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Abstract 
     In this work, we find the terms of the complex of characteristic zero in the 

case of the skew-shape (8,6, 3)/(u,1), where u = 1 and 2. We also study this 

complex as a diagram by using the mapping Cone and other concepts. 
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2و 1=u    عندما (8,6,3)/(u,1) المميز الرفري في حالة شبه الذكل المنحرف معقدة  
 

 هيثم رزوقي حدن،شيماء نهري عبدالرضا
الجامعة السدتشررية ،العراق ، بغدادالرياضيات ،كمية العمهم ، قدم  

            الخلاصة
  و  لمسسيز الرفري في حالة شبو الذكل السشحرف في ىذا العسل وجدنا الحدود السعقدة      

   1=u  ,2  (8,6,3)عشدما/(u,1)    ودرسشا ىذه السعقدة كسخططات ايزا لمتجزئة     
                                                    السفاهيمذاتيا وذلك باستخدام تطبيق كهن وغيرىا من 

1. Introduction 

     Let   be commutative ring with identity,   is a free  -module, and     is the divided power 

algebra of degree  .  
      The complex of characteristic zero in the case of the partitions (2,2,2), (3,3,3) and (4,4,3) was 

illustrated by other authors [1,2,3],, while others [4] presented the diagram of the complex of 

characteristic zero in the case of the partition (8,7,3). Other articles [5,6] found the resolution of 

Weyl module for characteristic zero in the case of the partition (8,7,3) by using the mapping Cone 

[7]. 

        In this work, we used the same idea where we consider the complex of skew-shape 

(8,6,3)/(u,1) where u = 1 and 2 as well as the diagram of the complex of characteristic zero in 

skew-shape (8,6,3)/(u,1) where u = 1 and 2, using the mapping Cone after we illustrate the terms 

of that complex. The map    
( )

 means the divided power of the place polarization     where   

must be less than  , with its Capelli identities [8]. So we need the identities below 

   
( )     

( )  ∑   (  )    
(   )     

(   )     
( )

                                …(1.1) 

   
( )     

( )  ∑      
(   )     

(   )     
( )

                                          …(1.2)  
 

2. Complex of characteristic zero for the skew-shape (8,6,3)/(1,1) 

2.1 The terms  
     To find the terms of our case (p,q,r,t1,t2), we used the following [7]: 

       ISSN: 0067-2904  
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 ⟨(  | |   )|( )|(  | |   )⟩
         
→   

⟨(  | |   )|(      )|(      )⟩

 
⟨(      )|(      )|(  | |   )⟩

         
→   

⟨( )|(      )|(      )⟩

 
⟨(      )|(      )|( )⟩

 

         
→    ⟨( ) |( )|( )⟩ 

where | |         
     In our case, i.e. (7,5,3;0,1), the complex of characteristic zero has the following terms: 

 

               
            

 
           

 
           

 
           

             

 

2.2 The diagram  

     Consider the following diagram: 

 
Where 

 

  ( )                            , such that  

  ( )     ( )                 

  ( )                          , such that   ( )     
( )
( )             

        

  ( )                        , such that  

  ( )     
( )( )               

  ( )                         , such that  

  ( )     
( )( )                

  ( )                        , such that  

  ( )     ( )               

     And we define   ( )                           by   ( )  
 

 
          

                    
Proposition (2.1): The diagram A is commutative. 

Proof: We must prove that (      )( )  (      )( ) 

(      )( )       
( )     ( )           

( )       
( )     , and  

(      )( )  (
 

 
            )     

( )         
( )     

( )      

Implies that (      )( )  (     )( ).     

Now we define  

  ( )                           by 

  ( )  
 

 
     
( )     

( )  
 

 
                 

( )
 

Proposition (2.2): The diagram B is commutative. 

(      )( )     (
 

 
     
( )     

( )  
 

 
                 

( )
)                

     
( )     

( )       
( )                     

( )   
Where 
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(      )( )      
( )      

( )
 

By Capelli identity (1.2), we get 

(      )( )      
( )     

( )     
( )                     

( )
 

Implies that (     )( )  (      )( ).    
 

 

Now consider the following diagram: 

 

 
 

Define z(v):                            

 ( )      
( )
                      

Proposition (2.3): The diagram M is commutative. 

 

(      )( )  (
 

 
    
( )     

( )  
 

 
                   

( ))     ( ) 

      
( )     

( )              
( )     

( )      

(     )( )       
( )     

( )( ) 
And from (1.2) 

      
( )     

( )              
( )     

( )       
Which implies that (      )( )  (     )( )  which means that the diagram M is commutative    

Proposition (2.4): The diagram G is commutative. 

Proof:  From (1.1), we get 

(    )( )         
( )( )      

( )          
( )           

But  (     )( )      
( )
 (

 

 
            )      

( )
        

( )
         

Which implies that (    )( )  (     )( )  which means that the diagram G is commutative 

Eventually, we define the maps       and    where: 

                   

  
            

 
            

                                                                                             

 

    ( )  (  ( )   ( ))                   

 

    
              

  
           

  
           

  
           

  

    ((     ))  (  (  )   (  )   (  )    (  ))   

                                 

    
             

  
           

                                                                                                                             

     ((     ))  (  
   (  ))                                                                                                                            
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Proposition (2.5): 

              
    
→ 
            

 
           

   
→ 
           

 
           

   
→              

is complex.                                                                                                                                           

Proof: From the definition of place polarization, we have      and     are injectives [9], and we 

get    is injective. 

Now 

(     )( )    (  ( )   ( )) 

   (   ( )    
( )( )) 

 (  (   ( ))   (   
( )( ))    (   

( )( ))    (   ( ))) 

So 

  (   ( ))   (    
( )( ))                                                                                                                 

 (
 

 
     
( )     

( )  
 

 
                   

( )
)     ( )     

( )     
( )( )  

 (   
( )     

( )            
( )         

( )         
( )     

( ))( )  

 (   
( )     

( )
        

( )
          

( )
        

( )
    

( ) 
        

( )
       

   
( )     )( )     

 

  (    
( )( ))    (   ( ))  

 (
 

 
           )     

( )( )     
( )
    ( )  

 (       
( )         

( )     
( )     )( )   

By using (1.2) again 

 (   
( )
        

( )             
( )     

( )
    )( )  

    

So, (     )( )   . 

And 

(     )(     )    (  (  )   (  )   (  )    (  ))     

   (
 

 
     
( )     

( )  
 

 
                   

( ))(  )     
( )(  ) (

 

 
           )(  )  

   
( )(  ))  

     (
 

 
    
( )     

( )  
 

 
                  

( ))(  )     
( )(  ))      

( )    

((
 

 
            (  )      

( )(  )) 

  (   
( )     

( )       
( )                  

( )      
( )     

( )) (  )    

(   
( )         

( )             
( )) (  )  

 (   
( )     

( )       
( )                  

( )     
( )     

( )      
( )                

   
( )) (  )  

 (       
( )     

( )         
( )             

( )) (  )           

 

3. Complex of characteristic zero for the skew-shape (8,6,3)/(2,1) 

3.1 The terms  
     The authors in a previous work [7] gave the terms in the general case (p,q,r,t1,t2), as follows 
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0→ ⟨(  | |   ) |(      ))|(      ⟩   

⟨(      ) |(      )|( )⟩
 

⟨( ) |(      )|(      )⟩
 → 

⟨( ) |( )|( ⟩ 
Where | |         
    In our case, i.e (6,5,3;1,1), the complex of characteristic zero has the terms as follow: 

 

               
           

 
           

                               

                                 
 3.2 Complex of characteristic zero as a diagram 

        Consider the following diagram 

 
Where  

  ( )                         , such that 

  ( )     
( )
( )                     

 

  ( )                         , such that 

 ( )     
( )( )                

 

  ( )                        

  ( )     
( )( )                  

 

Now we define    ( )                             by  

  ( )  
 

 
    
( )
    

( )
  
 

 
                 

( )
  

 

Proposition (3.1): The diagram N is commutative. 

Proof:(      )( )      
( )     

( )( ) 
By using (1.1) 

    
( )     

( )     
( )              

( )     
( )          

We have 

       ( )       
( ) ( 

 

 
      
( )     

( )   
 

 
                    

( )) 

    
( )     

( )     
( )              

( )     
( )  

which implies that      ( )        ( ), which means that the diagram N is commutative.   

 

Eventually, we define the maps    and      as follows: 

   (  )  (   (  )   (  ))                                                                          

   ((     ))  (  (  )    (  ))                                   

Proposition (3.2): 

               
  
→  
           

 
           

 
  
→               

is complex. 
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Proof: As previously shown [9], place polarizations         ,and     as  injectives, which implies 

that    is injective 

       (  )     ( (
 

 
    
( )
    

( )
  
 

 
                 

( )) (  )    
( )(   )) 

 = (    
( )(  )     

( )(  ))  (
 

 
    
( )
    

( )
  

 

 
                 

( )) (  )    
( )(   ))      

 =     
( )
 (

 

 
    
( )
    

( )
  

 

 
                 

( )) (  )     
( )
    

( )(  ) 

 =       
( )
    

( )
    

( )
             

( )
    

( )
    

( )
    

( )
+   

( )
              

( )
    

( )
 = 0    
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