Iraqi Journal of Science, 2020, Special Issue, pp: 81-85 DOI: 10.24996/ijs.2020.SI.1.11

Essential T- Weak Supplemented Modules

Firas sh. Fandi^{*1}, Sahira M. Yaseen²

¹ Department of Mathematics, College of Education for Pure Sciences, University Of Anbar, Ramadi, Iraq ²Department Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 19/11/2019

Accepted: 15/ 3/2020

Abstract

An R-module M is called ET-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that $T\subseteq X+K$ if and only if $T\subseteq D+K$, for every essential submodule K of M and $T\leq M$. Also, let T, X and Y be submodules of a module M, then we say that Y is ET-weak supplemented of X in M if $T\subseteq X+Y$ and $(X\cap Y) \ll_{ET} M$. Also, we say that M is ET-weak supplemented module if each submodule of M has an ET-weak supplement in M. We give many characterizations of the ET-H-supplemented module and the ET-weak supplement. Also, we give the relation between the ET-H-supplemented and ET-lifting modules, along with the relationship between the ET weak -supplemented and ET-lifting modules.

Keywords: ET-small submodule, ET-lifting module, ET-H-supplemented, ET-weak – supplemented

المقاسات التكميلية الضعيفة الجوهرية من النمط -T-

فراس شاكر فندي¹*، ساهره محمود ياسين² ¹قسم الرياضيات، كلية التربية للعلوم الصرفه، جامعة الانبار، الانبار، العراق ²قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصه

1. Introduction

Let R be a commutative ring with identity and M be an arbitrary R-module. A submodule H of M is called small (H \ll M), if for all submodule B of M, B \leq M, such that H+ B = M implies that B= M [1]. A submodule H of M is essential (H \leq_e M) if for all B \leq M such that H \cap B= 0, then B= 0[2]. A submodule H of M is closed (H \leq_c M) if H has no proper essential extensions inside M. That is, if H $\leq_e K \leq_e M$ then H=K[3]. A submodule H of M is called an essential- small (H $\ll_e M$)(E-small) submodule of M, if for all essential submodule B of M such that M = N + B implies that B = M [4]. Let T be a submodule of M and A submodule M.

*Email: Frisshker1978@gmail.com

(denoted by $N \ll_T M$), in case for any submodule X of M, $T \subseteq N+X$ implies that $T \subseteq X$. In a previous publication [5], we defined ET-small submodule of M; Let $T \le M$ and A submodule H of M is "ETsmall submodule of M" ($H \ll_{ET} M$), if for all $K \leq_e M$ such that $T \subseteq H + K$, then $T \subseteq K$. Let T be a submodule of a module M. Recalled that M is called T-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that $T \subseteq X + K$ if and only if $T \subseteq D + K$, for every submodule K of M [6]. Let T, X and Y be submodules of a module M, we say that Y is Tweak supplemented of X in M if $T \subseteq X+Y$ and $X \cap Y \ll_T M$. We say that M is T-weak supplemented module if each submodule of M has a T-weak supplement in M [6]. In this work, we define the essential T-H-supplemented module (ET-H-supplemented module) and essential T- weak supplemented module. We also provide some properties of these types of modules.

2. ET-H-supplemented module

Definition 2.1: Let T be a submodule of a module M. We say that M is ET-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that $T \subseteq X + K$ if and only if $T \subseteq D + K$, for every essential submodule K of M.

Remarks and Examples 2.2

1) Let M be an R- module and T=M. Then a module M is ET-H-supplemented if and only if M is an e-H-supplemented module.

2) Let M be an R-module and T=0. Then a module M is ET-H-supplemented.

3) Consider Z_4 as Z-module and T={ $\overline{0},\overline{2}$ }, then Z_4 is ET-H-supplemented module. To prove that, let $X = \{\overline{0}, \overline{2}\}$. Take $D = Z_4$. It is clear that $\{\overline{0}, \overline{2}\} \subseteq X + K$, where $K \leq_e M$ if and only if $\{\overline{0}, \overline{2}\} \subseteq D + K$. Thus Z₄ is ET-H-supplemented module.

Proposition 2.3: Let T be a submodule of a module M. Then the following statements are equivalent: **1.** M is ET-H-supplemented module.

2. For each submodule X of M, there exists a direct summand D of M such that for each essential submodule A of M with $T \subseteq X+D+A$, then $T \subseteq X+A$ and $T \subseteq D+A$.

3. For each closed submodule X of M, there exists $D \leq_{\oplus} M$ such that $\frac{X+D}{X} \ll_{E(\frac{T+X}{Y})} \frac{M}{X}$ and $\frac{X+D}{D}$

$$\ll_{E(\frac{T+D}{D})} \frac{M}{D}$$
.

Proof: $1 \Rightarrow 2$

Let M be an ET-H-supplemented module and X be a submodule of M. Then there exists $D \leq_{\bigoplus} M$, which satisfies statement (1). Now, let A be an essential submodule of M such that $T \subseteq X + D + A$. By statement (1), $T \subseteq X + (X + A) = X + A$ and $T \subseteq D + (D + A) = D + A$.

2⇒1 Let X be a submodule of M. Then there exists $D \leq_{\oplus} M$, which satisfies statement

(2). Let K be a submodule of M such that $T \subseteq X+K$. Then $T \subseteq X+D+K$. By (2), $T \subseteq D+K$.

Now, let H be essential submodule of M such that $T \subseteq D+H$. Then $T \subseteq X+D+H$. By (2), $T \subseteq X+H$. Thus M is ET-H-supplemented module.

2 \Rightarrow 3 Let X be a submodule of M. Then there exists $D \leq_{\bigoplus} M$, which satisfies (2). To show that $\frac{X+D}{X} \ll_{E(\frac{T+X}{X})} \frac{M}{X}$, let $\frac{A}{X} \leq_{e} \frac{M}{X}$, where X $\leq A \leq M$ such that $\frac{T+X}{X} \subseteq \frac{X+D}{X} + \frac{A}{X} = \frac{X+D+A}{X}$. Then $\frac{X+D}{X} \ll_{E(\frac{T+X}{X})} \frac{X}{X}, \text{ let } \frac{X}{X} \geq_{e_{X}} \text{, where } m = 1.$ $T \subseteq T + X \subseteq X + D + A \text{ .By (2), } T \subseteq X + A = A \text{ . Thus, } \frac{T+X}{X} \subseteq \frac{A}{X} \text{ . By the same } \text{way, } \frac{X+D}{D} \ll_{E(\frac{T+D}{D})} \frac{M}{D}.$ $M \text{ such that } \frac{X+D}{Y} \ll_{E(\frac{T+X}{Y})} \frac{M}{X}$

and
$$\frac{X+D}{D} \ll_{E(\frac{T+D}{D})} \frac{M}{D}$$
. Let A be an essential submodule of M such that $T \subseteq X+D+A$. Now $\frac{T+X}{X} \subseteq \frac{X+D+A}{X}$
= $\frac{X+D}{X} + \frac{A+X}{X}$. Since $\frac{X+D}{X} \ll_{E(\frac{T+X}{Y})} \frac{M}{X}$, then $\frac{T+X}{X} \subseteq \frac{A+X}{X}$ and hence $T \subseteq X+A$. By the same way, $T \subseteq D+A$.

Recall that M is said to be an ET-lifting module if for all sub-module H of M, there exists a direct summand K of M and $L \ll_{ET} M$ such that H=K+L, where $T \leq M$ [7].

Proposition 2.4: Let T be a submodule of M .Consider the following statements:

1. M is ET-lifting module.

2. For each submodule X of M, there exists a decomposition $M = D \bigoplus D$, such that $D \subseteq X$ and **a.** $\frac{X}{D} \ll_{E(\frac{T+D}{D})} \frac{M}{D}$ and

b. whenever T+D \subseteq L+D, for some L \leq M, then T \subseteq L.

Then $1 \Rightarrow 2(a)$ and $2 \Rightarrow 1$

Proof: $1 \Rightarrow 2(a)$

Suppose that M is ET-lifting module. Let X be submodule of M, then X=D+H, where $D \leq_{\bigoplus} M$ and $H \ll_T M$. Let $M = D \bigoplus D^{\sim}$. To show that $\frac{X}{D} \ll_{E(\frac{T+D}{D})} \frac{M}{D}$, let $\frac{K}{D} \leq_{e} \frac{M}{D}$ such that $\frac{T+D}{D} \subseteq \frac{X}{D} + \frac{K}{D}$. Then T⊆T+D⊆X+K and hence T⊆D+H+K. Since H≪_{ET}M, then T⊆D+K .Therefore, $\frac{T+D}{D} \subseteq \frac{K}{D}$. Thus, $\frac{X}{D}$ $\ll_{E(\frac{T+D}{D})} \frac{M}{D}$.

2⇒1 Let X be a submodule of M, then there exists a decomposition $M = D \oplus D^{s}$ such that $D \subseteq X$ and $D \subseteq_{ET.ce} X$ in M. Now, to show that $(X \cap D^{`}) \ll_{ET} M$, let $K \leq_{e} M$ such that $T \subseteq (X \cap D^{`}) + K$. Then $\frac{T+D}{D} \subseteq K$ $\frac{(X\cap D')+D}{D} + \frac{K+D}{D}$. By 2.(a), then $\frac{T+D}{D} \subseteq \frac{K+D}{D}$ and hence T+D \subseteq K+D. By 2.(b), then T \subseteq K. Thus M is ET-lifting module, as previously publishe

Lemma 2.5: Let M be a ET-H-supplemented module such that for every direct summand D of M and $A \leq_c M$, $\frac{D+A}{A}$ is direct summand of $\frac{M}{A}$. Then $\frac{M}{A}$ is $E(\frac{T+A}{A})$ -H-supplemented module.

Proof: A summation A and A and A by A and A by A performented module. Proof: Assume that M is ET-H-supplemented module. Let $\frac{X}{A}$ be a submodule of $\frac{M}{A}$, then there exists a direct summand $D \leq_{\bigoplus} M$ such that $T \subseteq X + K$ if and only if $T \subseteq D + K$, for every K submodule of M. By our assumption, $\frac{D+A}{A} \leq_{\bigoplus} \frac{M}{A}$ since $A \leq_c M$, then $\frac{K}{A}$ be an essential submodule of $\frac{M}{A}$ such that $\frac{T+A}{A} \subseteq \frac{X}{A} + \frac{K}{A} = \frac{X+K}{A}$, then $T \subseteq T + A \subseteq X + K$. Since M is ET-H-supplemented, then $T \subseteq D + K$. So $\frac{T+A}{A} \subseteq \frac{D+K}{A} = \frac{D+A}{A} + \frac{K}{A}$. By the same way, we can show that $\frac{T+A}{A} \subseteq \frac{D+A}{A} + \frac{K}{A}$ implies that $\frac{T+A}{A} \subseteq \frac{X}{A} + \frac{K}{A}$, for every submodule $\frac{K}{A}$ of $\frac{M}{A}$. Thus, $\frac{M}{A}$ is $E(\frac{T+A}{A})$ -H-supplemented module. **Corollary 2.6:** Let A be a closed submodule of a distributive module M. If M be a ET-H-supplemented module. **Proof:** Assume that M is ET-H-supplemented module.

Proof: Assume that M is ET-H-supplemented module. Let A be a closed submodule of M and D be a direct summand of M. Then M=D \oplus D^{*} and hence $\frac{M}{A} = \frac{D+A}{A} + \frac{D^*+A}{A}$. Since M is a distributive module, then A=A+(D∩D^{*})=(A+D)∩(A+D^{*})= $\frac{D+A}{A} \cap \frac{D^*+A}{A} = \frac{A}{A} = A$. Therefore, $\frac{M}{A} = \frac{D+A}{A} \oplus \frac{D^*+A}{A}$. Thus, $\frac{M}{A}$ is E($\frac{T+A}{4}$)-H-supplemented module, by Lemma (2.5).

Proposition 2.7: Let M be a finitely generated, faithful and multiplication R-module .Then M is ET-H-supplemented module if and only if R is E[T:M]-H-supplemented.

Proof: Assume that M is ET-H-supplemented module. Let I be an ideal of R . Since M is ET-Hsupplemented module, then there exists $D \leq_{\bigoplus} M$ such that $T \subseteq IM + N$ if and only if $T \subseteq D + N$, for every an essential submodule N of M. Since M is a multiplication module, then there exists ideals S, J and K of R such that T=SM, D=JM and N=KM . Hence, SM⊆IM+KM=(I+K)M if and only if $SM\subseteq JM+KM=(J+K)M$. But M is finitely generated, faithful and multiplication module, therefore M is a cancellation module, as previously published [8]. Thus S⊆I+K if and only if S⊆J+K, for every ideal K of R. We claim that $J \leq_{\oplus} R$. To show that, let $M = D \oplus D^{*}$ and $D^{*} = J^{*}M$, for some ideal J^{*} of R. Hence, $RM=M=JM\oplus J^{T}M=(J+J^{T})M$. But M is a cancellation module, therefore $R=J+J^{T}$.

To show that $J \cap J = 0$; Since M is a finitely generated, faithful multiplication module, then $0=JM\cap J^M=(J\cap J^)M$ and hence $J\cap J^=0$. Thus $J\leq_{\oplus}R$. Thus R is E[T:M]-H-supplemented.

Conversely, assume that R is E[T:M]-H-supplemented and let X be a submodule of M .Since M is a multiplication module, then there exists an ideal I of R such that X=IM. Then there exists $J \leq_{\oplus} R$ such that $S \subseteq I+K$ if and only if $S \subseteq J+K$, for every ideal K of R. Hence, $SM \subseteq (I+K)M = IM+KM$ if and only if $SM\subseteq(J+K)M=JM+KM$, for every submodule KM of M. We claim that $JM \leq_{\bigoplus} M$. To show that, let $R=J\bigoplus J^{}$, for some ideal J^{$^}$ of R and hence $M=RM=(J+J^{})M=JM+J^{}M$. Since M is a finitely</sup> generated, faithful and multiplication module, then $JM \cap J^M = (J \cap J^M) = 0$. Thus, $JM \leq_{\bigoplus} M$. Thus, M is E[T:M]-H-supplemented module.

3.ET-weak supplemented modules

Definition 3.1: Let T, X and Y be submodules of a module M. We say that Y is ET-weak supplemented of X in M if $T \subseteq X+Y$ and $X \cap Y \ll_{ET} M$.

We say that M is ET-weak supplemented module if each submodule of M has an ET-weak supplement in M.

Remarks and Examples 3.2

1. Consider Z_6 as Z-module and let $T = \{\overline{0},\overline{3}\}, X = \{\overline{0},\overline{2},\overline{4}\}$ and $Y = \{\overline{0},\overline{3}\}$. It is clear that $T \subseteq X+Y$ and $X \cap Y = 0 \ll_{ET} Z_6$. Thus, Y is ET-weak supplement of X in Z_6 . One can easily show that Z_6 is ET-weak supplemented module.

2. Consider Z as Z-module and let T=2Z. For each integer n>0, $2Z\subseteq nZ+(n+2)Z$. But $2Z\nsubseteq(n+2)Z$. So 0 is the only ET-small submodule of Z. One can easily show that Z is not ET-weak supplemented module.

Now let T = 0, X = 2Z and Y = 3Z, then $T \subseteq 2Z+3Z$ and $2Z \cap 3Z=6Z \ll_{ET} Z$, by [5]. Therefore, Y is ETweak supplement of X in Z. But Y is not weak supplement of X in M, where 0 is the only small submodule of Z.

3. A module M is EM-weak supplemented module if and only if M is an E-weak supplemented module.

4. Every module M is E(0)-weak supplemented module.

5. If M is a uniform module, then M is EM-weak supplemented module if and only if M is a T-weak supplemented module.

Proposition 3.3: Let T, X and Y be submodules of a module M such that Y is ET-weak supplement of X in M. If $T \subseteq K+Y$, for some submodule K of X, then Y is an ET-weak supplement of K in M.

Proof: Assume that Y is ET-weak supplement of X in M and let K be submodule of X such that $T \subseteq K+Y$. Since $K \cap Y \subseteq X \cap Y \ll_{ET} M$, then $K \cap Y \ll_{ET} M$, by [5]. Thus, Y is ET-weak supplement of K in M.

Proposition 3.4: Let T, X and Y be submodules of a module M such that Y is ET-weak supplement of X in M. If T is finitely generated, then Y is containing a finitely generated ET-weak supplement of X in M.

Proof: Let $T=Rt_1+Rt_2+...+Rt_n$, for some $t_i \in T$, $\forall i=1,...,n$. Since $T\subseteq X+Y$, then for each $l \leq i \leq n$ we have $t_i = a_i + b_i$, where $a_i \in X$ and $b_i \in Y$. Now, let $Y = Rb_1 + Rb_2 + ... + Rb_n$. It is clear that $Y \subseteq Y$. We claim that $T \subseteq X + Y^{\}$. To show that , let $t \in T$ then $t = r_1 t_1 + r_2 t_2 + ... + r_n t_n \subseteq$ $r_1a_1+r_2a_2+\ldots+r_na_n+r_1b_1+r_2b_2+\ldots+r_nb_n$, for some $r_1,r_2,\ldots,r_n\in\mathbb{R}$. So $t\in X+Y^*$. Since $X\cap Y^*\subseteq X\cap Y$ and $X \cap Y \ll_{ET} M$, then by [5], $X \cap Y^{\sim} \ll_{ET} M$. Thus Y^{\sim} is ET-weak supplement of X in M.

Proposition 3.5: Let T, X and Y be submodules of a module M such that Y is ET-weak supplement of X in M. If $L \subseteq Y$ and $L \ll_{ET} M$, then Y is a ET-weak supplement of X+L.

Proof: Let Y be a ET-weak supplement of X in M, $L \subseteq Y$ and $L \ll_{ET} M$. Then $T \subseteq X + Y \subseteq X + Y + L$ and $(X \cap Y) \ll_{ET} M$. To show that $Y \cap (X+L) \ll_{ET} M$, let K be an essential submodule of M such that $T \subseteq (Y \cap (X+L)) + K$. By the modular Law $T \subseteq (X \cap Y) + L + K$, since $K \ll_e M$, then $(L+K) \leq_e M$ [2], since $(X \cap Y) \ll_{ET} M$ therefore $T \subseteq L+K$. But $L \ll_{ET} M$, therefore $T \subseteq K$. Thus Y is an ET-weak supplement of X+L.

Proposition 3.6: Let T, X, Y and L be submodules of a module M such that Y is ET-weak supplement of X in M and $L \subseteq X$. Then $\frac{Y+L}{L}$ is $E(\frac{T+L}{L})$ -weak supplement of $\frac{X}{L}$ in $\frac{M}{L}$. **Proof:** Since $T \subseteq X+Y$, then $\frac{T+L}{L} \subseteq \frac{X}{L} + \frac{Y+L}{L}$. To show that $(\frac{X}{L} \cap \frac{Y+L}{L}) \ll_{E(\frac{T+L}{L})} \frac{M}{L}$, let $\frac{K}{L}$ be an essential submodule of $\frac{M}{L}$ such that $\frac{T+L}{L} \subseteq (\frac{X}{L} \cap \frac{Y+L}{L}) + \frac{K}{L} \subseteq \frac{X \cap (Y+L)}{L} + \frac{K}{L}$. By the modular Law $\frac{T+L}{L} \subseteq \frac{X \cap (Y+L)}{L} = \frac{K}{L}$

 $\frac{(X \cap Y) + L}{L} + \frac{K}{L}, \text{ therefore } T \subseteq T + L \subseteq (X \cap Y) + L + K \text{ . Since } K \ll_e M \text{ then } (L+K) \leq_e M \text{ and since } K \ll_e M \text{ then } (L+K) \leq_e M \text{ and since } K \ll_e M \text{ then } (L+K) \leq_e M \text{ and since } K \ll_e M \text{ then } (L+K) \leq_e M \text{ and since } K \ll_e M \text{ then } (L+K) \leq_e M \text{ and since } K \ll_e M \text{ then } (L+K) \leq_e M \text{ and since } K \ll_e M \text{ then } (L+K) \leq_e M \text{ and since } K \ll_e M \text{ then } (L+K) \leq_e M \text{ then$ $(X \cap Y) \ll_{ET} M$, then $T \subseteq L+K$. Therefore, $\frac{T+L}{L} \subseteq \frac{K}{L}$. Thus $\frac{Y+L}{L}$ is $E(\frac{T+L}{L})$ -weak supplement of $\frac{X}{L}$ in $\frac{M}{L}$.

Proposition 3.7: Let M and N be R-modules and let $f: M \to N$ be an epimorphism . If M is ET-weak supplemented module, then N is Ef (T)-weak supplemented module.

Proof: Let $f: M \to N$ be an epimorphism and M be an ET-weak supplemented. Let K be essential submodule of N. Since M is ET-weak supplemented, then there is a submodule L of M such that $T \subseteq L+ f^{-1}(K)$ and $f^{-1}(K) \cap L \ll_{ET} M$. Therefore, $f(T) \subseteq f(L+ f^{-1}(K))$ and hence $f(T) \subseteq f(L)+K$. Since $f^{-1}(K) \cap L \ll_{ET} M$, then $K \cap f(L) = f(f^{-1}(K) \cap L) \ll_{Ef(T)} f(M)$ [5]. Thus f(L) is Ef(T)-weak supplement of K in N.

Lemma 3.8: Let M be a ET-lifting module and let Y be submodule of M and $X \leq_e M$ such that $T \subseteq X+Y$. Then, there exists $D \leq_{\bigoplus} M$ such that $T \subseteq X+D$ and $D \subseteq Y$.

Proof: Assume that M is an ET-lifting module and let Y be submodule of M such that $T\subseteq X+Y$, then Y=D+H, where $D\leq_{\bigoplus}M$ and $H\ll_{ET}M$. Since $T\subseteq X+Y$, then $T\subseteq X+D+H$. Since $X\leq_e M$ then $X+D\leq_{\square}$. But $H\ll_{\square\square}M$, therefore $T\subseteq X+D$ and $D\subseteq Y$.

Recall that a submodule X of a module M is called a projective invariant, if for every $P=P^2 \in End$ (M), $P(X) \leq X$ [9].

Proposition 3.9: Let M be an ET-lifting module such that every ET-small submodule of M is projective invariant. If $T \subseteq X+Y$, where X and Y are submodules of M, then Y contains a ET-weak supplement of X.

Proof: Assume that $T \subseteq X+Y$. By Lemma (2.8), there exists $D \leq_{\bigoplus} M$ such that $T \subseteq X+D$ and $D \subseteq Y$. Since M is ET-lifting module and $X \cap Y$ is a submodule of M, then there exists a decomposition $M=D_1 \bigoplus D_1$ such that $D_1 \subseteq X \cap Y$ and $(X \cap Y) \cap D_1 \ll_{\square \square} M$ [7]. By the Modular Law: $X=X \cap M = X \cap (D_1 \oplus D_2) = D_2 + (X \cap D_2)$

 $Y=Y\cap M=Y\cap (D_1\oplus D_1)=D_1+(Y\cap D_1).$

So $T\subseteq X+Y=X+D_1+(Y\cap D_1)=X+(Y\cap D_1)$. Thus $Y\cap D_1$ is ET-weak supplement of X in M. **Proposition 3.10**: Let M be a ET-lifting module and Y be a ET-weak supplement of X in M. Then Y contains an ET-weak supplemented of X, which is a direct summand of M.

Proof: Assume that M is ET-lifting . Let Y be a ET-weak supplemented of X in M, then $T \subseteq X+Y$ and $X \cap Y \ll_{ET} M$. Since M is ET-lifting, then Y=D+H, where $D \leq_{\bigoplus} M$ and $H \ll_{ET} M$. Since $T \subseteq X+Y$, then $T \subseteq X+D+H$, since $X \leq_e M$ then $X+D \leq_e M$, but $H \ll_{ET} M$ then $T \subseteq X+D$. Now $X \cap D \subseteq X \cap Y \ll_{ET} M$. Then $X \cap D \ll_{ET} M$, by [5]. Thus D is an ET-weak supplemented of X in M.

Proposition 3.11: Let M be an ET-lifting module such that every ET-small submodule of M is projective invariant .Then M is ET-weak supplemented module.

Proof: Assume that M is ET-lifting module and let X be submodule of M. Then X=D+H, where $D \leq_{\bigoplus} M$ and $H \ll_{ET} M$. Then $M=D \bigoplus D^{`}=X+D^{`}$ and hence $T \subseteq X+D^{`}$. Since M is ET-lifting, then $X \cap D^{`} \ll_{ET} M$, by [7]. Hence, D[`] is ET-weak supplemented of X in M. Thus, M is ET-weak supplemented module.

References

- 1. Fleury, P. 1974. "Hollow Module and Local Endomorphism Rings", *Pac.J.Math.*, 53: 379-385.
- 2. Kasch, F. 1982. Modules and Rings, Academic Press, Inc- London.
- 3. Goodearl, K.R. 1976. Ring Theory, Nonsingular Rings and Modules, Marcel Dekkel.
- 4. Zhou, X. and. Zhang, X.R. 2011. Small-Essential Submodules and Morita Duality, *Southeast Asian Bulletin of Mathematics*, 35: 1051-1062.
- **5.** Fandi, F.SH. and Yaseen, S.M. **2019**. "on essential (T-samll) submodule", Second international conference for applied and pure mathematics.
- **6.** Al-Redeeni, H.S. and Al-Bahrani, B.H. **2017**. "On (G^{*}-)T- lifting modules and T-H-supplemented modules ",MS. Thesis College of science, University of Baghdad,.
- 7. Fandi, F.SH. and Yaseen, .M. 2019. "ET-hollow module and T-lifting module", Committee of ICMETE-2KI9, Editor- in Chief, *Journal of Physics Conference Series*.
- 8. Naoum, A.G. 1996. 1/2 Cancellation Modules, *Kyungpook Mathematical Journal*, 36(1): 97-106.
- 9. Wisbauer, R. 1991. Foundations of module and ring theory, Gordon and Breach, Philadelphia,