

Complex of Characteristic Zero in the Skew-Shape (8, 6, 3) / $(\mathbf{u}, 1)$ where $u=1$ and 2

Shaymaa N. Abd-Alridah, Haytham R. Hassan
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Received: 23/11/ 2019
Accepted: 15/ 3/2020

Abstract

In this work, we find the terms of the complex of characteristic zero in the case of the skew-shape $(8,6,3) /(u, 1)$, where $u=1$ and 2 . We also study this complex as a diagram by using the mapping Cone and other concepts.

Keywords: Weyl module, Place polarization, Complex, Characteristic Zero

1. Introduction

Let R be commutative ring with identity, F is a free R-module, and $D_{i} F$ is the divided power algebra of degree i.

The complex of characteristic zero in the case of the partitions $(2,2,2),(3,3,3)$ and $(4,4,3)$ was illustrated by other authors [1,2,3], while others [4] presented the diagram of the complex of characteristic zero in the case of the partition $(8,7,3)$. Other articles [5,6] found the resolution of Weyl module for characteristic zero in the case of the partition $(8,7,3)$ by using the mapping Cone [7].

In this work, we used the same idea where we consider the complex of skew-shape $(8,6,3) /(u, 1)$ where $u=1$ and 2 as well as the diagram of the complex of characteristic zero in skew-shape $(8,6,3) /(u, 1)$ where $u=1$ and 2 , using the mapping Cone after we illustrate the terms of that complex. The map $\partial_{i j}^{(f)}$ means the divided power of the place polarization $\partial_{i j}$ where j must be less than i, with its Capelli identities [8]. So we need the identities below

$$
\begin{array}{ll}
\partial_{21}^{(u)} \circ \partial_{32}^{(V)}=\sum_{e \geq 0} & (-1)^{e} \partial_{32}^{(V-e)} \circ \partial_{21}^{(u-e)} \circ \partial_{31}^{(e)} \\
\partial_{32}^{(V)} \circ \partial_{21}^{(u)}=\sum_{e \geq 0} & \partial_{21}^{(u-e)} \circ \partial_{32}^{(V-e)} \circ \partial_{31}^{(e)} \tag{1.2}
\end{array}
$$

2. Complex of characteristic zero for the skew-shape $(8,6,3) /(1,1)$

2.1 The terms

To find the terms of our case (p, q, r, t_{1}, t_{2}), we used the following [7]:

[^0]\[

$$
\begin{aligned}
& 0 \\
& \rightarrow\langle(p+|t|+2)|(q)|(r-|t|-2)\rangle \xrightarrow{\partial_{3}}\left\langle\left.\begin{array}{c}
\langle(p+|t|+2)|\left(q-t_{1}-1\right)\left|\left(r-t_{2}-1\right)\right\rangle \\
\left.\oplus\left(p+t_{1}+1\right)\left|\left(q+t_{2}+1\right)\right|(r-|t|-2)\right\rangle
\end{array} \xrightarrow{\partial_{2}} \begin{array}{c}
\partial_{2}
\end{array}\langle(p)|\left(q+t_{2}+1\right) \right\rvert\,\left(r-t_{2}-1\right)\right\rangle \\
& \xrightarrow{\partial_{1}}\langle(p)|(q)|(r)\rangle
\end{aligned}
$$
\]

where $|t|=t_{1}+t_{2}$.
In our case, i.e. $(7,5,3 ; 0,1)$, the complex of characteristic zero has the following terms:

$$
\begin{array}{r}
0 \rightarrow D_{10} F \otimes D_{5} F \otimes D_{0} F \rightarrow \begin{array}{c}
D_{10} F \otimes D_{4} F \otimes D_{1} F \\
D_{8} F \otimes D_{7} F \otimes D_{0} F \\
D_{7} F \otimes D_{7} F \otimes D_{1} F
\end{array} \rightarrow{ }_{\substack{ \\
D_{8} F \otimes D_{4} F \otimes D_{3} F}}^{\oplus} F \otimes D_{5} F \otimes D_{3} \boldsymbol{F}
\end{array}
$$

2.2 The diagram

Consider the following diagram:

Where
$f_{1}(v): D_{10} F \otimes D_{5} F \otimes D_{0} F \rightarrow D_{10} F \otimes D_{4} F \otimes D_{1} F$, such that

$$
f_{1}(v)=\partial_{32}(v) ; v \in D_{10} F \otimes D_{5} F \otimes D_{0} F
$$

$h_{1}(v): D_{10} F \otimes D_{5} F \otimes D_{0} F \rightarrow D_{8} F \otimes D_{7} F \otimes D_{0} F$, such that $h_{1}(v)=\partial_{21}^{(2)}(v) \quad ; v \in D_{10} F \otimes$
$D_{5} F \otimes D_{0} F$
$g_{2}(v): D_{7} F \otimes D_{7} F \otimes D_{1} \rightarrow D_{7} F \otimes D_{5} F \otimes D_{3} F$, such that

$$
g_{2}(v)=\partial_{32}^{(2)}(v) ; v \in D_{7} F \otimes D_{7} F \otimes D_{1} F
$$

$h_{2}(v): D_{10} F \otimes D_{4} F \otimes D_{1} F \rightarrow D_{7} F \otimes D_{7} F \otimes D_{1} F$, such that

$$
h_{2}(v)=\partial_{21}^{(3)}(v) ; v \in D_{10} F \otimes D_{4} F \otimes D_{1} F
$$

$h_{3}(v): D_{8} F \otimes D_{4} F \otimes D_{3} F \rightarrow D_{7} F \otimes D_{5} F \otimes D_{3} F$, such that

$$
h_{3}(v)=\partial_{21}(v) ; v \in D_{8} F \otimes D_{4} F \otimes D_{3} F
$$

And we define $g_{1}(v): D_{8} F \otimes D_{7} F \otimes D_{0} F \rightarrow D_{7} F \otimes D_{7} F \otimes D_{1} F \quad$ by $g_{1}(v)=\frac{1}{3} \partial_{32} \circ \partial_{21}-$ $\partial_{31} ; v \in D_{8} F \otimes D_{7} F \otimes D_{0} F$
Proposition (2.1): The diagram A is commutative.
Proof: We must prove that $\left(h_{2} \circ f_{1}\right)(v)=\left(g_{1} \circ h_{1}\right)(v)$
$\left(h_{2} \circ f_{1}\right)(v)=\partial_{21}^{(3)} \circ \partial_{32}(v)=\partial_{32} \circ \partial_{21}^{(3)}-\partial_{21}^{(2)} \circ \partial_{31}$, and

$$
\left(g_{1}{ }^{\circ} h_{1}\right)(v)=\left(\frac{1}{3} \partial_{32} \circ \partial_{21}-\partial_{31}\right) \circ \partial_{21}^{(2)}=\partial_{32} \circ \partial_{21}^{(3)}-\partial_{21}^{(2)} \circ \partial_{31}
$$

Implies that $\left(h_{2} \circ f_{1}\right)(v)=\left(g_{1} h_{1}\right)(v)$.
Now we define
$f_{2}(v): D_{10} F \otimes D_{4} F \otimes D_{1} F \rightarrow D_{8} F \otimes D_{4} F \otimes D_{3} F$ by

$$
f_{2}(v)=\frac{1}{3} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{2} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}
$$

Proposition (2.2): The diagram B is commutative.

$$
\begin{aligned}
\left(h_{3} \circ f_{2}\right)(v)= & \partial_{21}\left(\frac{1}{3} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{2} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}\right) \\
& =\partial_{21}^{(3)} \circ \partial_{32}^{(2)}+\partial_{21}^{(2)} \circ \partial_{32} \circ \partial_{31}+\partial_{21} \circ \partial_{31}^{(2)}
\end{aligned}
$$

Where

$$
\left(g_{2} \circ h_{2}\right)(v)=\partial_{32}^{(2)} \circ \partial_{21}^{(3)}
$$

By Capelli identity (1.2), we get

$$
\left(g_{2} \circ h_{2}\right)(v)=\partial_{21}^{(3)} \circ \partial_{32}^{(2)}+\partial_{21}^{(2)} \circ \partial_{32} \circ \partial_{31}+\partial_{21} \circ \partial_{31}^{(2)}
$$

Implies that $\left(h_{3} \circ f_{2}\right)(v)=\left(g_{2} \circ h_{2}\right)(v)$.

Now consider the following diagram:

$$
\mathrm{D}_{8} \mathrm{~F} \otimes \mathrm{D}_{7} \mathrm{~F} \otimes \mathrm{D}_{0} \mathrm{~F} \xrightarrow{g_{1}} \mathrm{D}_{7} \mathrm{~F} \otimes \mathrm{D}_{7} \mathrm{~F} \otimes \mathrm{D}_{1} \mathrm{~F} \xrightarrow{g_{2}} \mathrm{D}_{7} \mathrm{~F} \otimes \mathrm{D}_{5} \mathrm{~F} \otimes \mathrm{D}_{3} \mathrm{~F}
$$

Define $z(v): D_{8} F \otimes D_{7} F \otimes D_{0} F \rightarrow D_{8} F \otimes D_{4} F \otimes D_{3} F$ by

$$
z(v)=\partial_{32}^{(3)} \text { where } v \in D_{8} F \otimes D_{7} F \otimes D_{0} F
$$

Proposition (2.3): The diagram M is commutative.

$$
\begin{gathered}
\left(f_{2} \circ f_{1}\right)(v)=\left(\frac{1}{3} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{2} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}\right) \circ \partial_{32}(v) \\
=\partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\partial_{21} \circ \partial_{31} \circ \partial_{32}^{(2)}+\partial_{31}^{(2)} \circ \partial_{32} \\
\left(z \circ h_{1}\right)(v)=\partial_{32}^{(3)} \circ \partial_{21}^{(2)}(v)
\end{gathered}
$$

And from (1.2)

$$
=\partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\partial_{21} \circ \partial_{31} \circ \partial_{32}^{(2)}+\partial_{31}^{(2)} \circ \partial_{32}
$$

Which implies that $\left(f_{2} \circ f_{1}\right)(v)=\left(z \circ h_{1}\right)(v)$, which means that the diagram M is commutative
Proposition (2.4): The diagram G is commutative.
Proof: From (1.1), we get
$\left(h_{3} \circ z\right)(v)=\partial_{21} \circ \partial_{32}^{(3)}(v)=\partial_{32}^{(3)} \circ \partial_{21}-\partial_{32}^{(2)} \circ \partial_{31}$
But $\left(g_{2} \circ g_{1}\right)(v)=\partial_{32}^{(2)} \circ\left(\frac{1}{3} \partial_{32} \circ \partial_{21}-\partial_{31}\right)=\partial_{32}^{(3)} \circ \partial_{21}-\partial_{32}^{(2)} \circ \partial_{31}$
Which implies that $\left(h_{3} \circ z\right)(v)=\left(g_{2} \circ g_{1}\right)(v)$, which means that the diagram G is commutative Eventually, we define the maps σ_{1}, σ_{2} and σ_{3} where:

$$
\begin{aligned}
& \sigma_{3}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{5} \mathcal{F} \otimes \mathcal{D}_{0} \mathcal{F} \\
& \rightarrow \begin{array}{c}
\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{4} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \\
\oplus \\
\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{0} \mathcal{F}
\end{array} \\
& \sigma_{3}(x)=\left(f_{1}(x), h_{1}(x)\right) ; \forall x \in D_{10} F \otimes D_{5} F \otimes D_{0} F
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{2}\left(\left(x_{1}, x_{2}\right)\right)=\left(f_{2}\left(x_{1}\right)-z\left(x_{2}\right), g_{1}\left(x_{2}\right)-h_{2}\left(x_{1}\right)\right) \text {; } \\
& \forall x \in D_{10} F \otimes D_{4} F \otimes D_{1} F \quad D_{8} F \otimes D_{7} F \otimes D_{0} F \\
& \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{4} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \\
& \sigma_{1}: \stackrel{\oplus}{\mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}} \quad \rightarrow \quad \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{5} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \\
& \sigma_{1}\left(\left(x_{1}, x_{2}\right)\right)=\left(h_{3}\right. \\
& \left.+g_{2}\left(x_{2}\right)\right)
\end{aligned}
$$

$\forall x \in D_{8} F \otimes D_{4} F \otimes D_{3} F \quad D_{7} F \otimes D_{7} F \otimes D_{1} F$

Proposition (2.5):

$$
\begin{aligned}
& 0 \rightarrow D_{10} F \otimes D_{5} F \otimes D_{0} F \xrightarrow{\sigma_{3}} D_{10} F \otimes D_{4} F \otimes D_{1} F \\
& D_{8} F \otimes D_{7} F \otimes D_{0} F \xrightarrow[\rightarrow]{\sigma_{2}} D_{8} F \otimes D_{4} F \otimes D_{3} F \\
& D_{7} F \otimes D_{7} F \otimes D_{1} F \\
& \xrightarrow[\rightarrow]{\sigma_{1}} D_{7} F \otimes D_{5} F \otimes D_{3} F
\end{aligned}
$$

is complex.
Proof: From the definition of place polarization, we have ∂_{21} and ∂_{32} are injectives [9], and we get σ_{3} is injective.
Now

$$
\begin{gathered}
\left(\sigma_{2} \circ \sigma_{3}\right)(x)=\sigma_{2}\left(f_{1}(x), h_{1}(x)\right) \\
=\sigma_{2}\left(\partial_{32}(x), \partial_{21}{ }^{(2)}(x)\right) \\
=\left(f_{2}\left(\partial_{32}(x)\right)-z\left(\partial_{21}{ }^{(2)}(x)\right), g_{1}\left(\partial_{21}{ }^{(2)}(x)\right)-h_{2}\left(\partial_{32}(x)\right)\right)
\end{gathered}
$$

So

$$
\begin{aligned}
& f_{2}\left(\partial_{32}(x)\right)-z\left(\partial_{21}^{(2)}(x)\right) \\
& =\left(\frac{1}{3} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{2} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}\right) \circ \partial_{32}(x)-\partial_{32}^{(3)} \circ \partial_{21}{ }^{(2)}(x) \\
& =\left(\partial_{21}{ }^{(2)} \circ \partial_{32}^{(3)}+\partial_{21} \circ \partial_{32}{ }^{(2)} \partial_{31}+\partial_{32}^{(2)} \circ \partial_{31}-\partial_{32}^{(3)} \circ \partial_{21}{ }^{(2)}\right)(x) \\
& =\left(\partial_{21}{ }^{(2)} \circ \partial_{32}^{(3)}+\partial_{21} \circ \partial_{32}^{(2)} \circ \partial_{31}+\partial_{32}^{(2)} \circ \partial_{31}-\partial_{21}^{(2)} \circ \partial_{32}^{(3)}-\partial_{21} \circ \partial_{32}^{(2)} \circ \partial_{31}-\right. \\
& \left.\partial_{32}^{(2)} \circ \partial_{31}\right)(x)=0 \\
& g_{1}\left(\partial_{21}^{(2)}(x)\right)-h_{2}\left(\partial_{32}(x)\right) \\
& =\left(\frac{1}{3} \partial_{32} \circ \partial_{21}-\partial_{31}\right) \circ \partial_{21}{ }^{(2)}(x)-\partial_{21}^{(3)} \circ \partial_{32}(x) \\
& =\left(\partial_{32} \circ \partial_{21}^{(3)}-\partial_{31} \circ \partial_{21}{ }^{(2)}-\partial_{21}^{(3)} \circ \partial_{32}\right)(x)
\end{aligned}
$$

By using (1.2) again
$=\left(\partial_{21}^{(3)} \circ \partial_{32}+\partial_{21}{ }^{(2)} \circ \partial_{31}-\partial_{31} \circ \partial_{21}{ }^{(2)}-\partial_{21}^{(3)} \circ \partial_{32}\right)(x)$
$=0$
So, $\left(\sigma_{2} \circ \sigma_{3}\right)(x)=0$.
And

$$
\begin{aligned}
& \left(\sigma_{1} \circ \sigma_{2}\right)\left(x_{1}, x_{2}\right)=\sigma_{1}\left(f_{2}\left(x_{1}\right)-z\left(x_{2}\right), g_{1}\left(x_{2}\right)-h_{2}\left(x_{1}\right)\right) \\
& =\sigma_{1}\left(\frac{1}{3} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{2} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}\right)\left(x_{1}\right)-\partial_{32}^{(3)}\left(x_{2}\right),\left(\frac{1}{3} \partial_{32} \circ \partial_{21}-\partial_{31}\right)\left(x_{2}\right)- \\
& \left.\partial_{21}^{(3)}\left(x_{1}\right)\right) \\
& \left.=\partial_{21} \circ\left(\frac{1}{3} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{2} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}\right)\left(x_{1}\right)-\partial_{32}^{(3)}\left(x_{2}\right)\right)+\partial_{32}^{(2)} \circ \\
& \quad\left(\left(\frac{1}{3} \partial_{32} \circ \partial_{21}-\partial_{31}\left(x_{2}\right)-\partial_{21}^{(3)}\left(x_{1}\right)\right)\right. \\
& =\left(\partial_{21}^{(3)} \circ \partial_{32}^{(2)}+\partial_{21}^{(2)} \circ \partial_{32} \circ \partial_{31}+\partial_{21} \circ \partial_{31}^{(2)} \circ \circ \partial_{32}^{(2)} \circ \partial_{21}^{(3)}\right)\left(x_{1}\right)+ \\
& \left(\partial_{32}^{(3)} \circ \partial_{21}-\partial_{32}^{(2)} \circ \partial_{31}-\partial_{21} \circ \partial_{32}^{(3)}\right)\left(x_{2}\right) \\
& =\left(\partial_{21}^{(3)} \circ \partial_{32}^{(2)}+\partial_{21}^{(2)} \circ \partial_{32} \circ \partial_{31}+\partial_{21} \circ \partial_{31}^{(2)}-\partial_{21}^{(3)} \circ \partial_{32}^{(2)}-\partial_{21}^{(2)} \circ \partial_{32} \circ \partial_{31}-\partial_{21} \circ\right. \\
& \left.\partial_{31}^{(2)}\right)\left(x_{1}\right) \\
& +\left(\partial_{21} \circ \partial_{32}^{(3)}+\partial_{32}^{(2)} \circ \partial_{31}-\partial_{32}^{(2)} \circ \partial_{31}-\partial_{21} \circ \partial_{32}^{(3)}\right)\left(x_{2}\right)=0 \quad .
\end{aligned}
$$

3. Complex of characteristic zero for the skew-shape $(\mathbf{8 , 6 , 3}) /(\mathbf{2 , 1})$

3.1 The terms

The authors in a previous work [7] gave the terms in the general case (p, q, r, t_{1}, t_{2}), as follows

```
\(\left.0 \rightarrow\langle(p+|t|+2)|\left(q-t_{1}-1\right)\right) \mid\left(r-t_{2}-1\right\rangle \rightarrow\)
\[
\begin{gathered}
\left\langle\left(p+t_{1}+1\right)\right|\left(q-t_{1}-1\right)|(r)\rangle \\
\langle(p)|\left(q+t_{2}+1\right)\left|\left(r-t_{2}-1\right)\right\rangle
\end{gathered} \rightarrow
\]
\(\langle(p)|(q) \mid(r\rangle\)
```

Where $|t|=t_{1}+t_{2}$.
In our case, i.e ($6,5,3 ; 1,1$), the complex of characteristic zero has the terms as follow:

$$
0 \rightarrow D_{10} F \otimes D_{3} F \otimes D_{1} F \rightarrow \underset{D_{6} F \otimes D_{7} F \otimes D_{1} F}{\substack{D_{8} F \otimes D_{3} F \otimes D_{3} F \\ \oplus} D_{6} F \otimes D_{5} F \otimes D_{3} F, ~ . ~ . ~}
$$

3.2 Complex of characteristic zero as a diagram

Consider the following diagram

Where
$k_{1}(v): D_{10} F \otimes D_{3} F \otimes D_{1} F \rightarrow D_{6} F \otimes D_{7} F \otimes D_{1} F$, such that

$$
k_{1}(v)=\partial_{21}^{(4)}(v) \quad ; v \in D_{10} F \otimes D_{3} F \otimes D_{1} F
$$

$k_{2}(v): D_{8} F \otimes D_{3} F \otimes D_{3} F \rightarrow D_{6} F \otimes D_{5} F \otimes D_{3} F$, such that

$$
\begin{gathered}
k(v)=\partial_{21}^{(2)}(v) ; v \in D_{8} F \otimes D_{3} F \otimes D_{3} F \\
u_{2}(v): D_{6} F \otimes D_{7} F \otimes D_{1} \rightarrow D_{6} F \otimes D_{5} F \otimes D_{3} F \\
u_{2}(v)=\partial_{32}^{(2)}(v) ; v \in D_{6} F \otimes D_{7} F \otimes D_{1} F
\end{gathered}
$$

Now we define $u_{1}(v): D_{10} F \otimes D_{3} F \otimes D_{1} F \rightarrow D_{8} F \otimes D_{3} F \otimes D_{3} F$ by

$$
u_{1}(v)=\frac{1}{6} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{3} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}
$$

Proposition (3.1): The diagram N is commutative.
Proof: $\left(u_{2} \circ k_{1}\right)(v)=\partial_{32}^{(2)} \circ \partial_{21}^{(4)}(v)$
By using (1.1)
$=\partial_{21}^{(4)} \circ \partial_{32}^{(2)}+\partial_{21}^{(3)} \circ \partial_{32} \circ \partial_{31}+\partial_{21}^{(2)} \circ \partial_{31}^{(2)}$
We have

$$
\begin{aligned}
k_{2} \circ u_{1}(v) & =\partial_{21}^{(2)} \circ\left(\frac{1}{6} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{3} \partial_{21} \circ \partial_{32} \circ \circ \partial_{31}+\partial_{31}(2)\right. \\
& =\partial_{21}^{(4)} \circ \partial_{32}^{(2)}+\partial_{21}^{(3)} \circ \partial_{32} \circ \partial_{31}+\partial_{21}^{(2)} \circ \partial_{31}^{(2)}
\end{aligned}
$$

which implies that $k_{2} \circ u_{1}(v)=u_{2} \circ k_{1}(v)$, which means that the diagram N is commutative.
Eventually, we define the maps φ_{1} and φ_{2}, as follows:

$$
\begin{aligned}
& \varphi_{2}\left(x_{1}\right)=\left(-u_{1}\left(x_{1}\right), k_{1}\left(x_{1}\right)\right) ; \forall x_{1} \in D_{10} F \otimes D_{3} F \otimes D_{1} F \\
& \varphi_{1}\left(\left(x_{1}, x_{2}\right)\right)=\left(k_{2}\left(x_{1}\right)+u_{2}\left(x_{2}\right)\right) ; \forall x_{1} \in D_{8} F \otimes D_{3} F \otimes D_{3} F, x_{2} \in D_{6} F \otimes D_{7} F \otimes D_{1} F
\end{aligned}
$$

Proposition (3.2):
is complex.

Proof: As previously shown [9], place polarizations $\partial_{21} \partial_{32}$, and ∂_{31} as injectives, which implies that φ_{2} is injective

$$
\begin{aligned}
& \varphi_{1} \circ \varphi_{2}\left(x_{1}\right)=\varphi_{1}\left(-\left(\frac{1}{6} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{3} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}\right)\left(x_{1}\right), \partial_{21}^{(4)}\left(x_{1}\right)\right) \\
= & \left.\left(\partial_{21}^{(2)}\left(x_{1}\right)+\partial_{32}^{(2)}\left(x_{1}\right)\right) \circ\left(\frac{1}{6} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{3} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}\right)\left(x_{1}\right), \partial_{21}^{(4)}\left(x_{1}\right)\right) \\
= & \partial_{21}^{(2)} \circ\left(\frac{1}{6} \partial_{21}^{(2)} \circ \partial_{32}^{(2)}+\frac{1}{3} \partial_{21} \circ \partial_{32} \circ \partial_{31}+\partial_{31}^{(2)}\right)\left(x_{1}\right)+\partial_{32}^{(2)} \circ \partial_{21}^{(4)}\left(x_{1}\right) \\
= & -\partial_{21}^{(4)} \circ \partial_{32}^{(2)}-\partial_{21}^{(3)} \circ \partial_{32} \circ \partial_{31}-\partial_{21}^{(2)} \circ \partial_{31}^{(2)}+\partial_{21}^{(4)} \circ \partial_{32}^{(2)}+\partial_{21}^{(3)} \circ \partial_{32} \circ \partial_{31}+\partial_{21}^{(2)} \circ \partial_{31}^{(2)}=0
\end{aligned}
$$

Acknowledgments

The authors thank Mustansiriyah University / College of Science / Department of Mathematics for supporting this work.

References

1. David A.B. 1986. A characteristic-free realizations of the Giambelli and Jacoby-Trudi determinatal identities, proc. of K.I.T. workshop on Algebra and Topology, Springer-Verlag.
2. Haytham R.H. 2006. Application of the characteristic-free resolution of Weyl Module to the Lascoux resolution in the case $(3,3,3), \mathrm{Ph}$. D. thesis, Universita di Roma "Tor Vergata".
3. Haytham R.H. 2012. The Reduction of Resolution of Weyl Module From Characteristic-Free Resolution in Case (4,4,3), Ibn Al-Haitham Journal for Pure and Applied Science, 25(3): 341355.
4. Haytham, R.H. and Niran S.J. 2018. A Complex of Characteristic Zero in the Case of the Partition (8,7,3). Science International (Lahore), 30(4): 639-641.
5. Haytham, R.H. and Niran S.J. 2019. Characteristic Zero Resolution of Weyl Module in the Case of the Partition (8,7,3), IOP Conf. Series: Materials Science and Engineering, 571: 1-10, doi:10.1088/1757-899X/571/1/012039.
6. Niran S.J. 2019. Application of the characteristic-free resolution of Weyl module to the Lascoux resolution in the case of partition $(8,7,3)$, $\mathrm{Ph} . \mathrm{D}$. thesis, College of Science, Mustansiriyah University, 2019.
7. David A.B and Mari A. 2010. Resolution of Three-Rowed Skew-and Almost Shew-Shapes in Characteristic Zero, European Journal of Combinatorics, 31: 325-335.
8. David A.B. and Rota G.C. 2001. Approaches to Resolution of Weyl Modules, Adv. in applied Math., 27: 82-191.
9. Giandomenico B. and David A. B. 2006. Threading Homology through Algebra: Selected Patterns, Clarendon Press, Oxford.

[^0]: *Email: sh_8079@uomustansiriyah.edu.iq

