain Tanuma reservoir, which can serve as a barrier. Sadi-A is a medium grey, soluble 

calcareous shale. Sadi-B1 mainly consists of bioturbated wackestone, while Sadi- B2 comprises 

primarily bioturbated packstone and pelagic foram chondrites, which are either dolomitized or pyrite 

cemented. Sadi-B3 developed shale containing smectitic, pyritic, oolitic, and skeletal intraclastic 

packstone. Echinoderms, pebbles, oolitic and dark grain (pyritic) packstone, and chondrite can also be 
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found in Sadi-B3. Scanning electron microscope (SEM) and thin section (TS) images provide 

geological description for each section of Sadi reservoir, as shown in Figure-1 [12].  

 
Figure 1-Lithofacies of Sadi-B1 (A), Sadi-B2 (B), and Sadi B3 (C) from TS and SEM photos. 

 

3. Integration of Static Geomodel 

     Prediction of future reservoir performance requires accurate construction of 3-D static model for 

reliable evaluation of the reservoir to achieve efficient reservoir management. Accurate formation 

characterization is achieved through structure detection, which is the main step in building a static 

model. Ensuring the accuracy of the detection of petrophysical properties is the first important step in 

constructing static models. This step needs to calibrate petrophysical properties data with core data to 

build static model, as will be discussed in the following section. Also, it is essential to obtain accurate 

cutoff values for these petrophysical properties in order to calculate accurate net to gross thickness 

and, hence, reach an accurate estimation of initial oil in place. 

3.1 Evaluation of Petrophysical Properties of Sadi/Tanuma Reservoir 

     Evaluation of the studied tight reservoir was conducted using core samples measurement of both 

porosity and permeability. Twenty seven porosity and permeability measurements were performed for 

twenty seven core samples taken from three cored wells in the field. These measurements were taken 

at ambient conditions for different depths of the reservoirs to reflect their petropysical properties. In 

addition, these measured data were used to validate log derived data, which were calculated using 

conventional (resistivity and density) logs. Porosity raw data were collected from log interpretation 

results available for 17 wells passing through the studied formation [13].  

     Porosity log calculation was achieved by field operator, based on density log interpretation. The 

resulted porosity values were corrected to reflect hydrocarbon effect and clay content. Clay content 

was generally estimated from gamma ray log results by radioactive rock content. The available 

porosity raw data was plotted with the measured data to evaluate their consistency after the core data 

were depth-shifted to match the log results data. 

Water saturation was given by a field operator and estimated from the calculated porosity and 

resistivity log using Archie equation [13]. The empirical parameters in this equation (m and n) are set 

as 2.15, whereas a is equal to 1. The obtained log-derived water saturation data should be validated 

with Dean-Stark water saturation measurements. 

     As known, the well logging techniques cannot directly measure permeability. The most reliable 

permeability values may be obtained from core analysis. Therefore, the permeability measurement was 

provided by the field operator, using the established porosity- permeability relationship from core 

data. This method can give a reasonable result for most sandstone and carbonate reservoirs. 

These log derived parameters (Φ, k, and Sw) were validated with core measured values after the core 

data were depth-shifted to match the resulted log data. The validation was conducted for the three 

cored wells. Thus, the calculated porosity from density log, in addition to permeability established 

from the relation between core permeability and porosity, and water saturation log derived from 

Archie equation can be used as input data in reservoir evaluation using Petrel software with an 

acceptable accuracy for all layers in Sadi formation in Halfaya oil field. Figure-2 illustrate the relation 

between both measured and log derived data of porosity, permeability, and saturation of as an example 
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for one cored well. The resulted porosity, permeability and saturation are generally matched well with 

the core data.  

     Core data showed that Sadi-B1 porosity values ranged from 8.07% to 26.1%, averaging 14.6%, 

while permeability ranged from 0.01mD to 1.31mD, averaging 0.08mD. Porosity values of Sadi-B2 

ranged from 8.1% to 32.42%, averaging 17.53%, whereas those of permeability ranged from 0.01mD 

to 2.22mD, averaging 0.175mD. Sadi-B3 showed average porosity of 11.07% and average 

permeability of 0.56mD. The results suggest that porosity and permeability values of Sadi-B1 are 

lower than those of Sadi-B2. In addition, porosity of Sadi-B3 is lower than that of Sadi-B2, but its 

permeability is much higher. Sadi-B3-U3 has the highest permeability among Sadi-B3 layer units. The 

resulted porosity and permeability data are generally well consistent with those of the core.  

 

 
Figure 2-The relation between measured and log values of porosity, permeability, and saturation for 

one cored well as an example 

. 

3.2 Determination of Petrophysical Properties Cut-off Values  

     Cut-off porosity, permeability, and saturation values define zones with moveable hydrocarbon 

storage. These cutoff values are important to calculate the net to gross thickness ratio for each well 

depth, which is a very important parameter in calculating reservoir’s initial oil in place. However, the 

objective of detecting these values is to eliminate those rock volumes that do not contribute 

significantly to the reservoir evaluation. 

These cutoff values were detected in this research for each layer of Sadi reservoir due to the difference 

in petrophysical properties of each layer. Gong et al.[14] a throat radius value of less than 0.015 µm 

for complex carbonate tight reservoir, causing the maximum Hg pressure to be increase sharply. As a 

result, the cutoff of this radius is used to find permeability cutoff. For Sadi tight reservoir, mercury 

injection capillary pressure (MICP) is used to find permeability cutoff value by plotting mercury 

injection capillary pressure versus pore throat radius. This plot showed a pore throat radius of 0.015 

μm which caused a sharp increase in capillary pressure for Sadi-B1 and Sadi-B2 reservoir, as shown in 

Figure-3.  Therefore, the estimated permeability cutoff value corresponding to that radius is equal to 

0.01 md. For Sadi-B3 layer, the pore throat radius (0.005 μm), causing the sharply increasing Hg 

pressure, is higher than the detected value in the other two layers, which results in an increase in 

permeability cutoff for Sadi-B3 layer to 0.015md.  

     This permeability cutoff value is utilized to find porosity cutoff values. The general method to 

estimate these values is by drawing core data of logarithmic permeability and linear porosity[15]. The 
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cut-off values were determined using the measured data of porosity and permeability of the twenty 

seven core samples at ambient conditions, as shown in Figure-4. 

     Water saturation cutoff values can be detected by plotting well log derived porosity versus water 

saturation, as shown in Figure-5. Intersecting the above mentioned porosity cutoff value with the curve 

passing through the data point provides water saturation cutoff value [15]. Through the comprehensive 

study of Figures-(5-4) through (5-6), it was found that a value of 11 % is recommended to be the 

porosity cutoff (porosity ≥ 11%) for Sadi-B1 and B2, while 0.01 md is that for permeability cutoff 

(permeability ≥ 0.01 md). However, porosity cutoff detection was difficult for Sadi-B3 due to high 

data scattering resulted from high layer heterogeneity. A value of 0.015 md is recommended for 

permeability cutoff to this layer. Water saturation cutoff was estimated to be 48% (water saturation ≤ 

48%), whereas the shale volume cutoff was ≤ 35%. 

 

 

 
Figure 3-Permeability cut-off estimation in Sadi reservoir using MICP data. 
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                               Figure 4-Porosity cut-off estimation in Sadi reservoir. 

 

 
                         Figure 5-Saturation cut-off estimation in Sadi reservoir.  

  

3.3 Net to Gross Thickness   

     Net to gross thickness is an important input data in reservoir modeling. In relation to formation’s 

evaluation, this parameter is used to separate between formation’s rocks that are useful for 

hydrocarbon production and those that are not. Net pay thickness calculation is an important step in 

building a static model, since it is excluding low hydrocarbon storage and low flow capacity rock 

intervals from the volumetric calculation of initial oil in place. Thus, the effective intervals entered to 

IOIP calculation will be of high oil storage and productive. Net pay is also a basic step in the 

evaluation of reservoir favorable area for each layer in Sadi/Tanuma reservoir. This parameter is 

calculated in the present study using Interactive Petrophysics “IP v.3.5” software for each log reading 

interval along the loged 17 wells. The input data necessary for the calculation of net to gross thickness 

are well porosity, permeability, and saturation, as well as their cutoffs limit values.  

4. Structural and Geological Model 
     Distinguishing formation’s pore and grain geometry and size reflects the complex structure of the 

reservoir and aids in accurately constructing geological models. The conclusions obtained from 

studying the reservoir core samples, in terms of pore size and geometry from MICP test in addition to 

TS and SEM image, will aid to identify reservoir layering and horizon. Sadi and Tanuma reservoirs 

are in the same sedimentary cycle. Sadi formation is mainly deposited on a NW-SW stretching 

anticline, covering 462 km
2 

areas. The thickness of Sadi formation ranged from 120 m to 130 m. 

Obtaining accurate petrophysical properties and using accurate zone tops is the first step in 

constructing structural models. Wells cross section was carried out to examine zones’ tops in the 

constructing model. Data used in the construction of structural models mainly include surface maps of 

reservoir units and wells’ tops of each layer. 2-D geological top surface map of Sadi-B were obtained 

depending on 3-D seismic data [14] . Top surface maps of other units are generated based on Sadi-B 

top surface map, due to absence of other layer maps. In addition to surface maps, data from 24 vertical 
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and deviated wells’ tops for all layers of the studied reservoir were entered to Petrel software to 

generate the accurate structural shape of Sadi/Tanuma reservoir. 

4.1 Geological Model Gridding 

     To describe the quality and heterogeneity of the studied reservoir, it is essential to distribute the 

evaluation of petrophysical properties all over the reservoir. Therefore, a high resolution 3-D grid 

system was built depending on a structural model to achieve vertical and lateral petrophysical 

properties distribution along the discrete reservoir grids. The static model was built to contain a 

342*156*91 grid to describe the large area of the studied reservoir and determmines the total 

Sadi/Tanuma reservoir thickness. The total number of grid cells were 4,855,032 grid, while grid 

dimensions were 75 m in both X and Y directions and about 1 m thickness in Z direction. 

4.2 Reservoir Horizons and Layering 

     After identifying Sadi reservoir units based on lithological description and petrophysical properties 

evaluation of core samples. Wells cross section was carried out using Petrel software for the 

interpretation of loaded petrophysical properties, detection of the lateral variation of the studied thin 

and heterogeneous zones, and adjusting the layers to the constructing model. The examined 

petrophysical data were used as input data into Petrel to build a static model for reservoir’s quality 

estimation. The well-to-well cross plots of these input data were used to define the stratigraphic 

horizons bounding the main stratigraphic sequence of the studied reservoir based on the variation in 

petrophysical properties.  The next step was identifying structural reservoir horizons. Generally, 

Sadi/Tanuma structural model was divided into five main horizons and four zones, which are Sadi-B1, 

Sadi-B2, Sadi-B3, Tanuma, and Khasib. All the horizons were created depending on the geological 

surface map of Sadi-B, due to the lack in the received data. Therefore, well tops data derived based on 

petrophysical core data and lithological description were used, in addition to surface maps, to generate 

reservoir zones. Finally, the 4 zones were divided into 91 layers; 28 layers for Sadi-B1, 30 for Sadi-

B2, 20 for Sadi-B3, and 13 layer for Tanuma, each with 1 m thickness. Figure-6 shows reservoir 

horizons and layering.   

             
Figure 6-3-D static model describing Sadi/Tanuma reservoir layers 

 

4.3 Petrophysical Properties Model  
     A stochastic technique was applied for the distribution of horizontal and vertical petrophysical 

properties along the discrete reservoir grids model. Over this model, the entered log data (porosity, 

permeability, water saturation, and net to gross ratio) were distributed using sequential Gaussian 

simulation algorithm to conduct the petrophysical model. Figures-(7 to 9) explain the output 

permeability, porosity and saturation models for each layer of Sadi and Tanuma reservoirs. Also, the 

Net pay model, which is a basic step in the evaluation of the reservoir favorable area for each layer in 

Sadi/Tanuma reservoir, is illustrated in Figure-10. 
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Figure 7-Porosity model for Sadi-B1, Sadi-B2, Sadi-B3, and Tanuma layers. 

 

 

 
Figure 8-Permeability model for Sadi-B, Sadi-B2, Sadi-B3, and Tanuma layers. 
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Figure 9-Saturation model for Sadi-B1, Sadi-B2, Sadi-B3, and Tanuma layers 

 

 
Figure 10-Net pay model for Sadi-B1, Sadi-B2, Sadi-B3, and Tanuma layers 

 

5. Reservoir Dynamic Model 
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parameters are related to fluid flow in the reservoir model. However, it is first necessary to modify the 
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reservoir. Describing the details of the underground geological reservoir required a very fine scale 

geological model. But due to the limitation of computer resources, time, and size, it is essential to 

upscale the fine grid model to a coarse grid model  that can be used to represent dynamic fluid flow in 

the reservoir. The upscaling process includes both grid size (structural upscaling) and properties.  

First of all, the static model in the present study was of about five million grids representing 

Sadi/Tanuma reservoir. The upscaling procedure was applied by reducing the model grids to reach 

1,036,152, by dividing the model to 162*82*78 grid, with grid dimensions of 150 m in both X and Y 

directions and 1 m thickness in Z direction. Arithmetic average weighting method was applied in the 

current model to upscale reservoir properties. In this process, the arithmetic mean method was used to 

upscale net to gross ratio. Arithmetic mean weighted by the NGT method was used to upscale both 

porosity and water saturation. For permeability upscaling, the harmonic weighted method by net to 

gross thickness is applied.  

     The resulted coarse grid model, after the upscaling process, must be validating. The best validation 

approach is to compare the estimated IOIP after running the new coarse grid model with the initial fine 

grid model. The fine grid model indicated an oil in place value of 4092 MM STB, while the up-scaled 

coarse model indicated a decrease of 2.2 % of this initial value (3873 MM STB). This difference 

between the two fine and coarse grid models is due to the excluded grid cells because of properties 

weighting methods and reducing modeling layers.  

5.1. Dynamic Model Construction 

     As discussed previously during the description of the core and FMI images, no naturally fractures 

are present in Sadi reservoir. Therefore, a single porosity model was selected. Depending on PVT 

analysis reports, Sadi was found to be an undersaturated reservoir and, hence, the black oil-single 

porosity model was generated. Building a dynamic flow model need fluid and rock-fluid properties to 

be defined in the model.  

     Reservoir fluid properties were obtained from PVT test of samples taken from two depths in Sadi-B 

reservoir as a function of pressure. These data are taken from two samples in Sadi-B reservoir. No 

difference was indicated from the PVT data of the two samples and, therefore, the reservoir fluid 

properties suggested the presence of one region in the constructing model. These PVT data included 

solution gas-oil ratio (Rs), fluid viscosities, and formation volume factors for three phases (oil, gas and 

water). Chemical analysis was performed for one water sample from Sadi reservoir, showing a water 

formation volume factor of 1.018 bbl/STB, water compressibility of 2.62*10
-6

 1/psi, and water 

viscosity of 0.44 cp. In the dynamic model, rock-fluid data imply properties related to phase 

saturation, such as relative permeability and capillary pressure data.  

5.2. Dynamic Model Initialization 

     The initial Sadi reservoir conditions (reference pressure and depth, phase contact depth, bubble 

pressure, and datum depth) need to be supplied to the dynamic model, in addition to the prementioned 

rock-fluid properties. According to the fact that there is one oil water contact depth for Sadi reservoir, 

the current dynamic model was conducted on the basis of one region. Gravity-capillarity equilibrium 

was used as a method to calculate all grid block pressures and water saturations.  

     After loading all required data to the dynamic flow model, it is necessary to run the generated 

dynamic model in order to obtain its initial results of IOIP, calculated based on initial water saturation, 

and validate the resulted oil volume with that calculated using the static model. The resulted IOIP 

value by using the dynamic model was 0.638 MMM m3 (4012.3 MM STB) which was comparable to 

that reached by using the static method (3873 MM STB), after model upscaling. 

5.3. History Matching 

     The dynamic flow model should be calibrated through history matching in order to utilize the 

model for the forecasting of production performance, based on good history matching results with past 

reservoir production. History matching process was conducted for each production well individually 

and for all field production data. Matching was conducted in the current study for oil production only, 

since there is no significant amount of water production from the observed production file. Matching 

was also conducted for reservoir pressure and well flowing pressure due to available production data.      

5.3.1 Production History Matching 

     Calibration of the constructed dynamic model through history matching was conducted in this 

study through the existing producing wells. The history of the total production of the five existing 

wells was matched. For the producer interest, it was necessary to adjust the most uncertain and 
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effective parameters on such heterogeneous tight reservoir to obtain good match between observed 

data and simulation results. Generally, for the tight reservoir, the most valuable parameter affecting 

fluid movement was reservoir permeability. There were two uncertainty factors in reservoir 

permeability; The first factor is the input permeability data to the constructing model were derived 

from core data correlating of porosity and permeability, which absolutely causes an error of inaccurate 

percentage. The second factor is the relation between horizontal and vertical permeability input in the 

dynamic model. For such ultralow permeability reservoir, vertical fluid movement is controlled by the 

vertical to horizontal permeability ratio, which was assumed to be kv/kh=0.1. Figure-11 illustrates the 

results of oil production matching for each well and the field production matching with the observed 

production data. 

 
Figure 11-Field and well by well oil rate history matching. 
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5.3.2 Pressure History Matching 

     Pressure matching was conducted in the present work depending on available data of average 

reservoir pressure and well bottom hole pressure (BHP). These observed data should be corrected to 

Sadi reservoir datum depth before comparing it with pressure results from the dynamic simulation 

model. The matching was also achieved for individual wells and average field results.  Modular 

Formation Dynamics Tester (MDT) pressure data were used to match average reservoir pressure 

results, as illustrated in Figure-12.  

     MDT test results indicated obviously low pressure depletion in Sadi reservoir due to its ultralow 

petrophysical properties. Simulation results indicated 135 psi reservoir pressure depletion within the 

simulation history period. The average trend of the reservoir pressure depletion obtained by the 

simulation dynamic model had good match with some points of MDT data. 

 
Figure 12-Average reservoir pressure history matching 

 

    The two wells, B and C, subjected to shut-in period, were used to obtain static pressure history 

matching. For such tight reservoir, the shut-in period must be adequately long in order to obtain 

correct and representative static pressure results; inadequate or short shut-in period leads to poor 

matching between the simulation results and observed data. The obtained results of static pressure 

history matching for the two wells are displayed in Figure-13. 

     Data of BHP recorded from the simulation results and the observed data of history matching are 

illustrated in Figure-14. The available observed data were limited and, thus, insufficient to determine 

the matching degree. 

 
Figure 13-Static pressure history matching for wells B and C. 
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Figure 14-BHP history matching for wells B and C. 

 

5. Model Results and Discussion 
     Reservoir quality (RQ) could be estimated in terms of best reservoir petrophysical properties and 

reserve estimation through the use of the static model. The 3-D porosity model map indicated a good 

porosity distribution in Sadi-B2 layer among the other Sadi/Tanuma layers, with an average value of 

(17%), especially on the crest of the reservoir structure. This value tends to increase toward the south 

east of the reservoir. This indicates high storage capacity of this layer. Low porosity values were 

indicated in Sadi-B1 layer (13%) and Sadi-B3 layer (12%). A very low porosity was found in Tanuma 

reservoir, reaching a maximum a value 0f 7%. The 3-D permeability model map indicates a good 

permeability region in the crest and the south west region of the reservoir in Sadi-B3 layer, reaching 

3.6 md, as compared to other layers (0.5md in Sadi-B1and 0.4 md in Tanuma layers). For Sadi-B2 

layer, the permeability reached 1.4 md, implying a good ability to transmit fluid within this layer. High 

water saturation regions appeared in Sadi-B1, Sadi-B3, and Tanuma layers, especially in the north 

eastern region of the reservoir, with values reaching 80%. A low water saturation region was found in 

Sadi-B2 layer. Porosity and permeability maps show the difficulties in using petrophysical properties 

in detecting favorable areas for future development plans. Areas of high porosity and low permeability 

can identify non-connected vugs, whereas areas of low porosity and high permeability may identify 

fractures. 

     According to the above mentioned petrophysical model results, it was difficult to detect the best 

area or region in Sadi/Tanuma tight reservoir. Therefore, using the net to gross 3-D map was the most 

useful approach in that case, since it excludes low permeability and high water saturation areas from 

each layer. The 3-D net to gross map revealed that Sadi-B2 and Sadi-B3 layers are of the best quality 

and the red regions in these layers are the most favorable to drill producing wells with a net to gross 

ratio reach to unity. The reservoir’s simulation 3-D static model was used to estimate the initial 

hydrocarbon pore volume and, consequently, IOIP for each layer in Sadi/Tanuma reservoirs on the 

basis of the petrophysical model of oil/ water contact. The total estimated IOIP for the entire 

Sadi/Tanuma reservoir was 4092 MM STB, including 1448 MM STB in Sadi-B1 layer, which 

represents 29.37% of the total IOIP in Sadi reservoir. This is because of low porosity of this layer. 

IOIP was 2021 MM STB in Sadi-B2 layer, which holds the largest reserve of Sadi reservoir (58% of 

total IOIP). This is absolutely related to good porosity distribution within the layer. For Sadi-B3 layer, 

the IOIP was 495 MM STB, which represents only 13% of the total IOIP in Sadi reservoir. The IOIP 

in in Tanuma reservoir was 128 MM STB.  

Conclusions 

     The 3-D static model provided a comprehensive complete evaluation of hydrocarbon reserve in the 

studied reservoir. The main conclusions of this study are: 

 The evaluation of the formation through core samples measurement of petrophyical properties, 

in addition to the study of TS and SEM images, provide a good tool to correct data used in building a 

useful static model as a basic step for future studies. 

 The petrophysical properties model provides better understanding of reservoir texture and 

heterogeneity. 
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 Care should be taken when determining the cutoff values of such heterogeneous reservoir.  

 Layer Sadi-B3 has the best petrophysical properties among Sadi reservoir layers, while layer 

Sadi-B2 has the largest reserve in the entire Sadi reservoir. 

 The porosity increases from the crest toward north east of the reservoir. 

 Good permeable zones contrast in the crest toward south west of the reservoir.  
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