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Abstract

In this paper, the series solution is applied to solve third order fuzzy differential
equations with a fuzzy initial value. The proposed method applies Taylor expansion
in solving the system and the approximate solution of the problem which is
calculated in the form of a rapid convergent series; some definitions and theorems
are reviewed as a basis in solving fuzzy differential equations. An example is
applied to illustrate the proposed technical accuracy. Also, a comparison between
the obtained results is made, in addition to the application of the crisp solution, when

the o-level equals one.

Keywords: Taylor expansion; third order Fuzzy differential equations; Residual
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1-Introduction
Fuzzy differential equations (FDEs) have started to grow rapidly. The concept of FDEs was first
introduced by Chang and Zadeh [1]. Later, Dubois and Prade [2] expanded the principle approach in
solving FDEs. Kaleva [3] and Seikkala [4] managed to solve FDEs with the fuzzy initial value
problems (FIVVPs), which appear when the modeling of these problems is imperfect and its nature is
under uncertainty. Hence, studying and finding solution of FIVPs are extremely necessary for different
applications, particularly when they involve uncertain parameters or uncertain initial conditions. The
basic concepts in fuzzy set theory will play a major role in solving fuzzy differential equations [5].
In many cases, it is difficult or impossible to find the exact solutions of differential equations.

Alternatively, we can find the approximate solutions using some techniques such as finite difference
methods or finite element methods, see for instance [6].
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In this paper, the RPS method was employed to solve third-order fuzzy differential equations. The
approximate solution is represented in the form of power series. Moreover, the approximate solution
and all its derivatives (if they exist) converge to the exact solution and all its derivatives, respectively.
The suggested algorithm created a swiftly convergent series with an easily computable components
using a symbolical calculation program. Series expansions are used in numerical calculations,
especially for quick estimates that are made manually. Often, we express FDEs in terms of serial
expansions. However, the RPS theory is an analytical method for solving different types of ordinary
and partial differential equations [7]. The classical higher order, i.e. Taylor series method, is
computationally expensive for large orders and proper for the linear problems. On the other hand, the
suggested method is an alternate procedure for earning analytic Taylor series solutions of systems of
FIVPs.

The purpose of this paper is to develop the implementation of the residual power series method for
earning an analytical solution for the first-order fuzzy DE of the following form [3]:

y'(x) =f(x,y(x))

0 (1.1
y(Xo) =y
and the third-order differential equations in the following form:
vy ) +g(x,y®,y ®),y " ®) =h(x,yx),y %),y () (12)

yx) =y° Ly (o) =y', ¥ (%) =y?

where —0 <Xy < x < Xq +a <o, fi[Xg,Xg +a] XRg— R and g, h : [xq,Xo + a] XRg— Rg are
fuzzy-number-valued functions, y(x) is an unknown function of variable (x) to be specified, y°,
y1,y? are fuzzy numbers, and( x,) , (a) are real constants with a>0.

The structure of the paper includes the following: In section 2, we provide some important
definitions and basic results to be used in this paper. In section 3, we present the theory of fuzzy DEs.
In section 4, the main idea of the Residual power series method is introduced. In section 5, we
illustrate the proposed method by
a numerical example.

2. Preliminaries
In this section, we present basic concepts for fuzzy calculus and concept of fuzzy derivative; we
will adopt strongly generalized differentiability.
Definition 2.1. [8]. A fuzzy number y is a fuzzy set: R — [0, 1] which satisfies the following
requirements:
(i) y is upper semicontinuous function,
(if) y(x) = 0 outside some interval [c, d],
(iii) There are real numbers a, b such that ¢ <a <b < d for which
() y(x) is monotonic increasing on [c, a],
(b) y(x) is monotonic decreasing on [b, d],
() y(x) =1on[a,b].

We will let Rgdenotes the set of fuzzy numbers on R. Obviously, R c Ry, where R is understood

as R = Ry = {X{x}: X € R} € Rg . The a -level represents a fuzzy number y , denoted by [y]* , is

defined as:
[y _{ {se€e Riy(s) = a}, a € (0,1],
Y= {s€ Riy(s) >a}, a=0.

It is clear that the o -Level representation of a fuzzy number y is a compact convex subset of R.
Thus, if y is a fuzzy number, then [y]* = [X(a),y(a)], where X(O‘): min {s:s € [y]* } and y(o)=
max{s: s € [y]* } V a € [0, 1]. Sometimes, we will write Yo and y, as replacements of X(a) and
y(a), respectively, and vV a € [0,1].

Theorem 2.1. [9]. Suppose thaty: [0, 1] — R and ¥ : [0, 1] — R, which satisfies the following
conditions:

(i) y is a bounded increasing left continuous function on (0, 1],

(ii) y is a bounded decreasing left continuous function on (0, 1],

(iii) y and y are right continuous functions ata = 0,

(iv) y(a) =y(a) on [0, 1], theny : R — [0, 1], defined by
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y(s) = sup{a: y(a) < s < y(a)}, (2.1)

is a fuzzy number given by [y(a), y(a)]. Moreover, if y : R — [0, 1] is a fuzzy number given by
[y(a), y(a)] , then the functions y(a) and y(a) satisfy the conditions (i-iv).
Definition 2.2. [10] Let y = [;(),X0 +a] — Rg and x* € [Xq, %o +a] . We say that x is strongly
generalized differentiable at x* , if there exists an element y’'(x*) € Rg such that:
0] Vv h > 0 sufficiently close to 0, the H-differences y(x* + h) © y(x"), y(x*) © y(x* —h)
exist and limy,_, o4 YOCH) Oy _ limy, 04 w =y'(x")
(i) Vv h > 0 sufficiently close to 0, the H-differences y(x*) © y(x* + h), yx*—h)© y(x* )
exist and limy,_, o4 YOOV limy,_, 04 w =y'(x").
Definition 2.3. [11] Let y = [xg,%Xo + a] — R . If y is differentiable in the concept (i) of Definition
2.2, then we say that y is (1)-differentiable on [xy,x, +a] and its derivative is denoted by D gl) Vs
and we have D'y for (2)-differentiability .
Definition 2.4. [12] Let y=[xo,xo+a] » Rp and m = 1, 2. if DMy exists and it is (m)-
differentiable. We say that y is (n, m) - differentiable on [x(, Xy + a] . The second derivatives of y are
denoted by Df,z_r)ny
Forn,m=1, 2.

Now, we present the definition for the third-order derivatives founded on the selection of
derivative type in each differentiation step. For a given fuzzy function y = [xy,Xo +a] = Rg, we

have two possibilities to get the derivatives of y: DV y(x) and DV y(x). And , in each of these
possibilities, there are four derivatives.

Definition 2.5. Let y = [X¢,Xo +a] = Rp andm =1, 2. If Dfll)y exists and it is (m)-differentiable,
then we say that y is (n, m) - differentiable on [xg, xo + a] . The third derivatives of y are denoted by
fol)ny forn,m=1, 2.

The principle of the derivative properties is known and can be found in previous articles [ 11,12,
13]. In this paper, we extend the theorem proved in two of those articles [11,12]

Theorem 2.2. Let y, Di(l) y:[Xo,%xo +a] = Rg ,i=1,2where[ y,(x),y,(x)],¥Ya€e[0 1]
(i) if y is (1)-differentiable," then y,,y, are differentiable functions" and [Dgl) y(x)]“=
[y (0¥, (0]
(i) if y is (2)-differentiable,” then y, ,y, are differentiable functions” and
[P yeo] = 17,00, v (0]
(iii) if DMy is (1)- differentiable, “then y .y, are differentiable functions” and
P& yeo] =1y (0,57, 0]
(iv) if Dgl)y is (2)- differentiable, "then y_'a,ya are differentiable functions" and
P2 yeo] =1¥7,0y” (9]
(v) if Dgl)y is (1)- differentiable, "then y_’a,?a are differentiable functions " and
[ yeo] =1y 60,57, 6]
(vi) if Dgl)y is (2)- differentiable, "then y_’a,?a are differentiable functions " and
P2y = 177,60,y (]
(vii) if Dgl)y is (1)-differentiable, "then y_’a,?a are differentiable functions" and

[P yeo] = 137,60y (9

94



Ibraheem Iragi Journal of Science, 2020, Special Issue, pp: 92-107

(viii) if Dgl)y is (2)-differentiable, "then y’ ,37(1 are differentiable functions" and
—a

[P yeo] =1y~ (0.57,09]
(ix) if Dgl)y is (1)-differentiable, "then y ,?a are differentiable functions" and

DS yeo| = 1v7, 0y (]
x) if Dgl)y is (2)-differentiable, " then y ,7a are differentiable functions" and

rr

[D?z) y(x)]a = [X"'Q(X),Y W X]

3- Theory of third-order fuzzy differential equations

In this section, we study the theory of third- order fuzzy differential equations under strongly
generalized differentiability. Furthermore, we present an algorithm to solve these types of problems,
which consists of eight classical ODEs systems for fuzzy DE (1.2). The fuzzy solution of DE (1.1)
depends on the choice of the derivative type in the fuzzy setting. To solve the DE (1.2), we give the
definition below.
Definition 3.1 [11] Let y = [xo,Xo +a] = Rg and n € {1, 2}.), if DVy exists and y and Dy
satisfy fuzzy DE (1.1), we say that y is a (n)-solution of fuzzy DE (1.1).

The following definition of f(x,y(x)) is a conclusion to the extension principle of Zadeh when y(x)
is a fuzzy number [4]: f(x,y(x))(s) = sup{y(x)(x):s = f(x,7), s € R} . Thus, according to the theory
of Nguyen [14, 15], it follows that:

[f(x, y(O]* = £(x [y()]®) = [£u(x y()), (%, y(0)]

where the two expression endpoint functions f, and f, are defined, respectively, as:
£,G0y09) = min{f(e, [YGOIY = f (%,,60,5,69),

Fulxy09) = max{fCx, YN = (%, 7200,7,09)
Similarly, taking into account the type of differentiability, we can write

l9G, (0,7 @),y )]

[h(x,y(0,y @),y @]

The objective of the next algorithm is to implement a procedure to solve the fuzzy DE (1.1) in a
parametric form, in terms of its a-levels representation.

Algorithm 3.1[16]: To find the solutions of fuzzy DE (1.1), we discuss the following two cases:
Case I. if y(x) is (1)-differentiable, then [y'(x)]* =[ y’ (x),?a(x)] and solving fuzzy DE (1.1)

translates into the following subroutine:
(i) Solve the following system of ODEs for y,(x), ¥,(x):

Y 00 = o (x,7.00,7,09)

_ (3.1)
Va0 = b (,300.5,00)
subject to the initial conditions
Ya(o) =¥% T, (x0) =7, (32)
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(i) Ensure that the solutions [y,(x), ¥,(x)] and [X’a(x),fa(x) are valid level sets for each a € [0,
1]. Further, use the identity (2.1) to construct a (1)-solution y(x) .
Case IlI. If y(x) is (2)-differentiable, then [y'(x)]* = [ y’a(x),z’a(x)] and solving fuzzy DE (1.1)
translates into the following subroutine:
(i) Solve the following system of ODEs forza(x), y,():

Y 00 = B (%, 700,7,09)

Vo0 = i (%,909.5,0)
subject to the initial conditions
Ya0) =¥5  V,(x0) =V,
(ii) Ensure that the solutions [X(,(x), y,(®] and [?a(x),z’a(x)] are valid level sets for each o € [0,

1]. Further, use the identity (2.1) to construct a (2)-solution y(x) .

Next, we study the properties of solutions of fuzzy DE (1.2) with respect to different types of
differentiability in order to solve such fuzzy problems.

Definition 3.2. Let y = [X(,Xo +a] = Rg andn,m € {1,2}. We say that y is a (n, m) - solution of
fuzzy Differential Equations (1.1), if DVy(x) and D& y(x), DS y(x) exist and x,D{My(x) and
D,y (x), DSy (x) satisfy fuzzy DE (1.2).

Let y be an (n,m) -solution for fuzzy DE (1.2). To find it, we apply Theorem 2.2 and,
considering the initial values, we can transform fuzzy DE (1.2) to a system of third-order ODEs.
Therefore, the possible ODEs systems for this type of fuzzy problems are eight, as follows:

Algorithm 3.2:

To find the solutions of the fuzzy differential equation (1.2) in term of its a-level representation, we

consider the following cases:

Case I. For (1, 1)-differentiable, consider the differentiability of y and Dgl)y in the sense (i) , (iii) and
(v) of Theorem 2.2. Then we get the following (1, 1)-system of ODEs:

Y0481 < ¥a(0,7,(9 ,y_'u(xx?a(x),y_”u(x),Faoo) =y, ( 1a(9,5,09," (9,¥ (0, y_”a<x).7u(x))

y’”a(x) + gZ,a < Xa(x)' ya(x) ,y_'a(X); ?a(x)' Y_”a(X); FG(X)> = h2,(x < Xq(x)! yu(X) ;Y_'a(X)' ?a(x)l Y_”u(X), }TG(X)>
subject to the initial conditions
Yol0) =y%  F,(x0) =7,
y (o) =yh , ¥, (o) =7,
Ve ) =y2E, §,(x0) =¥
Case 11. For (1, 2)-differentiable, consider the differentiability of y and D{"y in the sense (i) , (iv)
and (vi) of Theorem 2.2. Then we get the following (1, 2)-system of ODEs:
yrrra(x)
+ 810 ( 7.(0,5,(0,y" (0,5, 00y” (), Faoo) =hy, < Ya(9, 7,00,y (9,57,(9), y_”a<x>,ﬂ<x)>

v
+ 82,0 ( Yo(X),¥,(x) .y a(x),?a(x),y_” [0, Tu(x)> =hy, ( Ve, ¥,y a(x),ﬂ(x),y_” a(x),Fa(x)>
subject to the initial conditions

Yako) =¥  F,(x0) =¥,

y (o) =yh , ¥, (o) =7,

T, o) =¥2, Ya(xo) =77
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Case Il1. For (1, 1)-differentiable, consider the differentiability of y and Dgl)y in the sense (i), (iii)
and (vi) of Theorem 2.2. Then we get the following (1, 1)-system of ODEs:
7,

+ 810 ( Ya(0, 7,00 ,y_'a(x),ﬂ(x),y_"a(x),ﬂ(x)) = hy, (za<x),ya(x> Y (90,7, (, y_"a(x).ﬂ(x))
o

+ 82, ( Vo), ¥, (%) ,y_’u(X)dTa(X),y_”u(X),Fa(X)> =hy, (XQ(X),?Q(X) ,y_'a(X),ﬂ(X).y_”a(X).Fa(X))
subject to the initial conditions
Yal0) =y%  V,(0) =7,
y (o) =yi , ¥, (x0) =7,
Ve &) =y3, ¥, (x0) =7,
Case V. For (1, 2)-differentiable, consider the differentiability of y and Dgl)y in the sense (i), (iv)
and (v) of Theorem 2.2. Then we get the following (1, 2)-system of ODEs:
X”'u(x)
+ 814 ( Ya(X), ¥, (x) ,y_'u(X).ﬂ(X).y_”u(X).Fa(X)> =hy, (XQ(X).?[,(X) ,y_'u(X),?a(X),y_”a(X),Fa(X))
vy,
+ 824 ( Ya(X), ¥,(x) ,y_'u(X).ﬂ(X).y_”u(X).Fa(X)> =h,, (XQ(X).?[,(X) ,y_'u(X),?a(X),y_”a(X),Fa(X))
subject to the initial conditions
Valx0) =y%  T,(0) =7,
v ) =¥ ¥, G0) =7,
Y, 00) =y, v (o) =7,
Case V. For (2, 1)-differentiable, consider the differentiability of y and Dgl)y in the sense (ii) , (vii)

and (ix) of Theorem 2.2. Then we get the following (2,1)-system of ODEs:
5 (%)

+ 814 ( Vo), ¥, (%) ,y_'u(X),VQ(X),Y_”G(X),FQ(X)> =hy, < Vo), ¥, (%) ,y_'u(X),Va(X),y_”a(X),Fa(X)>
X”'u(x)
+ 820 ( Vo), ¥, (%) ,y_'a(X),}Tu(X),y_”a(X),Tu(X)> =hy, (Xa(X)iu(X) ,y_'a(X),Vu(X),y_"q(X),}?a(X))
subject to the initial conditions
Yol0) =¥ 9,(0) =,
Va(xo) = X%x , Y_'a(Xo) = yla
Vo (o) =3, ¥axo) =7,
Case VI. For (2, 2)-differentiable, consider the differentiability of y and Dgl)y in the sense (ii) ,(viii)

and (x) of Theorem 2.2. Then we get the following (2,2)-system of ODEs:
7

+ 81 ( ¥a(0,7,() ,y_'u(x>,?a(x>,y_”u(x>,7a(x>) = hy, ( 10,7, (0,60, y_"u(x),ﬂ(x)>
70
+ 820 ( ¥o(0,7,() ,y_'a(x),ﬂ(x),y_”a(x),ﬂ(x)) = hy, (ga(x),vu(x) Y (0.7, 0, y_”a(xmﬁ(x))

subject to the initial conditions
= =0
YoX0) =y0% , ¥,Xo0) =7,
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Y &) =yh . ¥ () =7,
Ya(xo) =y3 . ¥,(x0) =¥
Case VII. For (2, 1)-differentiable, consider the differentiability of y and Dgl)y in the sense (ii) ,

(viii) and (x) of Theorem 2.2. Then we get the following (2,3)-system of ODEs:
Yy )

+ g1 ( Ya(),7,() ,y_'u(x>,7u<x>,y_”a<x>,ﬂ<x>) =hy, (za(x),yaoo Y60,V 6, y_”a(x),ﬂ(x))
V',
+ 82,4 ( Ya(3),5,),y’ u(X),?(,N(X),y_” a(X),Fa(X)> =hy, ( Ya(),5,(),y a(X).?a(X).y_” a(X).Ta(X))
subject to the initial conditions
Yol0) =y% T, (x0) =7,
V&) =yh Yy o) =7,
V. G0) = ¥h, v (o) =75
Case VIII. For (2, 2)-differentiable, consider the differentiability of y and Dgl)y in the sense (ii) ,
(viii) and (ix) of Theorem 2.2. Then we get the following (2, 4)-system of ODE:s:
vy ,.®
+ 814 ( Vo), ¥, (%) ,y_'a(X),ﬂ(X),y_”u(X),Fa(X)> =hy, (XQ(X).VG(X) ,y_'u(X),?a(X),y_”a(X),Fa(X))
Y

+ 82, ( Ya(X), ¥,(x) ,y_'a(X),ﬂ(X),y_”u(X),Fa(X)> =h,, (XQ(X).?G(X) ,y_'u(X),?a(X),y_”a(X),Fa(X))
Subject to the initial conditions

- —0
YoX0) =y0% , ¥,X0) =7,
i ’ =1
V&) =yu » ¥ o) =7,

Yo (o) = yh, §,00) =7,
Theorem 3.1. [15] Let n,m € {1,2} and [y(x)]* = [Xa(x) Y, X ] be an (n, m)-solution for fuzzy

DE (1.1) on [xo,%o +a ]. Then, y,(x) and y (x) are the solutions of the associated (n, m)- systems.

Theorem 3.2. [15] Let, m € {1,2} and §,(x) ,?a(x) solve the (n, m) - system on [xq,Xo +a]. vV

a € [0, 1]. Let [y(x)]* = [ga(x),ia(x) ] If §(x) has level sets on [xo,xo +a ], and DELF(x)
exists, then §(x) is a (n, m) - solution for fuzzy DE (1.1).
4-The Residual Power Series Method for Solving Fuzzy Deferential Equations
In this section, to get series solutions for systems of Initial VValue Problems with initial conditions,
we use our theorem of the RPS. At first, we interpreted and analyzed the RPS theorem for solving
IVPs for fuzzy DE(1.1) with respect to (1)-differentiability only. The RPS theorem expresses the
solutions of 1VPs (3.1) and (3.2) as a power series expansion about the initial point x = x,, we assume
that these solutions take the form
Yo(X) = Xn=0YenX) and ¥, (%) = Xn=0¥,, &) wherey,, andy,  are two terms of
approximations and they are given as:
Xa,n(x) = cp()(x— Xo)n,
V() = dy(@)(x = xo)™.
Obviously, when n = 0, since y,0(x) andy,  (x) satisfy the initial conditions (3.2), where y, c(x)
and y, . (x) are the initial approximations of y,(x) and ¥, (x), respectively, we have co(a) =

Ya,0(Xo) = Yu(Xo) and do(a) =y, ,(x0) =¥,(xo).
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On the other hand, if we choosey,q(xq) = y,(x0) and }'rmo(xo) =y, (xo) approximations as
initials of Xa(x) andy (x), respectivelf then we can calculate Xa,n(x) and ya,n(x)’ forn=1,23,...
and approximate the solutions X(,(x) and y (x) for system of ODEs (3.1) and (3.2) by the k-th-
truncated series

\VXu,k(X) = Ziclzo cp () (x — xo)" N

V5. (0 = Zn=o dn(@(x —xo)"
before applying the RPS method for solving the system of ODEs (3.1) and (3.2), we define the
residual functions for this system as follows:

Ria() = ¥ (9 +fi0 (% ya(9,7,09)

Rpa() = 7,0 + f20 (% ¥, 7,69)
It is clear that Ry ,(x) = Ry 4(x) =0 V X € [Xq,Xo +a] and & € [0, 1]. In order to approximate the
solution, substitute the expansion of y,(x) andy (x) in Eq. (4.2) to get
Rya(x) = Xi-1 nep(e) (x = x0)" 4 (%, oo ca(0)(x = %0)", Tfizg dn(0)(x = %0)")
Rpa(x) = Yizy ndp(a) (x = x0) 14,4 (x, Xri2g cn(0) (X = %0)™, X 2o dn () (x — xo)™.
To obtain the first approximate solution put x = x, in Eq. (4.3) and using R, ,(Xo) = R34 (%) =0, we
have

(4.2)

(4.3)

&1 (@) = i (%0, co(0), do(@))

di (0) = o0 ( %0, C0(@) , do(@))
Using the 1th-truncated series, the first approximation of ODEs (3.1) and (3.2) can be written as
follows:

(4.4)

v, = X(,(XO )+ 11y < Xo, X(,(XO )Y, (o )) (x —x0)

=a,1

Wya'l (X) = ?u(xo ) + fz,a ( X0, ZG(XO ) ,?a(xo )) (X — XO)

And to find the second approximation, we differentiate Eq. (4.3) respect to( x ), and using
1712 (x0) = 75 1(X¢) =0 to obtain the following results

2(@) = 35 i (0, 0@, do(@) + €1(@) g5 Fra (30, 0@ , do(@))
+ (@) 75 fia (0,00 do(oo)] (45)
(@) = 5|35 B (30,0 » ) + €10 55 B (30, ¢0(@) , o)

+ (@) 35 fou (0,0 (@) do(a))]

The second approximation of ODEs (3.1) and (3.2) using 2th-truncated series, can be written as:
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wzz(x>=1(x(}>+fl,a(x@ Y60 ) T, ))(x—xO)+ [f’ fla(xO PACRBACT ))

+fla<XO Y, (x0 ) ,¥,(xo )> fla(XO Y (x0 ) ,¥,(xo ))

_0.

+hu <X0, Za(XO ) ¥, (Xo ))% fi0 (Xo_ za(xo ) ¥, (o )) (x — x)?
‘lfya'z(X) =Y,(&o )+f2,a(XO, Za(XO ) ¥, (Xo ))( —Xp) +5 [aax f2a<xo y (x0 ), ¥, (X0 ))
+f1a<XO ¥ &o ) ¥, (o )) g f2a(X0 ¥ &o ) ¥, (o ))

+h (Xo, ¥ o) ¥, (o ))% fra <X0, ¥ o) ¥, (o )) (x —x)?

Similarly, to find the third approximation, we differentiate of Eq. (4.3) with respect to( x ), and
using the fact R"; 4 (x9) = R";,4(X0) = 0 to obtain the following results

e3(@) = g s (0 0@, do(@) + €200 5 F (30, €0(@) . o)

+ dy () W fi0 (XO, co(a) , do(a))] (4.6)
5@ = 535 B (30,00, @) + 055~ oo (x0,¢0(@) , o)

+ 2@ 5 (0, 00(@) , do(@)

The third apprOX|mat|on for the system of ODEs (3.1) and (3.2) usmg 3th-truncated series is as
follows ]
0 _

v, ()= Yy (%o )+fla(XO . (x0 ) ,¥, (o )) (x —xo) +2 ox fia (Xo, ¥ %0 ),¥,(xo ))

_a3 o

+ig (xO, CREACT ))% fia (xO, ¥ (03,00 ))
+fz,a<xO, CREACT ))ai fl,a(xO, ¥ (03,00 )) (x = x0)°
+1lm f1a<xO Y60 ) 5,00 )) (@) 5y fl,a<xO, PACRIBACT >>
+ (@) - B, (xO, ¥ (0 3,00 ))] (x = xo)?
vy, 00 =T, )+ fz,a(xO, Y60 ) 15,60 )) x—x)+3 [% B (xO, .60 5,60 ))
+f1a<X0 ¥ o) ¥, (o )) f2a<X0 ¥ &o ) ¥, (o ))
hh, (xO, .60 ) T, ))ai o0 <xO, .60 ) 5,00 )) (x = xo)?
+é[§ fza<xO CREACT ))+c2(a)a_ f2a<xO PACRBACT ))

+dy(a) W Hra (Xo, ¥ o) ¥, (o ))] (x = %)
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In order to find the k-th approximate solution for system of ODEs (3.1) and (3.2), it is enough to
substitute the

k-th -truncated series vy k(X) and vy k(x) instead of the expansion of Xa(x) andy (x), respectively,

into the residual Eq. (4.3), and then apply the same procedure since it is easy to show that
7 ) = v, O ) and 7,00 ) = wy ©Gxo foreach s <k
The following theorem is an extension of theorem shown in a previous work [14], which shows the

convergence of the RPS method in the sense of (1) — differentiability.
Theorem 4.1. Suppose that y (x) and y (x) are the exact solutions of ODEs (3.1) and (3.2) in the
-0

sense of (1)-differentiability. Then, the approximate solution obtained by the Residual Power Series
method is just the Taylor expansion of that y (x) and y, ().

Proof:- Suppose that the approximate solution of ODEs (3.1) and (3.2) be as follows:
¥ ()= co(@+ci(@)(x—xo) + cr(@)(x — X0)*+ c3(0) (x = x0)* + -+
9,00 = d (@+ dy (@) (x —x0) + dy (@) (x — x0)?+ d3(@) (x = x¢)* + -~
To prove the theory, we show that the coefficients ¢, and d, in Eq. (4.7) be as follows:
G@=7y @) . 4@ =575" () (4.8)
vn=0,123,..and a € [0, 1], where Xa(X) andy (x) represent the exact solutions of ODEs (3.1)

and (3.2).
It is clear that ,for n = 0, the initial conditions (3.2) give cy(a) = y (x0) anddy(a) = y,(x0)

4.7)

, and for n=1, substitute x = x, into Eq.(3.1) to obtain f; , <x0,y (xo),ya(xo)> =y (Xg)
- - o

,and f, <x0,z (xo),ya(x0)> =Y’ ,(xo)- On the other hand, from Eg. (3.1), we can write
za(x) = XG(XO) + ¢ () (x = x0) + 2 () (x = %0)*+ c3(@) (x = x)* + -+

§a(x) = ?a(xo)‘F d; (@) (x — %) + dy (@) (x — X)?+ d3 (@) (x — x¢)* + -
by substituting Eq. (4.9) in Eq. (3.1) and then putting x = x, , we get

ci(a) =1y, (Xo»za(xo)'?a(xo)> =y (o)

(4.9)

(4.10)
di(a) =1, (Xo, za(xo)ia(xo)> =y, (x0)
Further, for n = 2 , by differentiating Eq. (3.1) with respect to x, we can get

") = 5 fa (x. za(x),_va(x)) +y (07 fie <x, zq(x).%(x))

<

+7, ()55 fia ( zﬂ(x),mx)) (11

<

"0 = 3% b, <x. Za(x),ya(x)) +y g0 b <x. z;xl?a(x))

—, d —
+y', X 7 £ (X, Xq(x), yu(x)>
by substituting x = x, in EqQ. (4.11), we can obtain
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I'~<

o) = fla <x0,y (x0), ¥ (Xo)> ty o) gy 6 fla <X0»XG(X0):§Q(X0)>

+y',(x0) aT f14 <Xo;z (Xo),?a(xo)> (4.12)

'*<I

7 (o) = 52 f2(x<X0r (x0),y (Xo)> +y (Xo) ay f2a<X0! (xo),y (Xo)>
+¥(X0) W fa <X0»Xa(xo)»?a(xo)>

According to Egs. (4.9) and (4.10), we can create the approximation system of ODEs (3.1) and (3.2) as
follows:

T (0= y G+ o)X —x) + ex(@(x—xo) +

?a(x) = ?a(xo) +5, &Ko) (X = x0)+ dy () (X — x0)% + -+
By substituting Eq. (4.13) in Eg. (4.11) and putting x = x, , we can obtain:

2e3(0) = & fm(xO.y (x0),7 (xO))+y (x0) 35 fl,a<xO.zu(xO),§a<xO>>

(X

(4.13)

+ ?'a(xo)aT f1 0 (XO;X (Xo)’?a(xo)> (4.14)
2dy(0) = 6 f2a (XO'Y (x0),y, (Xo)) + Y (Xo) 6 0 (XO:ZQ(XO):?Q(XO))

+y’,(x0) 6—?(1 4 (Xo'za(xo)»?a(xo)>
by comparing Eqgs. (4.12) and (4.14), we can get
@ =7y () and (@) =55",00) (4.15)
Similarly, for [1 =3 , by differentiating Eqg. (3.1) with respect to x, we get

C W= f1a<XY (.3 (x))+y o fl,a(x.za@.yu(x))
7,005 i (x. za(x).ya@) ' (D7 fia (x, zq(xm(x))
+, 0055 fa ( zﬂ(x),n(x)) (416)
7,00 = 7% fr ( zﬂ(x)@(x)) +Y g0 e ( XQ(X)&Q(X))
0055 (x. za(x).ya<x)> +y' (O b <x, zq(xmoo)
+,00 55 <x, y (0, ia(x)>

According to Egs. (4.9), (4.10) and (4.15), we can create the approximation system of ODEs (3.1) and
(3.2) as follows:

- , l .,
=y x)+y KoE=x0)+5y" (xo)x— x0)> + c3(@)(x —xp)’ +
¢ o ¢ ¢ 4.17)
= - - l1_,,
¥, = ya(Xo) +¥ o)X =x0)+ 5y (X0) (x = X0)? + d3(a)(x —x¢)* +
By substituting Eq. (4.17) in Eq. (4.16) and putting x = x, ,we can get
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0 — , 0 _
6c3(a) = 5 fi, <X0»XQ(X0), ya(XO)> +y’ (o) 3y fia <X0»XQ(X0): ya(Xo)>
-
Y, 00) o T (%0 G0 3,600 )+ ¥ (o) fra X0ry (500, (x0)
«(X0) 5~ fiia | X0y, (00,5, (X _aoaza Lo | X0y (X0), ¥, (%o
—, d _
+y Q(XO)W f1a <Xo.za(xo),ya(xo)> (4.18)
03
0 _ , d _
6d3(@) =75 fou| X0y (X0).¥,(X0) +Xa(XO)W fr.0| X0y (%0),¥,(X0)
—-a
Y 00) o X0y G0 T, G0) ) +y” G0) g B Xory (00,5, (x0)
Y «Xo dy, 20| X0 Y (X0, ¥, %o y Ko aza 20| X0, Y (X0)r ¥, Xo

., d _
+y" ,(x0) i fr4 <Xo,za(xo),ya(xo)>
o

by comparing Egs. (4.18) and (4.16) and putting x =1x, , we can conclude thatc;(a) =

1., I,
Y 0L(Xo) and dg(a)=6—y «(X0)-

Corollary 4.1. [16]. If either y (x) ory,(x) is a polynomial, then the Residual Power Series method
—a

will access the exact solution.
5-1lustrative Example
Consider the third order fuzzy initial value problem
y x)=2y xX)+3y (%) 0<x<1 (5.1)
Subject to the fuzzy initial conditions
y0O)=0CB+a,5—a)
y0)=(-3+a-1—-a) (5.2)
y'(0) =8+ a10 —a)
The eigenvalue-eigenvector solution can be found as follows:
x o) = (—1+l e3* + (E+(x)e‘X —1+l e3* + (B—a)e‘x)
Ya O ={"3"12 4 © 73712 4
The approximate solution y with a-levels is as follows: y,(x) =[y,y], o € (0, 1]. Hence, to

create solutions in the ( lower case of solution) y, suppose the problem:

y =2y ®x)+3y® (5.3)
with initial conditions:
y0)=34+a ,y0)=-3+a, y'(0)=8+a (5.4)
We shall look for a power series solution of about x, =0
let: y(x) = X5 gCn (X — 0)* =32 s cn X = co + ¢1X + Cpx2 + c3x3 + -, (5.5)

Now, the first three coefficients are already calculated by the initial conditions:
3+a=y(0) = c+c(0)+ ¢, (0)? + ¢5(0)> + -+ =y
And y'(x) =Y%_; nc,x"! =¢;+2cx + 3e3x% 4 o
B —34+a0a=y(0)=¢
And 50 y"'(x) = X%, n(n— De, x"2 =2¢, + 3(2)eyx + -+

8+a= X”(O) =2¢,

_ 8+a
©2=7

Similarly, by differentiating again we find
y'(x)=X5=; n(n— D(n—2)c, x"3 = 6c; + 43)(Qeyx + -+
X,,,(O) — 2277(0) + 327(0)

6c; =28+ a)+3(-3+a)=16+20—94+30a=7+ 5a
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7+5a

C3 =
Thus, if (5.5) is usgd to solve (5.3), we need
=3 D(n— D —2)c, X" =237, n(n— e, x"2-33¥7 | nc,x" ! =0
To solve the equation above, we first put the first power series in a standard form:
neo M+3)(+2)(n+ De x" =230 (n+2)(n+ D, x"=3¥", (n+ e, x"=0
neo (M+3)(m+2)(n+1)c ;—20m+2)(n+ e, =3 @+ 1), )x"=0
This must vanish for all x, so the total coefficients of each power x" must vanish separately:
m+3)n+2)(n+ 1, ;—20@+2)(n+1)c,,,—3@+1ec, ,)=0 Vn
We thus conclude that

n+3 n+2

2(m+2)(n+ e, ,+3 @+ 1)c

Cot3 = m+3)n+2)@m+1D)
Let us suppose that ¢, ¢;, c,, c3 are given. Then
_203)2)e;+3 (e, 2(7+5a)+3(8+ )

n+1 v

’ Cq =
) HRQ@) OO
2(#)B)c,;+3B)c; 2(38+13a) +3(7 + 5a)
C = =
’ GHBHE) @O
Similarly, for the upper solution y , suppose the problem:
Yy =25 (®0+37® (5.6)
with initial conditions:
yO=5-a ,50=-1-a, y(0)=10-« (5.7)
We shall look for a power series solution of about x =0
let: y(x) = ¥ o dy (x — 0)* =¥ d, x" = dg + d;x + dpx? + d3x> + - (5.8)

Now, the first three coefficients are already calculated by the initial conditions:
5—a=5(0) = dy+d;(0) + dy(0)? + d5(0)* + -+ =d,
And 7' (x) =3%_, nd,x"! =d;+2dyx + 3d3x* + -
—1-a=y(0) =4
Andso Yy (x) =X, n(n—1)d x"2=2d; + 3(2)d;x + ---.
10—a=y5"(0) =2d,
d2 _ 102—(x
Similarly, by differentiating again, we find
Y (X) =X n(n—1)(n—2)d_x"7? =6d; +4(3)(2)d,x + -
y(0) =2y7(0) + 3y°(0)
6d; =2(10—a)+3(-1—a)=20—2a—3—-30=17—5a
d3 _ 17;5(1
Thus, if (5.8) is used to solve (5.6), we need
Y=z n(n—1D(n—2)d X" —2%%, n(n—1d x"?-3¥7 nd,x"'=0
To solve the equation above, we first put the first power series in a standard form:
Ym0 M +3)(+2)(n+ 1)d x" =23 o(n+2)(n+ 1Dd _,x"—3¥", (n+1)d ,,x"=0
m=0 (M +3)(n+2)(n+1)d, ,,—20+2)(n+1)d, ,—3@+1)d _ )x"=0
This must vanish for all x, so the total coefficients of each power x”™ must vanish separately:
m+3)m+2)n+1)d . .—2m+2)n+1)d ., —3m+1)d_ )=0 Vn
Thus, we conclude that:

n+3 n+2 n+1

_2(n+2)(n+ d,,, +3m+1)d

d/n+3 — n+1
Mm+3)(n+2)(n+1)
Let us suppose that d, d;, d,, d; are given, then
_2(3)@)d; +3(2)d, 2(17 - 5a) +3(10 — )

Vn

Co T @®OB)Q2) - ®HRQ)
- 2(4)(3)d, +3(3)d;  2(4—13a)+3(17 — 5a)
> () (@(3) - G)Y@HB)Q)
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For finding the fuzzy (n, m)-solutions of fuzzy DE (5.1) and (5.2), we have eight cases, as follows:
Case I: Lety (1) is (1, 1)-differentiable and consider Case | in Algorithm 2.2. On the other hand, if we

determine the initial approximations as: y = 3+ o)+ (=3 +a)x + i x2 =0—-a)+
2o

(_

y =B+a)+ (-3 +ax+0 x> +ey(@) X +
-

V,=0G—-)+(-1-a)x+ 102—_a X% + dy(o)x> + -+
Consequently, the 3rd-order power series approximation of the RPS solution for (1, 1)-system relative
to these initial approximations is as follows:
_ 8+a o 7+5a 13
(X)—(3+(X)+(—3+(1)X+T TX
0—a - 17-5a 3
3! X

0,3

vy, (0= -0+ (-1 -ox+ !

Case II: For (1, 2)-differentiable, consider Case Il in Algorithm 2.2, we find the following solutions
for (1, 2)-system:
2 17-5a 3

3! X
_(5—a)+( 1—a)x+8+°‘ 2y
Case III For (1, 1)- dlfferentlable consider Case Ill in Algorithm 2.2, we find the following
solutions for (1, 1)-system:

y =G+ )+ (=3 +0)x+ 20 2 +

17-50_3
3! X

V,=6—a)+ (- 1—a)x+10 ° X2 72%! 3

Case IV For (1, 2)- dlfferentlable consider Case IV in Algorithm 2.2, we find the following

solutions for (1, 2)-system:

Y =(3+cx)+(—3+oox+M
8+a 2 17-5a 3
V=6 =)+ (=1 —o)x +— x" +——=x

Case V: Let y (1) be (2, 1)- dlfferentlable and consider Case V in Algorithm 3.2. Then, the (2, 1)-
system yields the following solutlons

7+5a
%3
3!

17-5a
+ 3

8+a 7+5(1 3
—(5—(1)-{-( 3+(X)X+— - X

Case VI For (2, 2)-differentiable, conS|der Case VI in Algorithm 2.2, we find the following solutions
for (2, 2)-system:
y =B+ +(- - a)x+ 20 x2 4+ 2200

Y, =6 —a)+ (- 3+u)x+10 : +l7 23

Case VII For (2, 1)- dlfferentlable con5|der Case VII in Algorithm 2.2, we find the following
solutions for (2, 1)-system:

y =(3+(X.)+(—1—(1)X+1

v, =6 —a)+ (- 3+a)x+w 2 % 3
Case VI I1: For (2, 2)-differentiable, con3|der Case VIII in Algorithm 2.2, we find the following
solutions for (2, 2)-system:
ya—(3+a)+( 1—ox+— 2+
Vo =6 —) + (- 3+ o)x + % x2 4 113
Comblnlng y and y represents the fuzzy solution of the fuzzy initial value problem (5.1) as y(x)
= [X (x), y(¥)], Ya (0, 1], x € [0, 1]. It is clear that for a =1, we find y (X) =y (x), which is the

8+ 17-5a 3
—X
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same exact solution of the non-fuzzy initial value problem . The results of the calculations for all the
above cases are given in table 5.1:

_ exact solution
X y y
4 4 4,0000003

0.1 3.8470 3.8470 3.8472
0.2 3.7960 3.7960 3.7998
0.3 3.8590 3.8590 3.8795
0.4 4.,0480 4.0480 41171
0.5 4,3750 4.3750 45555
0.6 4.,8520 4.8520 5.2537
0.7 5.4910 5.4910 6.2925
0.8 6.3040 6.3040 7.7818
0.9 7.3030 7.3030 9.8711

1 8.5000 8.5000 12.7628

Also, the lower bound of solution y and the upper bound of solution y for different a-levels
(where a € (0, 1]) which represent the fuzzy solution y are presented in Fig. 5.1:

solution (upper and lower)
12.0
10.0
8.0
=—0=1
6.0 -
== 0=0.3 (lower)
4.0 a=0.3(upper)
== 0=0.7(lower)
2.0
== 0=0.7(upper)
0.0
0 01 02 03 04 05 06 07 08 0.9

Figure 5.1-Upper and lower solutions of problem (5.1) —(5-2) for different values of « .

CONCLUSIONS

From the present study, we may conclude the following:
1. The accuracy of the results may be checked with a = 1, in which the upper and lower solutions must
be equal.
2. The crisp solution or the solution of the nonfuzzy boundary value problem is obtained from the
fuzzy solution by setting o = 1, and, therefore, the fuzzy boundary value problems may be considered
as a generalization to the nonfuzzy boundary value problems.
3. The Residual Power Series Method proved its validity and accuracy in solving Fuzzy Deferential
Equations.
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