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Abstract 

     In this paper, the series solution is applied to solve third order fuzzy differential 

equations with a fuzzy initial value. The proposed method applies Taylor expansion 

in solving the system and the approximate solution of the problem which is 

calculated in the form of a rapid convergent series; some definitions and theorems 

are reviewed as a basis in solving fuzzy differential equations. An example is 

applied to illustrate the proposed technical accuracy. Also, a comparison between 

the obtained results is made, in addition to the application of the crisp solution, when 

the-level equals one. 

 

Keywords: Taylor expansion; third order Fuzzy differential equations; Residual 

power series method. 

 

 حل المعادلات التفاضلية الضبابية باستخدام متسلسلة القهى 
 

 رشا حسين ابراهيم
، كلية التربية الاساسية، الجامعه الطستظصرية، بغداد، العراققسم الرياضيات   

 
 :الخلاصه

الدرجة الثالثة مع القيطة في هذا البحث ، يتم تطبيق حل الطتسلسلة لحل الطعادلات التفاضلية الغامضة من     
اولية غامضة. الطريقة الطقترحة تحصل على تهسع تايلهر في حل الظظام والحل التقريبي للطشكلة يتم حسابها 
في شكل سلسلة متقاربة سريعة ؛ تتم مراجعة بعض التعاريف والظظريات كأساس في حل الطعادلات التفاضلية 

تقظية الطقترحة. أيضا ، يتم إجراء مقارنة بين الظتائج التي تم الغامضة. تم تطبيق مثال لتهضيح الدقة لل
  الحصهل عليها ، وكذلك مع الحل الهاضح ، عظدما يكهن مستهى الطستهى القطع يعادل واحد.

1-Introduction 

      Fuzzy differential equations (FDEs) have started to grow rapidly. The concept of FDEs was first 

introduced by Chang and Zadeh [1]. Later, Dubois and Prade [2] expanded the principle approach in 

solving FDEs. Kaleva [3] and Seikkala [4] managed to solve FDEs with the fuzzy initial value 

problems (FIVPs), which appear when the modeling of these problems is imperfect and its nature is 

under uncertainty. Hence, studying and finding solution of FIVPs are extremely necessary for different 

applications, particularly when they involve uncertain parameters or uncertain initial conditions. The 

basic concepts in fuzzy set theory will play a major role in solving fuzzy differential equations [5]. 

In many cases, it is difficult or impossible to find the exact solutions of differential equations. 

Alternatively, we can find the approximate solutions using some techniques such as finite difference 

methods or finite element methods, see for instance [6]. 

       ISSN: 0067-2904  
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In this paper, the RPS method was employed to solve third-order fuzzy differential equations. The 

approximate solution is represented in the form of power series. Moreover, the approximate solution 

and all its derivatives (if they exist) converge to the exact solution and all its derivatives, respectively. 

The suggested algorithm created a swiftly convergent series with an easily computable components 

using a symbolical calculation program. Series expansions are used in numerical calculations, 

especially for quick estimates that are made manually.  Often, we express FDEs in terms of serial 

expansions. However, the RPS theory is an analytical method for solving different types of ordinary 

and partial differential equations [7]. The classical higher order, i.e. Taylor series method, is 

computationally expensive for large orders and proper for the linear problems. On the other hand, the 

suggested method is an alternate procedure for earning analytic Taylor series solutions of systems of 

FIVPs. 

The purpose of this paper is to develop the implementation of the residual power series method for 

earning an analytical solution for the first-order fuzzy DE of the following form [3]:  

   
             ( )   (     ( ))

 (  )    
 

                                                                                                          (   ) 

and the third-order differential equations in the following form: 

      ( )   (     ( )   ( )    ( ))   (     ( )   ( )    ( ))                         (   ) 

                                                 (  )    
          (  )    

        (  )    
        

     where −∞ <    ≤ x ≤       < ∞,   ,       - ×  →    and  , h : ,       - ×  →    are 

fuzzy-number-valued functions,  ( )  is an unknown function of  variable (x) to be specified,   
   

  
    

  are fuzzy numbers, and(   ) , (a ) are real constants with a>0.  

    The structure of the paper includes the following: In section 2, we provide some important 

definitions and basic results to be used in this paper. In section 3, we present the theory of fuzzy DEs. 

In section 4, the main idea of the Residual power series method is introduced. In section 5, we 

illustrate the proposed method by 

 a numerical example.   

2. Preliminaries   

     In this section, we present basic concepts for fuzzy calculus and concept of fuzzy derivative; we 

will adopt strongly generalized differentiability. 

Definition 2.1. [8]. A fuzzy number   is a fuzzy set: R → [0, 1] which satisfies the following 

requirements:  

(i)   is upper semicontinuous function, 

(ii)  ( ) = 0 outside some interval [c, d], 

(iii)  There are real numbers a, b such that c ≤ a ≤ b ≤ d for which 

(a)  ( )  is monotonic increasing on [c, a],  

(b)  ( )  is monotonic decreasing on [b, d],  

 (c)  ( )  = 1 on [a, b]. 

     We will let   denotes the set of fuzzy numbers on R. Obviously, R ⊂    , where R is understood 

as R   Rχ = {χ
* + 

: x ∈ R } ⊂    . The   -level represents a fuzzy number   , denoted by , -   , is 

defined as: 

                    , -  {
     * ∈     ( )   +  ∈ (   - 

* ∈     ( )   +     
 

     It is clear that the   -Level representation of a fuzzy number    is a compact convex subset of R. 

Thus, if     is a fuzzy number, then  , -  , ( )  ( )-, where  ( )= min {s : s ∈ , -  } and  ( )= 

max{s : s ∈ , -   }      ∈ [0, 1]. Sometimes, we will write     and  
 
 as replacements of   ( ) and  

 ( ), respectively, and     ∈ [0,1].   

Theorem 2.1. [9]. Suppose that  : [0, 1] → R and    : [0, 1] → R, which satisfies the following 

conditions:  

 (i)   is a bounded increasing left continuous function on (0, 1],  

(ii)    is a bounded decreasing left continuous function on (0, 1],  

(iii)   and     are right continuous functions at     ,  

(iv)  ( ) ≤  ( ) on [0, 1], then y : R → [0, 1], defined by 
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                                ( )      *    ( )      ( )},                                                                   (2.1) 

is a fuzzy number  given by [ ( ),  ( )]. Moreover, if   : R → [0, 1] is a fuzzy number given by 

[ ( ),  ( )] , then the functions  ( )  and  ( ) satisfy the conditions (i-iv). 

Definition 2.2. [10] Let    ,       - →    and   ∈ ,       - . We say that x is strongly 

generalized differentiable at     , if there exists an element    (  ) ∈    such that: 

(i)   h > 0 sufficiently close to 0, the H-differences  (    ) ⊖  (  ),  (  ) ⊖  (    ) 

exist and          
 (    ) ⊖  (  )

 
         

 (  ) ⊖  (    )

 
   (  )   

(ii)    h > 0 sufficiently close to 0, the H-differences  (  ) ⊖  (    ),  (    )⊖  (   ) 

exist and         
  (  )⊖ (    ) 

 
         

  (    )⊖ (  ) 

 
   (  ) . 

Definition 2.3. [11] Let    ,       - →     . If    is differentiable in the concept (i) of Definition 

2.2, then we say that    is (1)-differentiable on ,       -  and its derivative is denoted by     
( )
  , 

and we have    
( )
    for (2)-differentiability . 

Definition 2.4. [12] Let    ,       -       and m = 1, 2. if    
( )
  exists and it is (m)- 

differentiable. We say that   is (n, m) - differentiable on ,       -  . The second derivatives of   are 

denoted by     
( )

    

For n, m = 1, 2. 

      Now, we present the definition for the third-order derivatives founded on the selection of 

derivative type in each differentiation step. For a given fuzzy function   ,       -      , we 

have two possibilities to get the derivatives of   :      
( )
  ( )  and     

( )
  ( ). And , in each of these 

possibilities, there are four derivatives. 

Definition 2.5. Let    ,       -       and m = 1, 2. If    
( )
  exists and it is (m)-differentiable, 

then we say that    is (n, m) - differentiable on ,       - . The third derivatives of    are denoted by 

    
( )

   for n, m = 1, 2.  

      The principle of the derivative properties  is known and can be found in previous articles [ 11,12, 

13]. In this paper, we extend the theorem proved in two of those articles [11,12]     

Theorem 2.2. Let       
( )
   ,        -      , i = 1, 2 where,     ( )   ( )- ,    ∈ [0, 1]: 

 (i) if   is (1)-differentiable," then          are differentiable functions" and 0  
( )
  ( )1

 

 

,     
 
( )   

 
( )-  

(ii) if   is (2)-differentiable," then          are differentiable functions" and  

     0  
( )
  ( )1

 

 ,   
 
( )   

 
( )-  

 (iii)  if   
( )
  is (1)- differentiable,  "then    

 
    

 
  are  .differentiable functions". and  

     0    
( )
  ( )1

 

 ,      
 
( )    

 
( )- 

  (iv)  if   
( )
  is (2)- differentiable,  "then    

 
    

 
  are  .differentiable functions". and  

     0    
( )
  ( )1

 

 ,     
 
( )    

 
( )- 

 (v)  if   
( )
  is (1)- differentiable,  "then    

 
    

 
  are  .differentiable functions"" and  

     0    
( )
  ( )1

 

 ,     
 
( )     

 
( )- 

   (vi)  if   
( )
  is (2)- differentiable,  "then    

 
    

 
  are .differentiable functions " and  

     0    
( )
  ( )1

 

 ,     
 
( )     

 
( )- 

 (vii)  if   
( )
  is (1)-differentiable,  "then    

 
    

 
  are  .differentiable functions" and  

     0    
( )
  ( )1

 

 ,    
 
( )     

 
( )- 
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(viii)  if   
( )
  is (2)-differentiable,  "then    

 
    

 
  are  .differentiable functions" and  

     0    
( )
  ( )1

 

 ,      
 
( )    

 
( )- 

  (ix)  if   
( )
  is (1)-differentiable,  "then    

 
    

 
  are  .differentiable functions" and  

     0    
( )
  ( )1

 

 ,     
 
( )    

 
( )- 

(x)  if   
( )
  is (2)-differentiable, " then    

 
    

 
  are .differentiable functions" and  

     0    
( )
  ( )1

 

 ,     
 
( )     

 
( )- 

 

3- Theory of third-order fuzzy differential equations  

     In this section, we study the theory of third- order fuzzy differential equations under strongly 

generalized differentiability. Furthermore, we present an algorithm to solve these types of problems, 

which consists of eight classical ODEs systems for fuzzy DE (1.2). The fuzzy solution of DE (1.1) 

depends on the choice of the derivative type in the fuzzy setting. To solve the DE (1.2), we give the 

definition below.  

Definition 3.1 [11] Let   ,       -      and n ∈ {1, 2}. ), if   
( )
   exists and    and   

( )
    

satisfy fuzzy DE (1.1), we say that    is a (n)-solution of fuzzy DE (1.1). 

  

  The following definition of   (   ( ))  is a conclusion to the extension principle of Zadeh when  ( )  

is a fuzzy number [4]:   (   ( ))( )     * ( )( )    (   )  ∈  + . Thus, according to the theory 

of Nguyen [14, 15], it follows that: 

, (   ( )-   (  , ( )- )  [  (   ( ))   (   ( ))] 

where the two expression endpoint functions      and     are defined, respectively, as: 

     (   ( ))     * (   , ( )- +      (     ( )   ( ))  

    (   ( ))     * (   , ( )- +      (     ( )   ( ))        

Similarly, taking into account the type of differentiability, we can write 

[ (    ( )   ( )    ( ))]
 

 *    (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( ))+ 

[ (    ( )   ( )    ( ))]
 

 *    (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( ))+ 

 

The objective of the next algorithm is to implement a procedure to solve the fuzzy DE (1.1) in a 

parametric form, in terms of its  -levels representation. 

 

 Algorithm 3.1[16]: To find the solutions of fuzzy DE (1.1), we discuss the following two cases:  

Case I. if   ( ) is (1)-differentiable, then ,  ( )-  ,     
 
( )   

 
( )- and solving fuzzy DE (1.1) 

translates into the following subroutine: 

    (i) Solve the following system of ODEs for   ( )   ( )           

  
 
( )      (     ( )   ( ))

    
 
( )      (     ( )   ( ))

                                                                                           (   ) 

subject to the initial conditions  

                        (  )     
        

 
(  )     

 
                                                                        (3.2) 
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(ii) Ensure that the solutions [   ( )   ( )]   and  ,   
 
( )   

 
( ) are valid level sets for each   ∈ [0, 

1]. Further, use the identity (2.1) to construct a (1)-solution  ( ) . 

Case II. If  ( ) is (2)-differentiable, then  ,  ( )-  ,     
 
( )   

 
( )-  and solving fuzzy DE (1.1) 

translates into the following subroutine: 

(i) Solve the following system of ODEs for   ( )   ( )           

 
  
 
( )      (     ( )   ( ))

   
 
( )      (     ( )   ( ))

                                                                                            

subject to the initial conditions  

                        (  )     
        

 
(  )     

 
  

(ii) Ensure that the solutions [   ( )   ( )]   and  0  
 
( )   

 
( )1 are valid level sets for each   ∈ [0, 

1]. Further, use the identity (2.1) to construct a (2)-solution  ( ) . 
     Next, we study the properties of solutions of fuzzy DE (1.2) with respect to different types of 

differentiability in order to solve such fuzzy problems.  

Definition 3.2. Let    ,       -      and    ∈ *   +. We say that    is a (   ) - solution of 

fuzzy Differential Equations (1.1), if    
( )
 ( )  and     

( )
 ( )     

( )
 ( ) exist and       

( )
 ( )  and 

    
( )  ( )     

( )  ( ) satisfy fuzzy DE (1.2). 

     Let      be an (   ) -solution for fuzzy DE (1.2). To find it, we apply Theorem 2.2 and, 

considering the initial values, we can transform fuzzy DE (1.2) to a system of third-order ODEs. 

Therefore, the possible ODEs systems for this type of fuzzy problems are eight, as follows: 

Algorithm 3.2: 

     To find the solutions of the fuzzy differential equation (1.2) in term of its  -level representation, we 

consider the following cases: 

 Case I. For (1, 1)-differentiable, consider the differentiability of y and   
( )
   in the sense (i) , (iii) and 

(v) of Theorem 2.2. Then we get the following (1, 1)-system of ODEs: 

     
 
( )      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( ))

    
 
( )      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( ))

  

subject to the initial conditions 

                                                  (  )     
        

 
(  )     

 
     

                                                  
 
(  )     

          
 
(  )     

 
                                             

                                                   
  (  )     

         
 

  (  )     
 

 

Case II. For (1, 2)-differentiable, consider the differentiability of y and   
( )    in the sense (i) , (iv) 

and (vi) of Theorem 2.2. Then we get the following (1, 2)-system of ODEs: 

    
 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

    
 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

subject to the initial conditions 

                                                  (  )     
        

 
(  )     

 
     

                                                  
 
(  )     

          
 
(  )     

 
 

                                                  
 

  (  )     
          

  (  )     
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Case III. For (1, 1)-differentiable, consider the differentiability of y and   
( )    in the sense (i), (iii) 

and (vi) of Theorem 2.2. Then we get the following (1, 1)-system of ODEs:  
    

 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

    
 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

subject to the initial conditions 

                                                  (  )     
        

 
(  )     

 
     

                                                  
 
(  )     

          
 
(  )     

 
 

                                                   
  (  )     

         
 

  
(  )     

 
 

Case IV. For (1, 2)-differentiable, consider the differentiability of y and    
( )    in the sense (i), (iv) 

and (v) of Theorem 2.2. Then we get the following (1, 2)-system of ODEs:  
    

 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

    
 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

subject to the initial conditions 

                                                  (  )     
        

 
(  )     

 
     

                                                  
 
(  )     

          
 
(  )     

 
 

                                                 
 

  (  )     
          

  (  )     
 

 

Case V. For (2, 1)-differentiable, consider the differentiability of y and    
( )
    in the sense (ii) , (vii) 

and (ix) of Theorem 2.2. Then we get the following (2,1)-system of ODEs: 
    

 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

    
 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

subject to the initial conditions 

                                                  (  )     
        

 
(  )     

 
     

                                                  
 
(  )     

          
 
(  )     

 
 

                                                 
 

  (  )     
          

  (  )     
 

 

Case VI. For (2, 2)-differentiable, consider the differentiability of  y and   
( )    in the sense (ii) ,(viii) 

and (x) of Theorem 2.2. Then we get the following (2,2)-system of ODEs: 
    

 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

    
 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

subject to the initial conditions 

                                                  (  )     
        

 
(  )     
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(  )     

           
 
(  )     

 
 

                                   
  (  )     

           
 

  
(  )     

 
  

Case VII. For (2, 1)-differentiable, consider the differentiability of y and    
( )
    in the sense (ii) , 

(viii) and (x) of Theorem 2.2. Then we get the following (2,3)-system of ODEs:  
    

 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

    
 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

subject to the initial conditions 

                                                  (  )     
        

 
(  )     

 
     

                                                  
 
(  )     

       
 
 (  )     

 
 

                                                  
 

  
(  )     

         
  (  )     

 
 

Case VIII. For (2, 2)-differentiable, consider the differentiability of y and    
( )
    in the sense (ii) , 

(viii) and (ix) of Theorem 2.2. Then we get the following (2, 4)-system of ODEs:  
    

 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

    
 
( )

     (   ( )   ( )     
( )   

 
( )    

 
( )    

 
( ))      (   ( )   ( )     

( )   
 
( )    

 
( )    

 
( )) 

Subject to the initial conditions 

                                                  (  )     
        

 
(  )     

 
     

                                                  
 
(  )     

          
 
(  )     

 
 

                                                   
  (  )     

         
 

  (  )     
 

 

Theorem 3.1. [15] Let    ∈ *   + and , ( )-   0  ( )    ( )  1  be an (n, m)-solution for fuzzy 

DE (1.1) on ,        ]. Then,   ( )  and   
 
( )   are the solutions of the associated (n, m)- systems.  

  

Theorem 3.2. [15] Let  ∈ *   +  and   ̃ ( )   ̃ ( )   solve the (n, m) - system on ,        ].    

  ∈ [0, 1]. Let , ( )-   0 ̃ ( )   ̃ ( )   1 . If   ̃( )  has level sets on ,        ],  and      
( )

 ̃( ) 

exists, then  ̃( ) is a (n, m) - solution for fuzzy DE (1.1).  

4-The Residual Power Series Method for Solving Fuzzy Deferential Equations   

     In this section, to get series solutions for systems of Initial Value Problems with initial conditions, 

we use our theorem of the RPS. At first, we interpreted and analyzed the RPS theorem for solving 

IVPs for fuzzy DE(1.1) with respect to (1)-differentiability only. The RPS theorem expresses the 

solutions of IVPs (3.1) and (3.2) as a power series expansion about the initial point      , we assume 

that these solutions take the form 

  ( )  ∑     ( )
∞
     and   

 
( )  ∑  

   
( )∞

     where            
    are two terms of 

approximations and  they are given as: 
    ( )     ( )(    )

  

 
   
( )     ( )(    )

  
 

     Obviously, when n = 0, since     ( )  and  
   
( ) satisfy the initial conditions (3.2), where     ( )  

and  
   
( ) are the initial approximations of   ( )  and   

 
( ), respectively, we have    ( )  

    (  )    (  )  and    ( )   
   
(  )   

 
(  ).  
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       On the other hand, if we choose     (  )    (  ) and  
   
(  )   

 
(  ) approximations as 

initials of   ( )  and  
 
( ) , respectively, then we can calculate     ( ) and  

   
( ), for n = 1, 2, 3, . . . 

and approximate the solutions   ( )  and  
 
( ) for system of ODEs (3.1) and (3.2) by the k-th-

truncated series  

                 
    ( )

 ∑    ( )(    )
  

   

                   
 
   
( )

 ∑    ( )(    )
  

   

                                                                                             (   ) 

before applying the RPS method for solving the system of ODEs (3.1) and (3.2), we define the 

residual functions for this system as follows: 

    ( )     
 
( )      .    ( )   ( ) /

    ( )    
 
( )      .    ( )      ( ) /

                                                                          (   ) 

It is clear that      ( )      ( )        ∈ ,       ] and   ∈ [0, 1]. In order to approximate the 

solution, substitute the expansion of    ( )  and  
 
( ) in Eq. (4.2) to get 

    ( )  ∑      ( )
∞
   (    )

        (  ∑    ( )(    )
  

    ∑    ( )(    )
  

   )

    ( )  ∑      ( )
∞
   (    )

        (  ∑    ( )(    )
  

    ∑    ( )(    )
   

   

          (   ) 

To obtain the first approximate solution put      in Eq. (4.3) and using     (  )      (  ) = 0, we 

have 

    ( )      .       ( )     ( )/

   ( )      .       ( )     ( )/
                                                                                            (   ) 

 Using the 1th-truncated series, the first approximation  of ODEs (3.1) and (3.2) can be written as 

follows:  

                 
y
  1

(x)   y
 
(x0   )  f1  ( x0     y

 
(x0   )   y (x0   )) (x x0)

                   
y  1
(x)  y

 
(x0   )  f2  ( x0     y

 
(x0   )   y (x0   )) (x x0)

                                          

And to find the second approximation, we differentiate Eq. (4.3) respect to( x ), and using   

     (x0)       (x0) = 0  to obtain  the following results 

  c2( )  
 
 
[
 
 x
 f1  .x0  c ( )    d0( )/   c1( )

 
 y

 

 f1  .x0  c ( )    d0( )/

                                  d1( ) 
 
 y

 

 f1  .x0  c ( )    d0( )/+                                                                         (4 5)

 d2( )  
 
 
[
 
 x
 f2  .x0  c ( )    d0( )/   c1( )

 
 y

 

 f2  .x0  c ( )    d0( )/

  d1( ) 
 
 y

 

 f2  .x0  c ( )    d0( )/+

 

The second approximation of ODEs (3.1) and (3.2) using 2th-truncated series, can be written as: 
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y
  2

(x)   y
 
(x0   )  f1  ( x0     y

 
(x0   )   y (x0   )) (x  x0)  

 
 
*
 
 x
 f1  (x0     y

 
(x0   )   y (x0   ))

     f1  (x0     y
 
(x0   )   y (x0   ))

 
 y

 

 f1  (x0     y
 
(x0   )   y (x0   ))

                   f2  (x0     y
 
(x0   )   y (x0   ))

 
 y

 

 f1  (x0     y
 
(x0   )   y (x0   )) (x x0)

2

            

   
y  2
(x)  y

 
(x0   )  f2  ( x0     y

 
(x0   )   y (x0   )) (x x0)  

 
 
*
 
 x
 f2  (x0     y

 
(x0   )   y (x0   ))

 f1  (x0     y
 
(x0   )   y (x0   ))

 
 y

 

 f2  (x0     y
 
(x0   )   y (x0   ))

                 f2  (x0     y
 
(x0   )   y (x0   ))

 
 y

 

 f2  (x0     y
 
(x0   )   y (x0   )) (x x0)

2

 

    Similarly, to find the third approximation, we differentiate of Eq. (4.3) with respect to( x ), and 

using the fact      (  )       (  ) = 0 to obtain  the following results 

  c3( )  
 
 
[
 
 x
 f1  .x0  c ( )    d0( )/   c2( )

 
 y

 

 f1  .x0  c ( )    d0( )/

                                                d2( ) 
 
 y

 

 f1  .x0  c ( )    d0( )/+                                                       (4 6)

 d3( )  
 
 
[
 
 x
 f2  .x0  c ( )    d0( )/   c2( )

 
 y

 

 f2  .x0  c ( )    d0( )/

  d2( ) 
 
 y

 

 f2  .x0  c ( )    d0( )/+

 

     The third approximation for the system of ODEs (3.1) and (3.2) using 3th-truncated series is as 

follows                : 

            
y
  3

(x)   y
 
(x0   )  f1  ( x0     y

 
(x0   )   y (x0   )) (x  x0)  

 
 
*
 
 x
 f1  (x0     y

 
(x0   )   y (x0   ))

     f1  (x0     y
 
(x0   )   y (x0   ))

 
 y

 

 f1  (x0     y
 
(x0   )   y (x0   ))

                   f2  (x0     y
 
(x0   )   y (x0   ))

 
 y

 

 f1  (x0     y
 
(x0   )   y (x0   )) (x x0)

2

 
 
 
[
 
 x
 f1  (x0     y

 
(x0   )   y (x0   ))  c2( )

 
 y

 

 f1  (x0     y
 
(x0   )   y (x0   ))

  d2( ) 
 
 y

 

 f2  (x0     y
 
(x0   )   y (x0   ))+ (x x0)

3

            

 

  
y  3
(x)  y

 
(x0   )  f2  ( x0     y

 
(x0   )   y (x0   )) (x  x0)  

 
 
*
 
 x
 f2  (x0     y

 
(x0   )   y (x0   ))

 f1  (x0     y
 
(x0   )   y (x0   ))

 
 y

 

 f2  (x0     y
 
(x0   )   y (x0   ))

 f2  (x0     y
 
(x0   )   y (x0   ))

 
 y

 

 f2  (x0     y
 
(x0   )   y (x0   )) (x x0)

2

 
 
 
*
 
 x
 f2  (x0     y

 
(x0   )   y (x0   ))   c2( )

 
 y

 

 f2  (x0     y
 
(x0   )   y (x0   ))

  d2( ) 
 
 y

 

 f2  (x0     y
 
(x0   )   y (x0   ))+ (x x0)

3
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     In order to find the k-th approximate solution for system of ODEs (3.1) and (3.2), it is enough to 

substitute the 

 k-th -truncated series  
    

( ) and  
 
   
( ) instead of the expansion of   ( ) and   

 
( ), respectively, 

into the residual Eq. (4.3), and then apply the same procedure since it is easy to show that 

   
( )(     )    

    
( )(    ) and   

 

( )
(     )    

 
   

( )(    )for each s ≤ k. 

      The following theorem is an extension of theorem shown in a previous work [14], which shows the 

convergence of the RPS method in the sense of (1) – differentiability. 

Theorem 4.1. Suppose that   y
 
(x) and y

 
(x) are the exact solutions of ODEs (3.1) and (3.2) in the 

sense of (1)-differentiability. Then, the approximate solution obtained by the Residual Power Series 

method is just the Taylor expansion of that   y
 
(x) and y

 
(x)  

 Proof:- Suppose that the approximate solution  of ODEs (3.1) and (3.2) be as follows: 

ỹ
 
(x)   c0( )  c1( )(x x0)   c2( )(x x0)

2  c3( )(x x0)
3   

 ỹ
 
(x)    d

0
( )  d1( )(x x0)  d2( )(x x0)

2  d3( )(x x0)
3   

   (4 7) 

   To prove the theory, we show that the coefficients  cn  and   dn in Eq. (4.7) be as follows: 

   cn( )  
1

n 
 y
 

(n) (x0)   ,    dn( )  
1

n 
 y
 

(n)
 (x0)                                                                       (4.8)  

  n  0 1 2 3    and α ∈ [0, 1], where  y
 
(x) and y

 
(x)  represent the exact solutions of ODEs (3.1) 

and (3.2).  

It is clear that ,for  n  0 , the initial conditions (3.2) give  c0( )  y
 
(x0)   and d0( )   y (x0)  

, and for n=1 , substitute  x  x0 into Eq.(3.1) to obtain f1  (x0 y
 
(x0) y (x0))  y 

 
(x0) 

, and f2  (x0 y
 
(x0) y (x0))  y 

 
(x0). On the other hand, from Eq. (3.1), we can write 

ỹ
 
(x)  y

 
(x0)   c1( )(x x0)   c2( )(x x0)

2  c3( )(x x0)
3   

 ỹ
 
(x)    y

 
(x0)  d1( )(x x0)  d2( )(x x0)

2  d3( )(x x0)
3   

   (4 9) 

by substituting Eq. (4.9) in Eq. (3.1) and then putting x  x0 , we get 

   c1( )  f1  (x0 y
 
(x0) y (x0))  y 

 
(x0)  

 d1( )  f2  (x0 y
 
(x0) y (x0))  y 

 
(x0)

                                                                (4 10)   

  Further, for   2  , by differentiating Eq. (3.1) with respect to x, we can get  

y  
 
(x)  

 
 x
 f1  (x y

 
(x) y

 
(x))  y 

 
(x)

 
 y

 

 f1  (x y
 
(x) y

 
(x))

                                                         y 
 
(x)

 
 y

 

 f1  (x y
 
(x) y

 
(x))                                          (4 11)

y  
 
(x)  

 
 x
 f2  (x y

 
(x) y

 
(x))  y 

 
(x)

 
 y

 

 f2  (x y
 
(x) y

 
(x))

 y 
 
(x)

 
 y

 

 f2  (x y
 
(x) y

 
(x))

 

 by substituting x  x0   in Eq. (4.11), we can obtain 
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y  
 
(x0)  

 
 x
 f1  (x0 y

 
(x0) y (x0))  y 

 
(x0)

 
 y

 

 f1  (x0 y
 
(x0) y (x0))

                                           y 
 
(x0)

 
 y

 

 f1  (x0 y
 
(x0) y (x0))                                               (4 12)

y  
 
(x0)  

 
 x
 f2  (x0 y

 
(x0) y (x0))  y 

 
(x0)

 
 y

 

 f2  (x0 y
 
(x0) y (x0))

 y 
 
(x0)

 
 y

 

 f2  (x0 y
 
(x0) y (x0))

 

According to Eqs. (4.9) and (4.10), we can create the approximation system of ODEs (3.1) and (3.2) as 

follows: 

 ỹ
 
(x)    y

 

(x0) y 
 
(x0)(x x0)   c2( )(x x0)

2   

 ỹ
 
(x)    y

 
(x0)  y 

 
(x0)(x x0)  d2( )(x x0)

2   
                     (4 13) 

 By substituting Eq. (4.13) in Eq. (4.11) and putting  x  x0 , we can obtain: 

 2 c2( )  
 
 x
 f1  (x0 y

 
(x0) y (x0))  y 

 
(x0)

 
 y

 

 f1  (x0 y
 
(x0) y (x0))

                  y 
 
(x0)

 
 y

 

 f1  (x0 y
 
(x0) y (x0))                                             (4 14)

2 d2( )  
 
 x
 f2  (x0 y

 
(x0) y (x0))  y 

 
(x0)

 
 y

 

 f2  (x0 y
 
(x0) y (x0))

 y 
 
(x0)

 
 y

 

 f2  (x0 y
 
(x0) y (x0))

 

   by comparing Eqs. (4.12) and (4.14), we can get 

  c2( )  
1

2 
y  

 
(x0)      and       d2( )  

1

2 
y  

 
(x0)                                                             (4.15) 

 Similarly, for   3  , by differentiating Eq. (3.1) with respect to x, we get  

  

y   
 
(x)  

 
 x
 f1  (x y

 
(x) y

 
(x))  y 

 
(x)

 
 y

 

 f1  (x y
 
(x) y

 
(x))

                                 y 
 
(x)

 
 y

 

 f1  (x y
 
(x) y

 
(x)) y  

 
(x)

 
 y

 

 f1  (x y
 
(x) y

 
(x))

                                                         y  
 
(x)

 
 y

 

 f1  (x y
 
(x) y

 
(x))                                        (4 16)

     

y   
 
(x)  

 
 x
 f2  (x y

 
(x) y

 
(x))  y 

 
(x)

 
 y

 

 f2  (x y
 
(x) y

 
(x))

                                 y 
 
(x)

 
 y

 

 f2  (x y
 
(x) y

 
(x))  y  

 
(x)

 
 y

 

 f2  (x y
 
(x) y

 
(x))

  y  
 
(x)

 
 y

 

 f2  (x y
 
(x) y

 
(x))

 

According to Eqs. (4.9), (4.10) and (4.15), we can create the approximation system of ODEs (3.1) and 

(3.2) as follows: 

 ỹ
 
(x)    y

 

(x0)  y 
 
(x0)(x x0) 

1
2 y   

(x0)(x x0)
2   c3( )(x x0)

3   

 ỹ
 
(x)    y

 
(x0)  y 

 
(x0)(x x0) 

1
2 y   

(x0)(x x0)
2   d3( )(x x0)

3   
(4 17) 

 By substituting Eq. (4.17) in Eq. (4.16) and putting  x  x0 ,we can get 
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6 c3( )  
 
 x
 f1  (x0 y

 
(x0) y (x0))  y 

 
(x0)

 
 y

 

 f1  (x0 y
 
(x0) y (x0))

                             y 
 
(x0)

 
 y

 

 f1  (x0 y
 
(x0) y (x0))   y   

(x0)
 
 y

 

 f1  (x0 y
 
(x0) y (x0))

                               y  
 
(x0)

 
 y

 

 f1  (x0 y
 
(x0) y (x0))                                                      (4 18) 

   

6 d3( )  
 
 x
 f2  (x0 y

 
(x0) y (x0))  y 

 
(x0)

 
 y

 

 f2  (x0 y
 
(x0) y (x0))

                            y 
 
(x0)

 
 y

 

 f2  (x0 y
 
(x0) y (x0)) y   

(x0)
 
 y

 

 f2  (x0 y
 
(x0) y (x0))

 y  
 
(x0)

 
 y

 

 f2  (x0 y
 
(x0) y (x0))

 

   by comparing Eqs. (4.18) and (4.16) and putting  x  x0 , we can conclude that c3( )  
1

6 
y   

 
(x0)      and   d3( )  

1

6 
y   

 
(x0)    

                                               

Corollary 4.1. [16]. If either  y
 
(x) or y

 
(x) is a polynomial, then the Residual Power Series method 

will  access the exact solution. 

5-Ilustrative Example 

  Consider the third order fuzzy initial value problem 

             ( )       ( )      ( )                                                                             (   )                                                                               
        Subject to the fuzzy initial conditions 

        

 ( )  (        )

       ( )  (         )

   ( )  (        )
}                                                                                    (   ) 

The eigenvalue-eigenvector solution can be found as follows: 

 (   )  ( 
 

 
 

 

  
     (

  

 
  )          

 

 
 

 

  
     (

  

 
  )    ) 

     The approximate solution    with -levels is as follows:  ( ) [     ], (0, 1]. Hence, to 

create solutions in the ( lower case of solution)    , suppose the problem: 

            ( )       ( )      ( )                                                                                           (   )                                                                               

with initial conditions: 

  ( )                   ( )               ( )                                       (   )   

We shall look for a power series solution of about     =0 

let:  ( ) = ∑   
 
   (   )  =∑   

 
                   

     
                  (5.5) 

     Now, the first three coefficients are already calculated by the initial conditions: 

3   y(0)    c0  c1(0)  c2(0)
2  c3(0)

3     c0                              

And   y (x) = ∑   ncn
∞
  1 xn 1  = c1 2c2x 3c3x

2    

                        3   y (0)  c1  

And so  y  (x) = ∑   n(n  1)c
n

∞
n 2 xn 2 =2c2  3(2)c

3
x   

                      8   y  (0)  2c2   

                         c2  
8  

2
   

Similarly, by differentiating again we find 

y   (x) = ∑   n(n 1)(n 2)c
n

∞
n 3 xn 3 = 6c3  4(3)(2)c

4
x   

y   (0)  2 y  (0)  3y (0)    

   6c3   =2(8  )  3( 3  )  16 2   9 3  7 5  
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                   c3  
7 5 

6
   

Thus, if (5.5) is used to solve (5.3), we need 

 ∑   n(n 1)(n 2)c
n

∞
n 3 xn 3  2∑   n(n  1)c

n
∞
n 2 xn 2  3∑   ncn

∞
n 1 xn 1  0̃ 

To solve the equation above, we first put the first power series in a standard form: 

∑  (n 3)(n 2)(n 1)c
n 3

∞
n 0 xn  2∑ (n 2)(n 1)c

n 2
∞
n 0 xn  3∑  (n 1)c

n 1
∞
n 0 xn  0  

∑  ((n 3)(n 2)(n 1)c
n 3

∞
n 0  2 (n  2)(n 1)c

n 2  3 (n  1)c
n 1)x

n  0  

This must vanish for all x, so the total coefficients of each power xn must vanish separately: 

 (n 3)(n 2)(n 1)c
n 3  2 (n 2)(n 1)c

n 2  3 (n 1)c
n 1)  0         n          

We thus conclude that 

    cn 3  
2 (n  2)(n 1)c

n 2    (n 1)c
n 1

(n 3)(n 2)(n 1)
                 

Let us suppose that c0 c1 c2 c3 are given. Then 

     c4  
  (3)(2)c

3
   (2)c

2

(4)(3)(2)
 
 (    )   (   )

(4)(3)(2)
 

    c5  
  (4)(3)c

4
   (3)c

3

(5)(4)(3)
 
 (      )   (    )

(5)(4)(3)(2)
 

Similarly, for the upper solution y , suppose the problem: 

        y    ( )    y
  ( )    y

 ( )                                                                                                           (   )                                                                               
with initial conditions: 

y(0)  5              y ( )            y  ( )                                                        (   )   
We shall look for a power series solution of about  x =0 

let: y(x) = ∑ dn
∞
n 0 (x 0)  =∑ dn

∞
n 0 xn    d0  d1x d2x

2  d3x
3                                  (5.8)  

Now, the first three coefficients are already calculated by the initial conditions: 

5   y(0)    d0  d1(0)  d2(0)
2  d3(0)

3     d0                              

And   y (x) = ∑    d 
∞
  1 x  1  = d1 2d2x 3d3x

2    

 1   y (0)  d1   

And so  y  (x) = ∑   n(n 1)d
n

∞
n 2 xn 2 =2d2  3(2)d

3
x    

         10   y  (0)  2d2   

                   d2  
10  

2
   

Similarly, by differentiating again, we find 

y   (x) = ∑   n(n 1)(n 2)d
n

∞
n 3 xn 3 = 6d3  4(3)(2)d

4
x   

y   (0)  2 y  (0)  3y (0)    

   6d3   =2(10  )  3( 1  )  20 2  3  3  17 5  

                   d3  
17 5 

6
   

Thus, if (5.8) is used to solve (5.6), we need 

 ∑   n(n 1)(n 2)d
n

∞
n 3 xn 3  2∑   n(n 1)d

n
∞
n 2 xn 2  3∑   ndn

∞
n 1 xn 1  0̃ 

To solve the equation above, we first put the first power series in a standard form: 

∑  (n 3)(n 2)(n 1)d
n 3

∞
n 0 xn  2∑ (n 2)(n 1)d

n 2
∞
n 0 xn  3∑  (n 1)d

n 1
∞
n 0 xn  0  

∑  ((n 3)(n 2)(n 1)d
  3

∞
  0  2 (n  2)(n 1)d  2  3 (n  1)d

n 1)x
n  0  

This must vanish for all x, so the total coefficients of each power x  must vanish separately: 

 (n  3)(n  2)(n  1)d
n 3  2 (n  2)(n  1)d

n 2  3 (n  1)d
n 1)  0         n          

 Thus, we conclude that: 

    d  3  
2 (n 2)(n 1)d  2    (n 1)d

n 1

(n 3)(n 2)(n 1)
                 

Let us suppose      d0 d1 d2 d3 are given, then 

     d4  
  (3)(2)d

3
   (2)d

2

(4)(3)(2)
 
 (     )   (    )

(4)(3)(2)
 

    d5  
  (4)(3)d

4
   (3)d

3

(5)(4)(3)
 
 (     )   (     )

(5)(4)(3)(2)
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For finding the fuzzy (n, m)-solutions of fuzzy DE (5.1) and (5.2), we have eight cases, as follows: 

Case I: Let y (t) is (1, 1)-differentiable and consider Case I in Algorithm 2.2. On the other hand, if we 

determine the initial approximations as: y
  2

 = (3  )  ( 3  )x 
8  

2
 x2, y

  2
 (5  )  

( 1  )x 
10  

2
 x2 then the power series expansions of solutions take the form 

            y
 
 =(3  )  ( 3  )x 

8  

2
 x2  c3( ) x

3    

            y
 
 (5  )  ( 1  )x 

10  

2
 x2  d3( )x

3       

Consequently, the 3rd-order power series approximation of the RPS solution for (1, 1)-system relative 

to these initial approximations is as follows:   

                     
y
  3

(x)   (3  )  ( 3  )x 
8  

2
 x2  

7 5 

3 
x3 

                     
y  3
(x)  (5  )  ( 1  )x 

10  

2
 x2  

17 5 

3 
x3           

 

Case II:  For (1, 2)-differentiable, consider Case II in Algorithm 2.2, we find the following solutions 

for (1, 2)-system:  

           y
 
 =(3  )  ( 3  )x 

10  

2
 x2  

17 5 

3 
x3 

           y
 
 =(5  )  ( 1  )x 

8  

2
 x2  

7 5 

3 
x3            

Case III: :  For (1, 1)-differentiable, consider Case III in Algorithm 2.2, we find the following 

solutions for (1, 1)-system: 

           y
 
 =(3  )  ( 3  )x 

8  

2
 x2  

17 5 

3 
x3 

           y
 
 =(5  )  ( 1  )x 

10  

2
 x2  

7 5 

3 
x3            

Case IV:   For (1, 2)-differentiable, consider Case IV in Algorithm 2.2, we find the following 

solutions for (1, 2)-system: 

           y
 
 =(3  )  ( 3  )x 

10  

2
 x2  

7 5 

3 
x3 

            y
 
=(5  )  ( 1  )x 

8  

2
 x2  

17 5 

3 
x3            

Case V: Let y (t) be (2, 1)-differentiable and consider Case V in Algorithm 3.2. Then, the (2, 1)-

system yields the following solutions: 

           y
 
 =(3  )  ( 1  )x 

10  

2
 x2  

17 5 

3 
x3 

           y
 
 =(5  )  ( 3  )x 

8  

2
 x2  

7 5 

3 
x3            

Case VI: For (2, 2)-differentiable, consider Case VI in Algorithm 2.2, we find the following solutions 

for (2, 2)-system: 

           y
 
 =(3  )  ( 1  )x 

8  

2
 x2  

7 5 

3 
x3 

           y
 
 =(5  )  ( 3  )x 

10  

2
 x2  

17 5 

3 
x3            

Case VII: For (2, 1)-differentiable, consider Case VII in Algorithm 2.2, we find the following 

solutions for (2, 1)-system: 

           y
 
 =(3  )  ( 1  )x 

10  

2
 x2  

7 5 

3 
x3 

           y
 
 =(5  )  ( 3  )x 

8  

2
 x2  

17 5 

3 
x3            

Case VIII: For (2, 2)-differentiable, consider Case VIII in Algorithm 2.2, we find the following 

solutions for (2, 2)-system: 

              =(   )  (    )  
   

 
    

     

  
   

              =(   )  (    )  
    

 
    

    

  
              

Combining  and  represents the fuzzy solution of the fuzzy initial value problem (5.1) as   (x) 

[ (x),  (x)], (0, 1], x [0, 1]. It is clear that for 1, we find  (x)  (x), which is the 
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same exact solution of the non-fuzzy initial value problem . The results of the calculations for all the 

above cases are given in table 5.1: 

 

      
exact solution 

 

0 4 4 4.0000003 

0.1 3.8470 3.8470 3.8472 

0.2 3.7960 3.7960 3.7998 

0.3 3.8590 3.8590 3.8795 

0.4 4.0480 4.0480 4.1171 

0.5 4.3750 4.3750 4.5555 

0.6 4.8520 4.8520 5.2537 

0.7 5.4910 5.4910 6.2925 

0.8 6.3040 6.3040 7.7818 

0.9 7.3030 7.3030 9.8711 

1 8.5000 8.5000 12.7628 

     Also, the lower bound of solution    and the upper bound of solution  for different-levels 

(where (0, 1]) which represent the fuzzy solution   are presented in Fig. 5.1: 

 

 
 

Figure 5.1-Upper and lower solutions of problem (5.1) –(5-2) for different values of   . 

 

CONCLUSIONS  

     From the present study, we may conclude the following:  

1. The accuracy of the results may be checked with   = 1, in which the upper and lower solutions must 

be equal.  

2. The crisp solution or the solution of the nonfuzzy boundary value problem is obtained from the 

fuzzy solution by setting   = 1, and, therefore, the fuzzy boundary value problems may be considered 

as a generalization to the nonfuzzy boundary value problems.  

3. The Residual Power Series Method proved its validity and accuracy in solving Fuzzy Deferential 

Equations. 
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