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Abstract  

     Since 1980s, the study of the extending module in the module theory has been a 

major area of research interest in the ring theory and it has been studied recently by 

several authors, among them N.V. Dung, D.V. Huyn, P.F. Smith and R. Wisbauer. 

Because the act theory signifies a generalization of the module theory, the author 

studied in 2017 the class of extending acts which are referred to as a generalization 

of quasi-injective acts. The importance of the extending acts motivated us to study a 

dual of this concept, named the coextending act. An S-act MS is referred to as 

coextending act if every coclosed subact of Ms is a retract of MS where a subact AS 

of MS is said to be coclosed in MS if whenever the Rees factor 
  

  
⁄  is small in the 

Rees factor 
  

  
⁄ then AS=BS for each subact BS of AS. Various properties of this 

class of acts have been examined. Characterization of this concept is intended to 

show the behavior of a coextending property. In addition, based on the results 

obtained by us, the conditions under which subacts inherit a coextending property 

were demonstrated. Ultimately, a part of this paper focused on studying the 

relationships between these acts and other related acts. 

 

Keywords: Coextending acts, Extending acts, Essential subacts, Coessential 

subacts, Closed subacts, Coclosed subacts AMS Subject Classification: 20M30, 

20M99, 08B30. 
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 الخلاصه
مجالاا رئيدياا مؼ  المقاسفي نعخية  ؽسعةالمقاسات الممنح الثمانينات مؼ القخن الماضي، كانت دراسة      

نعخية الحلقات حيث تمت دراستيا مؤخخاا مؼ قبل العجيج مؼ المؤلفيؼ، مؼ بينيػ مجالات الاىتمام البحثي في 
N.V. Dung ،D.V ، سميث و و . ىؽيؼR. Wisbauerلمقاسنعخية التعميػ  ىي نعام. بدبب أن نعخية ال 

. غمماريةشبو الا نعمةالأ اعمامالتي يذار إلييا باسػ  ؽسعةالمنعمة فئة مؼ الأ 7102المؤلف في عام  س، در 
 لانعمةأطلق عليو اسػ ايحا المفيؽم ، المفيؽم الثنائي او المقابل لإلى دراسة  ؽسعةالانعمة المدفعتنا أىمية 

 إذا كان كل (coextending) مذاركة ؽسعةمبانيا  الانعمة. يذار إلى (coextending)المذاركة  ؽسعةالم
 ASالنعام الجدئي حيث يقال أن  MS مؼ ىؽ تخاجع MSالنعام  مؼ  coclosed مغلق مذارك نعام جدئي

  عامل ال ما كانمتى  MSفي  coclosed مغلق مذارك يكؽن  MSمؼ 
  
⁄ عامل الصغيخاا في  ىؽ  
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. لانعمة. تػ فحص خرائص مختلفة ليحه الفئة مؼ اASمؼ  BS نعام جدئي لكل AS = BS فان ⁄

. بالإضافة إلى (coextending) المذاركة ؽسعةالانعمة المييجف تؽصيف ىحا المفيؽم إلى إظيار سلؽك 
 نعمة الجدئيةتؽضيح الذخوط التي بمؽجبيا تخث الاذلغ ، بناءا على النتائج التي حرلنا علييا ، فقج تػ 

. في نياية المطاف، ركد جدء مؼ ىحه الؽرقة على (property coextending) المذارك لتؽسعاخاصية 
 ذات الرلة. نعمةوغميخىا مؼ الأ نعمةدراسة العلاقات بيؼ ىحه الأ

1. Introduction 

     It is well-known that the extending modules have been extensively studied in a monograph by 

Dung et al.  [1], as well as in an earlier book by Mohammed and Müller [2]. As for the act theory 

which is referred to as a generalization of the module theory, and for the importance of this subject,    

the extending act was studied by the author who then submitted generalizations for it [3, 4].  

    Note that we will use terminologies and notations from previous works [5,6,7,8,9]. In addition, for 

more information about generalization of injective acts, we refer the reader to other references 

[7,10,11,12,13].  

     Throughout this paper, S is a commutative monoid with zero element and every S-act is unitary 

right S-act with zero element   which is denoted by MS. Besides, the symbol 
  

  
⁄  is referred to as 

Rees factor. It is familiar that an S-act can be found by some other terminologies, as follows: S-

systems, S-sets, S-operands, S-polygons, transition systems, and S-automata [14]. An S-act NS is 

referred to as a retract of  S-act MS if and only if there exists a subact HS of MS and S-epimorphism 

f:MS HS such that NS HS and f(h)= h for every h HS [14,P.84]. An S-homomorphism f which maps 

an S-act AS into S-act BS is said to be split if there exists S-homomorphism g which maps BS into AS 

such that fg=1B[3]. A subact AS of BS is called large (or essential) in BS if and only if any 

homomorphism f:BS HS , where HS is any S-act with restriction to AS is one to one, then f is itself 

one to one [4]. In this case, we say that BS is essential extension of AS . In a previous article [4], 

Berthiaume showed that every S-act has a maximal essential extension which is injective and it is 

unique up to S-isomorphism over MS. A non-zero subact BS of AS is intersection large if for all non-

zero subact CS of AS , CS BS  , and will be denoted by BS is  -large in AS [15]. In another study 

[16], Feller and Gantos proved that every large subact of AS is  -large, but the converse is not true in 

general. An equivalence relation   on a right S-act NS is a congruence relation if  a b implies that 

as  bs  for all a,b NS and s S [17].The congruence ψN  is called singular on NS and it is defined by 

aψNb if and only if ax = bx for all x in some  -large right ideal of S [18] . A subact BS of  S-act AS  is 

called closed if it has no proper  -large extension in AS, that is the only solution of  BS  
   CS    AS  

is BS=CS .A subact BS of a right S-act AS is called small (or superfluous) in AS if for every subact CS 

of AS , BS CS=AS implies CS=AS[8]. as Also, an S-act MS is called extending, if every subact of MS is 

 -large in a retract [6]. Equivalently, MS is extending if and only if every closed subact of MS is a 

retract [6].  

     In this paper, we introduce a new concept, namely the coextending act, as a dual of the class of 

extending acts, where MS is referred to as coextending, if every coclosed subact of MS is a retract of 

MS, where a subact NS of MS is said to be coclosed in MS if whenever 
  

  
⁄  is small in 

  
  
⁄ then 

NS=HS for each subact HS of NS.  

     This article consists of three sections. Some essential properties and examples of coextending acts 

are given in section two. Like extending acts, the direct sum of coextending act may not be 

coextending. We show this fact by an example in section two also. For this reason, we give certain 

conditions under which the direct sum of coextending acts is coextending act, in theorem (3.5) and 

theorem (3.6)). In section three, some relationships between coextending acts and other related acts, 

such as lifting and semisimple acts are investigated. Conclusions and discussions are presented in 

section four. 

2. Dual of Extending Acts  

     In this section, we introduce and study a dual of the class of extending acts which is coextending 

acts, but before that we need the following concepts: 
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Definition (2.1):[14]. Let MS be S-acts and NS any subact of MS that defines the Rees congruence  
 

 

on M, by setting   
 
   if      NS or     . The resulting factor act is referred to as Rees factor of 

MS by subact NS and it is denoted by  
  

  
⁄  . 

Definition (2.2):[14]. Let f:MS NS be S-homomorphism. Then the kernel equivalence kerf is defined 

by a(kerf)    if and only if f(a)=f(  ) for       MS is an act congruence which is referred to as kernel 

congruence of f. 

Definition (2.3):[14] Let MS be an S-act and m MS. Then the homomorphism from SS into MS(or SM) 

is defined by   ( )    (or sm) for every s S. The kernel congruence ker   on SS is referred to as 

annihilator congruence of m MS. 

Definition(2.4): A subact NS of MS is said to be coclosed in MS if whenever 
  

  
⁄  is small in 

  
  
⁄ then HS=NS for each subact HS of NS.   

Definition (2.5): An S-act MS is referred to as coextending act if every coclosed subact of Ms is a 

retract of MS.  

Definition(2.6): A subact BS of an S-act MS is called coessential subact of AS in MS if 
  

  
⁄  is small 

in 
  

  
⁄ . 

Remarks and Examples (2.7) 

1. Unlike for modules, not every kernel-congruence can be described by a subact, but any subact NS 

of MS gives rise to a kernel congruence       where  : MS 
  

  
⁄ is the canonical epimorphism. It 

is well-known that 
  

  
⁄  has a zero, which is the class consisting of NS. Notice that if 

  
  
⁄  is the 

Rees factor act of MS by the subact NS, then the class, -  of an element n NS is a zero in 
  

  
⁄  and 

the class , -   of m    
  

  
⁄   is the one-element classes {m}. Thus, the Rees factor act 

  
  
⁄ could 

be considered as 
  

  
⁄  = (

  
  
⁄    ̇{  }). 

2. It is well-known that every hollow act is coextending act, where an S-act MS is called hollow if 

every proper subact of MS is small [19]. 

    Proof: Let MS be a hollow act and let NS be a coclosed subact of MS, then NS is small      

          in MS, and so for each subact KS of NS, 
  

  
⁄  is small in 

  
  
⁄ . But NS is a coclosed           

          subact of MS, which implies that KS=NS , and then NS=(  ), which is a retract of MS. 

3. It is obvious that the converse of 2 is generally not true. This means that the coextending act is 

not a hollow act. For example, Z as Z-act is coextending act, but not hollow act. 

4. Every semisimple act is coextending-act, but the converse is not true in general; for examples: Z 

as Z act is coextending act but not semisimple. 

5. Every local act (i.e., an act that has only maximal subact), is a coextending act. 

6. Every uniserial act is a coextending act, where an act is referred to as uniserial act if its sub-acts 

are linearly ordered by inclusion [18]. Also, a monoid S is called uniserial monoid if it is uniserial as 

an S-act.   

7. It is clear that MS = Z2   Z4 is a coextending act. 

8. Isomorphic to coextending act is coextending act. 

9. Recall that an S-act AS is called co-uniform if all proper subacts of AS are coessential [19]. In 

other words, we reformulate it as follows: an S-act MS is referred to as couniform, if every proper 

subact KS of MS is either ( ) or there exists a proper subact    of K such that 
  

  
⁄  is small in 

  
  
⁄ . 

Proof: Let KS be subact of MS. If KS= , then KS is coclosed retract of MS and the proof is complete. If 

KS ≠ , and as MS is couniform act, so there exists a proper subact   of KS where 
  

  
⁄  is small in 

  
  
⁄ .Thereby KS is not coclosed in MS and   is the only proper coclosed subact of MS, and then MS 
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is coextending act. 

     It is obvious that every couniform act is coextending act, but the converse is generally not true; for 

example the Z-act Z6 is coextending act but not couniform (since a semisimple act is coextending act 

but not couniform act). 

Besides, every Artinian couniform act is a hollow act, hence it is a coextending act. 

The following proposition gives some important properties of the coextending acts. 

Proposition (2.8): A retract subact of coextending act is a coextending act. 

Proof: Let MS be S-act, and let NS be a retract subact of MS, Let KS be a coclosed subact of NS. Since 

NS is a retract subact of MS, so NS is a coclosed subact of MS. It implies that KS is a coclosed subact of 

MS, hence KS is a retract of MS , that is MS =KS LS for some subact LS of MS. NS = MS NS= (KS   

LS) NS= KS  (LS NS). Thus KS is a retract subact of NS, i.e NS is a coextending act. 

Corollary (2.9): If MS is a coextending act and NS is a coclosed subact of MS, then 
  

  
⁄  is a 

coextending act. 

Proof: Since MS is a coextending act and NS is a coclosed subact of MS, then NS is a retract of MS, so 

MS= NS WS for some subact WS of MS. Hence 
  

  
⁄  WS. But WS is a retract of MS, so by 

proposition (2.7), WS is a coextending act. For this reason and by remarks and examples (2.7) and (8),  
  

  
⁄ is coextending act. 

Definition (2.10): An S-act MS is referred to as hereditary if every subact of MS is projective. 

Especially, a monoid S is called hereditary if all subacts of projective acts over S are again projective. 

If this is required only for finitely generated subacts, it is referred to as semihereditary. 

The following theorem gives the hereditary property for the coextending act. Before that, we need the 

following concepts: recall that an S-act MS is called multiplication if for each subact NS of MS there 

exists an ideal I of S, such that N=MI [20]. Recall that an S-act MS is called faithful if J=( ), this 

means that the annihilator of MS is the zero ideal where the ideal  ( )    *       ( )+ of S is 

referred to as annihilator of MS in S [21]. It is obvious that the field of rational number Q as Z-act is 

faithful, but Zn as Z-act is not faithful.  

Theorem (2.11): Let MS be a finitely generated faithful multiplication S-act. Then S is a coextending 

monoid if and only if MS is a coextending act.  

Proof:  ) Let NS be a coclosed subact of MS. Since MS is a multiplication S-act, then N=MI  for 

some ideal I of S. It is easy to see that I is a coclosed in S. Hence, I is a retract of S, and so S=I J for 

some ideal J of S. It follows that MS=MI MJ=N MJ. This means that NS is a retract subact of MS.  

 ) Let I be a coclosed ideal of S. By putting N=MI, then NS is a coclosed subact of MS. But MS is a 

coextending act, so NS is a retract subact of MS; that is, there exists a subact WS of MS such that 

NS WS= MS. But WS=MJ for some ideal J of R. Now MI MJ=M implies that M(I J)=MS.  Since 

MS is a finitely generated faithful multiplication act, then I J=S, which means that I is a retract of S. 

Lemma (2.12): Let f:M1 M2 be an epimorphism from an S-act M1 to a projective S-act M2. If M1 is 

coextending act, then M2 is coextending. 

Proof: Let f be epimorphism, and since M2 is projective, so every epimorphism is split. This means 

that there exists an S-homomorphism g from M2 into M1 such that       
  and since every act is 

epimorphic image to free act, so M1 is free. This implies that M2 is isomorphic to a retract of M1, and 

by proposition (2.8), every retract of M1 is coextending act. Thereby, by remarks and examples (2.7) 

and (8), M2 is coextending act. 

The following proposition gives a necessary and sufficient condition on a free act to be a coextending 

act 

Proposition (2.13): Let S is a monoid, and then every free S-act is a coextending act if and only if 

every free projective S-act is a coextending act. 

Proof:  ) Let MS be a projective S-act.  MS is an epimorphic image of a free S-act say F. This means 

that there exists epimorphism h:F MS. By the hypothesis, F is a coextending act, and since MS is 

projective and h is epimorphism, so by lemma (2.12), MS is a coextending act. 

 ) It is obvious.   

Corollary (2.14): Let S be a monoid, and then every finitely generated free S- act is a coextending act 

if and only if every finitely generated projective S-act is a coextending act. 

https://en.wikipedia.org/wiki/Annihilator_(ring_theory)
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     In the following, we study when the direct sum of the coextending act is coextending. In fact, this is 

not true in general. Now, we study some cases in which the direct sum of coextending act is a 

coextending act. Before that we need the following lemmas. 

Lemma (2.15): Let MS=M1 M2 where M1 and M2 be two S-acts, and let A=A1 A2, where A1  M1 

and A2   M2. If A is a coclosed subact of MS, then A1 is a coclosed subact of M1 and A2 is a coclosed 

subact of M2. 

Proof: Assume that the Rees factor  
  

  
⁄ is small in the Rees factor  

  
  
⁄  and the Rees factor  

  
  
⁄ is small in the Rees factor  

  
  
⁄ , where B1 A1 and B2 A2. Therefore, Rees factor    

     

     
 is 

small in the Rees factor  
     

     
. Because of that, A is coclosed subact of MS, then we obtain that 

A1=B1 and A2=B2 .Hence, A1and A2 are coclosed subacts in M1 and M2, respectively. 

Lemma (2.16): Let MS=M1 M2, where M1 and M2 are S-acts. If annSM1 annSM2=S, then any subact 

of MS can be written in the form N=N1 N2, where N1 is a subact of M1 and N2 is a subact of M1. 

Proof: Let N be any subact of MS. We claim that N=N1 N2, for some subacts N1 of M1 and N2 of M2. 

In fact, if n N, then n=(x,y), for some x N1 M1 and y N2 M2. So, x M1 and y M2. Furthermore, 

there exist elements (a1,a2)  annS(M1) and (b1,b2)  annS(M2), such that (a1,b1) or (a2,b2)=(1,1). Let 

N1=annS(M2)x and N2=annS(M1)y, then N1 is subact of M1 and N2 is subact of M2. Now, 

x=(x1,x2)=(1,1)(x1,x2)=(a1,b1)(x1,x2)=(a1x1,b1x2)=b1x2 M1and 

y=(y1,y2)=(1,1)(y1,y2)=(a1,b1)(y1,y2)=(a1y1,b1y2)=a1y1 M2. Then n=(x,y)=(b1x2,a1y1)  N1 N2, 

therefore N N1 N2. For the other direction, let h=(cx,dy) for some c=(c1,c2) annSM2 and 

d=(d1,d2) annSM1. Thus, h=((c1,c2)x,(d1,d2)y)=(c,d)(x,y)=(c,d)n N. For this reason, we have 

N1 N2 N. Therefore, the proof is complete. 

Lemma(2.17): Let MS=M1 M2, where M1 and M2 be S-acts and let annSM1 annSM2=S. Then  NS is 

a coclosed subact of MS if and only if there exist coclosed subacts N1 of M1 and N2 of M2 such that 

NS= N1 N2. 

Proof: ) Since NS is subact of MS and MS=M1 M2, annSM1 annSM2=S, so by lemma(2.16), there 

exists subacts N1 and N2 of M1 and M2, respectively, such that NS=N1 N2, and by lemma(2.15) both 

of N1 and N2 are coclosed subacts in M1 and M2, respectively. 

 ) In order to prove that NS is a coclosed subact of MS, assume that   ⁄  is small in   ⁄  where B is a 

subact of MS. Since annSM1 annSM2=S, so BS=B1 B2 for some subacts B1 and B2 of M1 and M2, 

respectively. Thus: 

 
 ⁄  

     

     
 which is small in 

     

     
. Then, we have 

  
  
⁄  

  
  
⁄  is small in  

  
  
⁄  

  
  
⁄ which implies that 

  
  
⁄ is small in 

  
  
⁄  and 

  
  
⁄ is small in 

  
  
⁄ . Since N1 and N2 are 

coclosed subact of M1 and M2, respectively, thus N1=B1 and N2=B2, and hence NS= B1 B2=BS. 

In the following theorems, we put certain conditions under which the direct sum of two coextending 

acts is coextending act. 

Theorem (2.18): Let MS=M1 M2 where M1 and M2 be S-acts. If annSM1 annSM2=S, then MS is a 

coextending act if and only if both of M1 and M2 are coextending acts. 

Proof:  ) It follows from proposition (2.8). 

 )Let NS be a coclosed subact of MS. By lemma(2.17), for some coclosed subacts N1 and N2 of  M1 

and M2, respectively, we have N=N1 N2. But M1 and M2 are coextending acts, so N1 is retract of M1 

and N2 is a retract of M2, that is N1 W1=M1 and N2 W2=M2, for some subacts W1  of M1 and W2 of 

M2. Hence: 

N (W1 W2)=(N1 N2) (W1 W2)=(N1 W1) (N2 W2) =M1 M2=MS. Therefore N is a retract 

of MS, and hence MS is a coextending act. 

Theorem(2.19): Let MS=    
    , where each of Mi is an S-act for each i = 1, ..., n. If every subact 

of MS is a fully invariant, then MS is a coextending act if and only if each Mi is a coextending act for 

each i = 1, ..., n. 

Proof: ) It follows from proposition (2.8). 

 ) Let NS be a coclosed sub act of MS.  By assumption, NS is a fully invariant subact of MS, so 

       
 (    ). On the other hand, NS is coclosed of MS, so by lemma (2.15), for each i=1,...,n, 
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     is a coclosed subact of Mi. Since Mi is a coextending act for each i=1, ...,n, hence     is a 

retract of Mi for each i=1,...,n, then (    ) Bi=Mi for some subact Bi of Mi. Therefore, 

    
   =    

 *(    )   =    
 *(    )+  *    

   +. For this reason, we have       
  , where       

   . This means that MS is coextending act. 

3. THE RELATIONSHIPS OF COEXTENDING ACTS WITH OTHER RELATED 

CONCEPTS 

     In this section, we give some relationships between coextending acts and some other acts, such as 

the lifting and semisimple acts, but before that, we need the following concept: 

Definition(3.1): An S-act MS is referred to as lifting, if for every subact NS of MS contains a retract HS 

of MS such that  
  

  
⁄ is small in 

  
  
⁄ . 

From the above definition, we have the following: 

Proposition (3.2): If MS is a lifting S-act, then MS is a coextending act. 

Proof: Let NS be a coclosed subact of MS. Since MS is a lifting act, so NS contains a retract WS of MS 

such that 
  

  
⁄ is small in 

  
  
⁄  by definition (3.2). But NS is a coclosed subact of MS, then WS=NS. 

That is MS is a coextending act. 

The converse of proposition(3.2) is generally not true; for example, Z as Z-act is a coextending act, but 

it is not lifting. However, as we get in the following theorem, the condition to be the converse is true, 

but first we need the following concept: 

Definition (3.3): an S-act MS is referred to as amply supplemented act, if every supplement subact of 

MS is a retract of MS. Equivalently, if for any two subact AS and BS of MS with AS BS=MS, then BS 

contains a supplement of AS in MS (where a subact AS is a supplement of BS if and only if AS BS=MS 

and AS BS is small in AS. Equivalently,  a subact AS of MS is called supplement of BS in MS if 

AS BS=MS and AS is a minimal element in the set of subacts LS of MS with BS LS=MS) 

Theorem (3.4): Let MS be an S-act, then MS is a lifting act if and only if MS is a coextending act and 

amply supplemented. 

     In the following result we give a condition to obtain the coincide among the concepts of the 

coextending act, lifting act and semisimple act: 

Proposition (3.5): Let MS be an S-act. If every subact of MS is a coclosed, then the following 

statements are equivalent: 

1. MS is a lifting act. 

2. MS is a coextending act. 

3. MS is a semisimple act. 

Proof: (1) (2): It follows from proposition (3.2).  

(2)   (3) It is obvious. 

(3)   (1) It is clear. 

The next proposition gives another condition so that the converse of proposition (3.2) is true: 

Definition (3.6): A subact BS of an S-act MS is called coclosure of AS in MS, if 
  

  
⁄  is small in 

  
  
⁄  and BS is coclosed subact of MS . 

Proposition (3.7): If an S-act MS is a coextending act, such that every subact NS of MS has a 

coclosure, then MS is a lifting act. 

Proof: Let NS be a subact of MS. By assumption, NS has coclosure subact. For this reason, there exists 

a coclosed subact BS of MS such that 
  

  
⁄  is small in 

  
  
⁄  . But MS is a coextending act, 

therefore BS is a retract of MS. Thereby MS will be a lifting act by definition(3.1). 

4. Conclusions and Discussions   

From the previous theorems, examples, remarks, and propositions, we can present some major points, 

as follows: 

1. Proposition (2.8) and corollary (2.9) answered the earlier submitted question; what are the 

conditions on subacts to inherit the property of coextending?  Accordingly, they gave the following 

two results: 

a. When subacts are retracted. 
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b. If a subact NS is coclosed, then the quotient subtact 
  

  
⁄  is coextending. 

2. Theorem(2.11) demonstrated the hereditary property for the coextending act, where it was stated 

that a monoid S is coextending if and only if MS is coextending under the following conditions on S-

act MS: 

a. Finitely generated. 

b. Faithful. 

c. Multiplication. 

3. Lemma (2.12) explained that the epimorphic image of a coextending act is coextending when the 

epimorphic act is projective. 

4. Based on lemma (2.12), proposition (2.13) gave another result on the epimorphic image; that is, 

every free S-act is coextending if and only if every free projective is coextending. 

5. Lemma (2.15) revealed that subacts are coclosed if they have a decomposition form, as follows: if 

AS=A1 A2 is coclosed  subact of MS=M1 M2, then A1 is coclosed subact of M1 and A2 is coclosed 

subact of M2. 

6. Lemma(2.17) gave another condition on any subact to be coclosed when annSM1 annSM2=S, as 

follows: A subact AS of MS= M1 M2 is coclosed if and only if there exists A1 and A2 are coclosed 

subacts of M1 and M2, respectively, such that AS=A1 A2. 

7. We gave certain conditions in theorem (2.18) to the direct sum of coextending acts to be 

coextending depending on lemma (2.17). 

8. Theorem (2.19) explained an important result; that is, a finite direct sum of a coextending act is 

coextending under the condition that all the subacts are fully invariant. 

9. Proposition (3.2) showed the relation between the lifting act and coextending, as in the following: 

every lifting act is coextending. 

10. Theorem (3.4) gave a condition to the converse of proposition (3.2) to be true, as follows: an S-

act MS is lifting if and only if MS is amply supplemented and coextending. 

11. It was given a condition in proposition (3.5) to coincide the following concepts: lifting acts, 

coextending acts, and semisimple acts. This condition was that every subact of S-act MS must be 

coclosed. 

12. In proposition (3.7), we obtained the equivalence between the lifting act and the coextending. 

Thereby, this proposition suggested another condition to the converse of proposition (3.2) to be true. 

This condition stated that every subact of S-act has a coclosure. 
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