Ali and Hussein

Response of the second second

Iraqi Journal of Science, 2020, Vol. 61, No. 11, pp: 3053-3058 DOI: 10.24996/ijs.2020.61.11.26

ISSN: 0067-2904

Some Properties of Fuzzy Anti-Inner Product Spaces

Radhi I. M. Ali, Esraa A. Hussein*

Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq

Received: 19/11/2019

Accepted: 28/12/2019

Abstract:

In this paper, the definition of fuzzy anti-inner product in a linear space is introduced. Some results of fuzzy anti-inner product spaces are given, such as the relation between fuzzy inner product space and fuzzy anti-inner product. The notion of minimizing vector is introduced in fuzzy anti-inner product settings.

Keywords: fuzzy anti-inner product, fuzzy anti-norm, fuzzy inner product.

بعض خصائص الفضاءات ضد الجداء الداخلى الضبابية

راضى ابراهيم، اسراء علاء *

قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق

I. Introduction

Kohli and Kumar, in 1993 [1], introduced the definition of the fuzzy inner product space and fuzzy co-inner product space. In 1997, Alsina et al [2] introduced the ideal of probabilistic inner product space. After that, in 2010, Hasankhain *et al.* [3] introduced some properties of fuzzy Hilbert spaces and norm of operators. In 2013, the fuzzy real inner product space and its properties were proved by Mukherjee and Bag [4]. Finally, a note on fuzzy Hilbert spaces was introduced by Daraby *et al.* in 2016 [5].

II. Preliminaries

This section consists of some definitions and results that will be needed later in this paper.

Definition (2.1) [6]

Assume that V is a linear space over the field C of complex numbers. A mapping $M^*: V^2 \ge C \to I$ satisfies the following conditions for all x, y, z in V and t, s in C:

(FIP1) $M^*(x + y, z, |t| + |s|) \ge \min\{M^*(x, z, |t|), M^*(y, z, |s|)\}$

(FIP2) $M^*(x, y, |ts|) \ge \min\{M^*(x, x, |t|^2), M^*(y, y, |s|^2)\}$

(FIP3)
$$M^*(x, y, t) = M^*(y, x, \overline{t})$$

(FIP4)
$$M^*(\alpha x, y, t) = M^*\left(x, y, \frac{t}{\alpha}\right), 0 \neq \alpha \in C$$

(FIP5) for all $t \in C \setminus R^+, M^*(x, x, t) = 0$

(FIP6) $\forall t > 0, M^*(x, x, t) = 1$ if and only if $x = \underline{0}$

(FIP7) $M^*(x, x, .): R \to I$ is a monotonic non-decreasing function of R and $\lim_{t\to\infty} M^*(x, x, t) = 1$, where M^* is called a fuzzy inner product function on V and (V, M^*) is called a fuzzy inner product space.

Definition (2.2) [7]

Let V be a linear space over a field F. A fuzzy set $\mathcal{N}: V \ge R \longrightarrow I$ such that the following holds for all u, v in V and c in F:

 $(\mathcal{N}1)$ for all $t \in R$ with $t \leq 0$, $\mathcal{N}(u, t) = 1$;

 $(\mathcal{N}2)$ for all $t \in R$ with t > 0, $\mathcal{N}(u, t) = 0$ if and only if $u = \underline{0}$;

 $(\mathcal{N}3)$ for all $t \in R$ with t > 0, $\mathcal{N}(cu, t) = \mathcal{N}(u, \frac{t}{|c|})$ if $0 \neq c \in F$;

 $(\mathcal{N}4)$ for all $s, t \in R$, $\mathcal{N}(u + v, s + t) \leq \max \{ \mathcal{N}(u, s), \mathcal{N}(v, t) \}$;

 $(\mathcal{N}5) \mathcal{N}(u, t)$ is a decreasing function of $t \in R$ and $\lim_{t\to\infty} \mathcal{N}(u, t) = 0$,

where \mathcal{N} is said to be a fuzzy anti-norm on V and (V, \mathcal{N}) is called a fuzzy anti-normed linear space.

Later on, the following condition of fuzzy norm \mathcal{N} will be required:

 $(\mathcal{N}6)$ for all $t \in R$ with t > 0, $\mathcal{N}(u, t) < 1$ implies $u = \underline{0}$.

Definition (2.3) [7]

Le \mathcal{N} be a fuzzy anti-norm on V satisfying (\mathcal{N} 6). Define

 $||u||_{\alpha}^{*} = \inf \{ t > 0 : \mathcal{N}(u, t) < \alpha, \alpha \in (0, 1] \}.$

Theorem (2.4) [7]

Let (V, \mathcal{N}) be a fuzzy anti-normed linear space. Then $\{\|u\|_{\alpha}^*: \alpha \in (0,1]\}$ is a decreasing family of norms on V.

III. Fuzzy anti-inner product space

The definition of fuzzy anti-inner product space on a complex linear space is introduced and some of its results are investigated.

Definition (3.1) [8]

Assume that V is a linear space over the filed C of complex numbers. Define

 $M^\circ: V^2 \ge C \to I$ to be a mapping such that the following holds for all x, y in V and t, s in C:

Fa-IP1) $M^{\circ}(x + y, z, |t| + |s|) \le \max\{M^{\circ}(x, z, |t|), M^{\circ}(y, z, |s|)\}$

Fa-IP2) $M^{\circ}(x, y, |ts|) \le \max \{ M^{\circ}(x, x, |t|^2), M^{\circ}(y, y, |s|^2) \} ($

Fa-IP3) $M^{\circ}(x, y, t) \leq M^{\circ}(y, x, \overline{t})$ (

Fa-IP4)
$$M^{\circ}(\alpha x, y, t) \leq M^{\circ}\left(x, y, \frac{t}{|\alpha|}\right), 0 \neq \alpha \in C$$
 (

Fa-IP5) $M^{\circ}(x, x, t) = 1 \quad \forall t \in C \setminus R^+$ (

Fa-IP6) $\forall t > 0$, $M^{\circ}(x, x, t) = \underline{0}$ if and only if $x = \underline{0}$ (

(Fa-IP7) $M^{\circ}(x, x, .): R \to I$ is a monotonic non-increasing function of R

and $\lim_{t\to\infty} M^{\circ}(x, x, t) = 0$.

Where M° is called a fuzzy anti-inner product function on V and (V, M°) is called a fuzzy anti-inner product space.

Example (3.2)

Assume that (V, <, >) is an inner product space over C. A function $M^\circ: V^2 \ge C \rightarrow I$ is defined by

(1	if $t \leq \langle x, y \rangle $
$M^{\circ}(x,y,t) = \begin{cases} 1\\ 0 \\ 1 \end{cases}$	if $t > < x, y > $
(1	$\forall t \in C \setminus R$

Then M° is a fuzzy anti- inner product space on V.

Proof:

(Fa-IP1) Consider the following cases: Case (i) if one of $|t| \le |\langle x, z \rangle|$, $|s| \le |\langle y, z \rangle|$ holds, then $\max\{M^{\circ}(x, z, |t|), M^{\circ}(y, z, |s|)\} = 1$ and obviously $M^{\circ}(x + y, z, |t| + |s|) = 0 \le \max\{M^{\circ}(x, z, |t|), M^{\circ}(y, z, |s|)\}$ Case (ii) let $|t| > |\langle x, z \rangle|$ and $|s| > |\langle y, z \rangle|$ \Rightarrow |t| + |s| > | < x + v, z > | $\therefore M^{\circ}(x + y, z, |t| + |s|) = 0 \le \max\{M^{\circ}(x, z, |t|), M^{\circ}(y, z, |s|)\}$ (Fa-IP2) We observe that $|s|^2 > |\langle x, x \rangle|$ and $|t|^2 > |\langle y, y \rangle|$ $\Rightarrow |s|^2 \cdot |t|^2 > |\langle x, x \rangle| \cdot |\langle y, y \rangle| = ||x||^2 \cdot ||y||^2$ |s|. |t| > ||x||. ||y|| \Rightarrow |st| > ||x|| . ||y||⇒ so (Fa-IP2) follows. Next (Fa-IP3) (Fa-IP5) and (Fa-IP7) hold obviously. (Fa-IP4) If $t \in (C \setminus R^+)$, then the result is obvious.

For $t \in \mathbb{R}^+$, $0 \neq \alpha \in C$, then the property follows from the fact that $|\langle \alpha x, y \rangle| = |\alpha||\langle x, y \rangle|$ (Fa-IP6) If $x = 0 \Rightarrow \langle x, x \rangle = 0 \Rightarrow \forall t > 0$, $|\langle x, x \rangle| > t$ $\Rightarrow M^{\circ}(x, x, t) = 0$ Conversely, if $\forall t > 0$, $M^{\circ}(x, x, t) = 0 \Rightarrow \forall t > 0$, $|\langle x, x \rangle| > t$ $\Rightarrow \langle x, x \rangle = 0 \Rightarrow x = 0.$ This completes the proof. **Proposition (3.3) [8]** Let (V, M°) be a fuzzy anti-inner product space. Then for x, y, z in V and s, t in C (i) $M^{\circ}(x, y + z, |t| + |s|) \leq M^{\circ}(x, y, |t|) \vee M^{\circ}(x, z, |s|)$ (ii) For $\alpha \in C$ and $\alpha \neq 0$, $M^{\circ}(\alpha x, y, t) = M^{\circ}(x, \alpha y, t)$ (iii) $\forall t \in R \text{ and } t > 0, M^{\circ}(0,0,t) \leq M^{\circ}(x,y,t)$ Note (3.4) [8] Assume that M° satisfies the condition: (Fa-IP8) $\forall t > 0$, $M^{\circ}(x, x, t^2) < 1 \Longrightarrow x = 0$ Let (V, M°) be a fuzzy anti-inner product space, satisfying (Fa-IP8). Then $\forall \alpha \in (0, 1)$, $||x||_{\alpha}^* = \Lambda \{t > 0 : M^{\circ}(x, x, t^2) \le 1 - \alpha\}$ is a crisp norm on V, called the α –anti norm on V generated from M° .

In the sequel we shall consider the following condition:

(Fa-IP9) $\forall x, y \text{ in } V \text{ and } p, q \text{ in } R$,

$$M^{\circ}(x + y, x + y, 2q^2) \lor M^{\circ}(x - y, x - y, 2p^2) \le M^{\circ}(x, x, p^2) \lor M^{\circ}(y, y, q^2)$$

Theorem (3.5) [8]

Let M° be a fuzzy anti-inner product on the V defined function \mathcal{N} , as follows:

 $\mathcal{N}(x,t) = M^{\circ}(x,x,t^2) \quad \forall t \in R \text{ and } t > 0$

= 1 $\forall t \in R \text{ and } t \leq 0$

Then \mathcal{N} is a fuzzy anti-norm on V.

From now on, if (Fa-IP8) and (Fa-IP9) hold for each $\alpha \in (0,1)$, then

 $||x||_{\alpha}^* = \bigwedge \{t > 0 : M^{\circ}(x, x, t^2) \le 1 - \alpha \}$ is an ordinary anti-norm on V satisfying parallelogram law.

So, by using polarization identity, one can get an ordinary inner product, called the α -anti-inner product, as follows:

where

 $< x, y >_{\alpha}^{*} = X_{\alpha}^{*} + i Y_{\alpha}^{*}$ $X_{\alpha}^{*} = \frac{1}{4} (||x + y||_{\alpha}^{*2} - ||x - y||_{\alpha}^{*2})$ $Y_{\alpha}^{*} = \frac{1}{4} (||x + iy||_{\alpha}^{*2} - ||x - iy||_{\alpha}^{*2}), \text{ where } \alpha \in (0,1).$ and

Definition (3.6)

V is said to be anti-level complete (AL-complete). If (V, M°) is a fuzzy anti-inner product space satisfying (Fa-IP8) for any $\in (0,1)$, then every Cauchy sequence converges in V w.r.t the α -antinorm $||x||_{\alpha}^{*}$ generated by the fuzzy anti-norm \mathcal{N} which is induced by fuzzy anti-inner product M° . Theorem (3.7) (Minimizing vector)

Let (V, M°) be a fuzzy anti-inner product space satisfying (Fa-IP8) and (Fa-IP9), let M ($\neq \emptyset$) be the convex subset of V which is anti-level complete, and let $x \in V$. Then for each $\alpha \in (0,1)$, \exists y_{α}^* in M such that

$$m_{y_{\alpha}^{*}}^{(\alpha)^{*}} = \inf_{y \in M} \{ m_{y}^{(\alpha)^{*}} \} \text{, where}$$
$$m_{y}^{(\alpha)^{*}} = \bigwedge \{ t \in \mathbb{R}^{+}, \mathcal{N}(x - y, t) \leq 1 - \alpha \}$$

 M° . \mathcal{N} is the fuzzy anti-norm induced by fuzzy anti-inner **Proof:**

We note that if (V, M°) is a fuzzy anti-inner product space, then for each $\alpha \in (0,1)$, $(V, \|.\|_{\alpha}^{*})$ is a crisp anti- normed linear space satisfying the parallelogram law. Again

$$m_{y}^{(\alpha)^{*}} = \|x - y\|_{\alpha}^{*}.$$

Hence the result follows from the corresponding crisp minimization vector theorem in $(V, \|.\|_{\alpha})$.

Theorem (3.8)

 M° is a fuzzy anti-inner product space on V if and only if $1 - M^{\circ}$ is a fuzzy inner product space on V.

Proof: For x, y, z in V and t, s in C (Fa-IP1) max{ $M^{\circ}(x, z, |t|), M^{\circ}(y, z, |s|)$ } $= 1 - \max \{ M^{\circ}(x, z, |t|), M^{\circ}(y, z, |s|) \}$ $= \min\{ M^*(x, z, |t|), M^*(y, z, |s|) \}$ $\leq M^*(x + y, z, |t| + |s|)$ $\geq 1 - M^*(x + y, z, |t| + |s|) = M^\circ(x + y, z, |t| + |s|)$ (Fa-IP2) max { $M^{\circ}(x, x, |s|^2)$, $M^{\circ}(y, y, |t|^2)$ } $= 1 - \max \{ M^{\circ}(x, x, |s|^2), M^{\circ}(y, y, |t|^2) \}$ $= \min \{ M^*(x, x, |s|^2), M^*(y, y, |t|^2) \}$ $\leq M^*(y, z, |st|)$ $\geq 1 - M^*(y, z, |st|) = M^{\circ}(y, z, |st|)$ (Fa-IP3) $M^{\circ}(x, y, t) = 1 - M^{*}(x, y, t)$ $= 1 - M^*(y, x, \overline{t}) = M^\circ(y, x, \overline{t})$ (Fa-IP4) $M^{\circ}(\alpha x, y, t) = 1 - M^{*}(\alpha x, y, t)$ for $0 \neq \alpha \in C$ $= 1 - M^*\left(x, y, \frac{t}{|\alpha|}\right) = M^{\circ}\left(x, y, \frac{t}{|\alpha|}\right)$ (Fa-IP5) $M^{\circ}(x, x, t) = 1 - M^{*}(x, x, t) = 1 - 0 = 1 \quad \forall t \in C \setminus R^{+}$ (Fa-IP6) $M^{\circ}(x, x, t) = 1 - M^{*}(x, x, t) \Leftrightarrow x = 0$ $= 1 - 1 \Leftrightarrow x = 0$ $= 0 \iff x = 0$ We have $M^*(x, x, .): R \to I$ is a monotonic non-decreasing function and (Fa-IP7) $\lim_{t\to\infty} M^*(x, x, t) = 1$ then $M^{\circ}(x, x, .): R \to I$ is a monotonic non-increasing function and $\lim_{x \to \infty} M^{\circ}(x, x, t) = 1 - \lim_{x \to \infty} M^{*}(x, x, t) = 1 - 1 = 0$ Hence (V, M°) is a fuzzy anti-inner product space. Theorem (3.9) Let (V, \mathcal{N}) be a fuzzy anti-normed linear space. Suppose that for x, y, z in V and t, s, r in C, $\max\{\mathcal{N}(x, |st|), \mathcal{N}(y, |st|)\} \le \max\{\mathcal{N}(x, |s|^2), \mathcal{N}(y, |t|^2)\}$ Define $M^{\circ}: V^2 \ge C \rightarrow I$ as $M^{\circ}(x, y, s + t) = 1$ if x = y and $s + t \in C \setminus R^+$ and elsewhere as $M^{\circ}(x, y, s + t) = \mathcal{N}(x, |s|) \land \mathcal{N}(y, |t|)$ Then M° is a fuzzy anti-inner product on V. Proof: For x, y, z in V and t, s in C, (Fa-IP1) $M^{\circ}(x + y, z, |s| + |t|) = M^{\circ}(x + y, z, |s| + |t| + 0)$ $= \mathcal{N}(x+y, |s|+|t|) \wedge \mathcal{N}(z, 0)$ $= \mathcal{N}(x+y, |s|+|t|)$ $\leq \max\{ \mathcal{N}(x, |s|), \mathcal{N}(y, |t|) \}$ $= \max\{ M^{\circ}(x, z, |s|), M^{\circ}(y, z, |t|) \}$ Fa-IP2) $M^{\circ}(x, y, |st|) = \mathcal{N}(x, |st|) \land \mathcal{N}(y, |st|)($ $= \max \{ \mathcal{N}(x, |st|), \mathcal{N}(y, |st|) \}$ $\leq \max \{ \mathcal{N}(x, |s|^2), \mathcal{N}(y, |t|^2) \}$ $= \max \{ M^{\circ}(x, x, |s|^{2}), M^{\circ}(y, y, |t|^{2}) \}$ (Fa-IP3) $M^{\circ}(x, y, t) = \mathcal{N}(x, |t|) = \mathcal{N}\left(x, \overline{|t|}\right)$ $= M^{\circ}(x, y, \overline{t}) = \mathcal{N}(y, \overline{|t|})$ $= M^{\circ}(y, x, \overline{t})$ (Fa-IP4) For $\alpha \neq 0$ $M^{\circ}(\alpha x, y, t) = \mathcal{N}(\alpha x, |t|) = \mathcal{N}\left(x, \frac{|t|}{|\alpha|}\right) = M^{\circ}\left(x, y, \frac{|t|}{|\alpha|}\right)$

(Fa-IP5) By definition $\forall t \in C \setminus R^+$, $M^\circ(x, y, t) = 1$ (Fa-IP6) $M^{\circ}(x, x, t) = 0$ $\forall t > 0$ $\Leftrightarrow \mathcal{N}(x, |t|) = 0$ $\forall t > 0$ $\Leftrightarrow x = 0$ Hence (V, M°) is a fuzzy anti-inner product space. **Theorem (3.10)** Let (V, M°) be a fuzzy anti-inner product space satisfying (Fa-IP8) and (Fa-IP9) and $\langle , \rangle_{\alpha}$ be α anti-inner product $\forall \alpha \in (0,1)$. Define a function $M^{\circ}: V^2 \ge C \rightarrow I$ as $M^{\circ}(x, y, s + t) = 1$ if x = y and $t \in C \setminus R^+$ and elsewhere as $M^{\circ}(x, y, t) = \bigwedge \{ \alpha \in (0, 1) \colon | <, >_{\alpha} | \ge |t| \}$ Then M° is a fuzzy anti-inner product on V if $|\langle , \rangle_{\alpha}|$ is a decreasing function of R. Proof: For x, y, z, in V and t, s, in C, (Fa-IP1) To prove that $M^{\circ}(x + y, z, |s| + |t|) \le \max \{ M^{\circ}(x, z, |s|), M^{\circ}(y, z, |t|) \}$ Let $p = M^{\circ}(x, z, |s|)$ and $q = M^{\circ}(y, z, |t|)$. Without loss of generality, assume that $p \le q$ and let $0 < r < p \le q$ Then $\exists 0 < \alpha < r$ such that $|\langle x, z \rangle_{\alpha} | > |s|$ and $\exists 0 < \beta < r$ such that $|\langle y, z \rangle_{\beta} | > |t|$ Let $0 < \gamma = \alpha \lor \beta < r$. Thus $|\langle x, z \rangle_{\gamma} | > |\langle x, z \rangle_{\alpha} | > |s|$ and $|\langle y, z \rangle_{\gamma}| > |\langle y, z \rangle_{\beta}| > |t|$ [Since $| < , >_{\alpha} |$ is a decreasing function] Now $|\langle x + y, z \rangle_{\gamma}| = |\langle x, z \rangle_{\gamma} + \langle y, z \rangle_{\gamma}|$ $\leq |\langle x, z \rangle_{v}| + |\langle y, z \rangle_{v}|$ > |s| + |t|Therefore $M^{\circ}(x + y, z, |s| + |t|) \le \gamma < r$, since r > 0, thus $M^{\circ}(x + y, z, |s| + |t|) \le \max\{M^{\circ}(x, z, |s|), M^{\circ}(y, z, |t|)\}$ (Fa-IP2) To prove that $M^{\circ}(x, y, |st|) \le \max \{ M^{\circ}(x, y, |s|^2), M^{\circ}(x, y, |t|^2) \}$ Let $p = M^{\circ}(x, y, |s|^2)$ and $q = M^{\circ}(x, y, |t|^2)$. Without loss of generality, assume that $p \le q$ and let $0 < r < p \le q$ Then $\exists 0 < \alpha < r$ such that $|\langle x, y \rangle_{\alpha} | > |s|^2$ and $\exists 0 < \beta < r$ such that $|\langle x, y \rangle_{\beta} | > |t|^2$ Let $0 < \gamma = \alpha \lor \beta < r$. Thus $|\langle x, y \rangle_{\gamma}| > |\langle x, y \rangle_{\alpha}| > |s|^{2}$ and $|\langle x, y \rangle_{\gamma} | \rangle |\langle x, y \rangle_{\beta} | \rangle |t|^{2}$ [Since $|<,>_{\alpha}|$ is decreasing function] Therefor $|\langle x, y \rangle_{\gamma}|^{2} > |s|^{2} . |t|^{2} \Rightarrow |\langle x, y \rangle_{\gamma}| > |st|$ therefore $M^{\circ}(x, y, |st|) \leq \gamma < r$, since r > 0 is arbitrary, thus $M^{\circ}(x, y, |st|) \le \max\{M^{\circ}(x, y, |s|^{2}), M^{\circ}(x, y, |t|^{2})\}\$ (Fa-IP3) For $t \in C$, $M^{\circ}(x, y, t) = M^{\circ}(x, y, \overline{t}) = 1$ if x = y and $\forall t \in C \setminus R^+$ Now let $t \in C$ and $x \neq y$, then $M^{\circ}(x, y, t) = \bigwedge \{ \alpha \in (0, 1) : | < x, y >_{\alpha} | \ge |t| \}$ $= \land \{ \alpha \in (0,1) : | < x, y >_{\alpha} | \ge |\overline{t}| \}$ $= M^{\circ}(x, y, \overline{t})$ (Fa-IP4) For $c \in C$,

$$M^{\circ}(cx, y, t) = \bigwedge \{ \alpha \in (0, 1) : | < cx, y >_{\alpha} | \ge |t| \}$$

$$= \wedge \{ \alpha \in (0,1): |c| | < x, y >_{\alpha} | \ge |t| \}$$

$$= \wedge \{ \alpha \in (0,1): |c| | < x, y >_{\alpha} | \ge \frac{|t|}{|c|} \}$$

$$= M^{\circ} \left(x, y, \frac{t}{|c|} \right)$$
(Fa-IP5) By definition $M^{\circ}(x, x, t) = 1 \quad \forall t \in C \setminus \mathbb{R}^{+}$
(Fa-IP6) $\forall t > 0, M^{\circ}(x, x, t) = 1 \quad \forall t \in C \setminus \mathbb{R}^{+}$
(Fa-IP6) $\forall t > 0, M^{\circ}(x, x, t) = 0$

$$\Leftrightarrow \wedge \{ \alpha \in (0,1): | < x, x >_{\alpha} | \ge |t| \} = 0$$

$$\Leftrightarrow < x, x >_{\alpha} = 0$$

$$\Leftrightarrow x = 0$$
(Fa-IP7) $\forall t > 0, M^{\circ}(x, x, t) = \wedge \{ \alpha \in (0,1): | < x, x >_{\alpha} | \ge |t| \}$

$$= \wedge \{ \alpha \in (0,1): ||x||_{\alpha}^{2} \ge |t| \}$$

$$= \wedge \{ \alpha \in (0,1): ||x||_{\alpha} \ge \sqrt{t} \}$$
Now $t_{1} < t_{2} \Rightarrow \sqrt{t_{1}} < \sqrt{t_{2}}$

$$\Rightarrow \{ \alpha \in (0,1): ||x||_{\alpha} \ge \sqrt{t_{1}} \} \subset \{ \alpha \in (0,1): ||x||_{\alpha} \ge \sqrt{t_{2}} \}$$

$$\Rightarrow \Lambda \{ \alpha \in (0,1): ||x||_{\alpha} \ge \sqrt{t_{1}} \} \le \Lambda \{ \alpha \in (0,1): ||x||_{\alpha} \ge \sqrt{t_{2}} \}$$

Therefore $M^{\circ}(x, x, .): R^+ \to I$ is decreasing and $\lim_{t\to\infty} M^{\circ}(x, x, t) = 0$. Thus M° is a fuzzy anti-inner product on *V*.

References

- 1. Kohli, J.K. and Rajesh K. 1993. On fuzzy inner product spaces & fuzzy co inner product spaces, *FSS*, 53(1993): 227-232.
- 2. Alsina, C., Schweizer, B., Sempi, C. and Sklar, A. 1997. On the definition of a probabilistic inner product space, *Rendiconti di Matematica, Serie* VII, 17(1997): 115-127.
- **3.** Hasankhani, A., Nazari, A. and Saheli, M. **2010**. Some properties of fuzzy Hilbert spaces and norm of operators, *Iranian Journal of Fuzzy Systems*, **7**(3): 129-157.
- 4. Mukherjee, S. and Bag, T. 2013. Fuzzy real inner product space and its properties, *Annals of Fuzzy Mathematics and Informatics*, 6(2): 377-389.
- 5. Daraby, B., Solimani, Z. and Rahimi, A. 2016. A note on fuzzy Hilbert spaces, *Journal of Intelligent and Fuzzy Systems*, 31: 313-319
- 6. Majumdar, P. and Samanta, S.K. 2008. On Fuzzy Inner Product Spaces, *The J.Fuzzy Math.*, 16 (2): 377-392.
- 7. Iqbal Jebril, H. and Samanta, T.K. 2010. Fuzzy Anti-Normed space, *Journal of Mathematics Technology*, February, 66-77.
- 8. Parijat S. 2019. Fuzzy Anti Inner Product Space, *International Journal of Applied Engineering Research*, 14(19): 3756-3762.