Iraqi Journal of Science, 2020, Special Issue, pp: 45-55 DOI: 10.24996/ijs.2020.SI.1.7





# Weak and Strong Forms of ω-Perfect Mappings

G. S. Ashaea\*, Y. Y. Yousif

Department of Mathematics, College of Education for Pure Sciences ( Ibn -Al-haitham ) ,University of Baghdad, Baghdad, Iraq

Received: 14/11/2019

Accepted: 15/3/2020

#### Abstract:

In this paper, we introduce weak and strong forms of  $\omega$ -perfect mappings, namely the  $\theta$ - $\omega$ -perfect, weakly  $\theta$ - $\omega$ -perfect and strongly  $\theta$ - $\omega$ -perfect mappings. Also, we investigate the fundamental properties of these mappings. Finally, we focused on studying the relationship between weakly  $\theta$ - $\omega$ -perfect and strongly  $\theta$ - $\omega$ -perfect mappings.

Keywords: weakly  $\theta$ - $\omega$ -perfect mappings and strongly $\theta$ - $\omega$ -perfect mappings.

أشكال التطبيقات المثالية نمط س بشكل الضعيف والقوى

غيداء سعدون اشعيع\*، يوسف يعكوب يوسف

قسم الرياضيات، كلية التربية للعلوم الصرفة(ابن الهيثم)، جامعة بغداد، بغداد، العراق

الخلاصه

في عملنا قدمنا أشكال ضعيفة وقوية من التطبيقات مثالية ، وهي (التطبيقات التامة من نمط – ω-θ ، التطبيقات التامة من نمط ω-θ الضعيفة التطبيقات التامة من نمط ω-θ القوية ، ونحن أيضا درسنا خصائصها الأساسية. وأخيرا ، لخصنا الدراسة وتطورت العلاقة بين التطبيقات التامة من نمط ω-θ ضعيفة و التطبيقات التامة من نمط ω-θ القوية.

## **1.** Introduction

In 1943, Formin [1] introduced the concepts of  $\theta$ -continuous mappings. In 1966, Bourbaki [2] defined perfect mappings. In 1968, Velicko[3] introduced the concepts of  $\theta$ -open and  $\theta$ -closed subsets, while in 1968 Singal [4] introduced the notion of almost continuous mappings. In 1981, Long and Herrington [5] introduced the notion of strongly continuous mappings, in 1989, Hdeib [6] introduced the concepts of  $\omega$ -continuous mappings. In 1991, Chew and Tong [7] introduced the notion of weakly continuous mappings, In this work,  $(G, \tau)$  and  $(H, \sigma)$  stand for topological spaces. For a subset K of G, the closure of K and the interior of K will be denoted by cl(K) and int(K), respectively. Let (G,  $\tau$ ) be a space and K be a subset of G, then a point  $g \in G$  is called a condensation point of K if, for each  $S \in \tau$  and  $g \in S$ , the set  $S \cap K$  is uncountable. K is called to be  $\omega$ -closed [6] if it contains all its condensation points. The complement of  $\omega$ -closed set is called to be  $\omega$ -open. It is well known that a subset W of a space  $(G, \tau)$  is  $\omega$ -open if and only if, for each  $g \in W$ , there exists  $S \in \tau$ , such that  $g \in S$ and S-W is countable. The family of all  $\omega$ -open sets of a space  $(G, \tau)$ , denoted by  $\tau \omega$  or  $\omega O(G)$ . forms a topology on G finer than  $\tau$ . The  $\omega$ -closure and  $\omega$ -interior, that can be known in the same way as cl(K) and int(K), respectively, will be denoted by  $\omega cl(K)$  and  $\omega int(K)$ , respectively. Several characterizations of  $\omega$ -closed sets were provided in previous articles [8-16]. A point g of G is called  $\theta$ cluster point of K if  $cl(S) \cap K \neq \varphi$ , for all open sets S of G containing g. The set of all  $\theta$ -cluster points

<sup>\*</sup>Email: ghidaasadoon@gmail.com

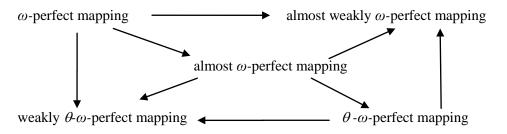
of K is called  $\theta$ -closure of K and is denoted by  $cl_{\theta}(K)$ . A subset K is called  $\theta$ -closed if  $K = cl_{\theta}(K)$  [3]. The complement of  $\theta$ -closed set is called  $\theta$ -open. A point g of G is called an  $\omega$ - $\theta$ -cluster point of K if  $\omega cl(S) \cap K \neq \varphi$  for every  $\omega$ -open set S of G containing g. The set of all  $\omega$ - $\theta$ -cluster points of K is called  $\omega$ - $\theta$ -closure of K and is denoted by  $\omega Cl_{\theta}(K)$ . A subset K is called  $\omega$ - $\theta$ -closed if  $K = \omega Cl_{\theta}(K)$ . The complement of  $\omega$ - $\theta$ -closed set is called  $\omega$ - $\theta$ -open. The  $\omega$ - $\theta$ -interior of K is defined by the union of each  $\omega$ - $\theta$ -open sets contained in K and is denoted by  $\omega$ int<sub> $\theta$ </sub>(K). A mapping  $\lambda$  : (G,  $\tau$ )  $\rightarrow$  (H, $\sigma$ ) is called  $\omega$ -continuous (see [16]) (resp., almost weakly  $\omega$ -continuous (see [11])) if for each  $g \in G$  and each open set T of H containing  $\lambda(g)$ , there exists an  $\omega$ -open subset S in G, such that  $\lambda(S) \subset T$  (resp.,  $\lambda(S) \subseteq cl(T)$ ). A mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is called almost  $\omega$ -continuous [12] (resp.,  $\theta$ - $\omega$ continuous (see [13]), strongly  $\theta$ - $\omega$ -continuous (see [7])) if, for each  $g \in G$  and for each regular open set T(resp., open) of H containing  $\lambda(g)$ , there exists an  $\omega$ -open subset S in G, such that  $\lambda(S) \subseteq T$  ( resp.,  $\lambda(\omega cl(S)) \subset cl(T)$ ,  $\lambda(\omega cl(S)) \subseteq T$ ). A mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is called  $\theta$ -continuous (resp., continuous [16]), if for all an open T in H,  $\lambda^{-1}(T)$  is an  $\theta$ -open (resp., open) set in G. A mapping  $\lambda: (G, \tau) \to (H, \sigma)$  is called weakly (resp., strongly) continuous [3] if, for each  $g \in G$  and all open set T of H containing  $\lambda(g)$ , there is an open set S of G, such that  $\lambda(S) \subseteq cl(T)$  (resp.,  $\lambda(cl(S))$ )  $\subseteq T$ ). A mapping  $\lambda: (G, \tau) \to (H, \sigma)$  is called almost continuous [7] if  $\lambda^{-1}(T)$  is open in G for all regular open set T of H. A mapping  $\lambda: (G, \tau) \to (H, \sigma)$  is called weakly (resp., [9] strongly)  $\theta$ -continuous if, for each  $g \in G$  and all open set T of H containing  $\lambda(g)$ , there is an open set S in G, such that  $\lambda(S) \subseteq G$ cl(T) (resp.,  $\lambda$  ( $cl(S) \subseteq T$ ). A topological space G is called a regular [14] if, for all closed set F and for each point  $g \in G$ -F, there exist disjoint open sets S and T such that  $g \in S$  and  $F \subseteq T$ . A topological space G is called a semi-regular [15] if, for all point  $g \in G$  and all open set S containment g, there is an open set T such that  $g \in T \subseteq int(cl(T)) \subseteq S$ . A topological space G is called  $\omega$ -regular (resp.,  $\omega^*$ regular) [12] if, for all  $\omega$ -closed (resp., closed) set F and for each point  $g \in G - F$ , there are disjoint  $\omega$ open sets S and T such that  $g \in S$  and  $F \subseteq T$ . Also we introduce several results and examples concerning deferent forms of  $\omega$ -perfect mappings.

### **2.** Weakly $\theta$ - $\omega$ -Perfect Mappings

In this section, we study the weakly  $\theta$ - $\omega$ -perfect mappings and several related theorems.

**Definition 2.1.** A mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is said to be weakly  $\theta$ - $\omega$ -continuous at  $g \in G$  if, for every open subset T in H containing  $\lambda(g)$ , there exists an  $\theta$ - $\omega$ -open subset S in G containing g, such that  $\lambda(S) \subseteq cl(T)$ . If  $\lambda$  is weakly  $\theta$ - $\omega$ -continuous at every  $g \in G$ , it is said to be weakly  $\theta$ - $\omega$ -continuous.

**Definition 2.2.** A mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is said to be perfect mapping (resp.,  $\omega$ -perfect mapping,  $\theta$ - $\omega$ -perfect mapping, almost  $\omega$ -perfect mapping, weakly  $\theta$ - $\omega$ -perfect mapping, almost weakly  $\omega$ -perfect mapping,  $\theta$ -perfect mapping) if it is continuous (resp.,  $\omega$ -continuous,  $\theta$ - $\omega$ -continuous, almost  $\omega$ -continuous, weakly  $\theta$ - $\omega$ -continuous, almost weakly  $\omega$ -continuous,  $\theta$ -continuous), closed, and, for every  $h \in H$ ,  $\lambda^{-1}(h)$ . compact. The relationships among the weakly  $\omega$ -perfect mappings are given by the following figure:



In the figure above, the converses are not true, as demonstrated by the following examples.

**Example 2.3.** Let  $\lambda : (G, \tau) \to (G, \tau)$  be a mapping such that  $G = \{K, L, M\}$ , and  $\tau = \{\varphi, G, \{K\}, \{L\}, \{K, L\}\}$  such that  $\lambda(K) = \lambda(L) = \lambda(M) = M$ . Then  $\lambda$  is  $\theta$ - $\omega$ -perfect mapping but it is not almost  $\omega$ -perfect mapping.

**Example 2.4.** Let  $\lambda: (\mathfrak{R}, \tau) \to (H, \sigma)$  be a mapping such that  $\mathfrak{R}$  be a real line with topology  $\tau = \{\varphi, \mathfrak{R}, (0, 1)\}$ . Let  $H = \{u, v, w\}$  and  $\sigma = \{H, \varphi, \{v\}, \{w\}, \{v, w\}\}$ .

$$\lambda(a) = \begin{cases} u & \text{, if } g \in [0, 2] \end{cases}$$

$$\mathcal{V}(g) = \{ v , \text{if } g \notin [0,2] \}$$

Then,  $\lambda$  is weakly  $\theta$ - $\omega$ -perfect but it is not  $\theta$ - $\omega$ -perfect.

**Example 2.5**. As in example 2.4,  $\lambda$  is weakly  $\theta$ - $\omega$ -perfect mapping, but it is not  $\omega$ -perfect mapping. Also,  $\lambda$  is weakly  $\theta$ - $\omega$ -perfect mapping, but not almost  $\omega$ -perfect mapping, and  $\lambda$  is almost weakly  $\omega$ -perfect mapping, but it is not  $\theta$ - $\omega$ -perfect mapping.

**Example 2.6.** Let  $\lambda:(G, \tau) \to (G, \sigma)$  be a mapping such that  $G = \{u, v, w\}$ , and  $\tau = \{G, \varphi, \{u, v\}\}$  and  $\sigma = \{G, \varphi, \{v, w\}\}$ , such that  $\lambda(u) = \lambda(v) = \lambda(w) = u$ . Then  $\lambda$  is almost  $\omega$ -perfect mapping but it is not  $\omega$ -perfect mapping.

**Example 2.7.** Let A be the upper half of a plane and B be the X-axis. Let  $X = A \cup B$ . If  $\tau_{\text{hdis}}$  be the half disc topology on X and  $\tau_r$  be the relative topology that X inherits by virtue of being a subspace of  $\Re^2$ . Then, the identity of the mapping  $\lambda : (X, \tau_r) \to (X, \tau_{\text{hdis}})$  is that it is an almost weakly  $\omega$ -perfect mapping but it is not  $\omega$ -perfect mapping.

**Example 2.8.** Let  $\lambda : (G, \tau) \to (G, \tau)$  be a mapping such that  $G = \{K, L, M\}$  and  $\tau = \{\varphi, G, \{K\}, \{L\}, \{K, L\}\}$ , such that  $\lambda(K) = \lambda(L) = \lambda(M) = M$ . Then  $\lambda$  is almost weakly  $\omega$ -perfect mapping but it is not almost  $\omega$ -perfect mapping.

**Lemma 2.9.** [13] A topological space *G* is  $\omega$ -regular (resp.,  $\omega$ \*-regular) if and only if, for all  $S \in \omega O(G)$  (resp.,  $S \in O(G)$ ) and all point  $g \in S$ , there is  $T \in \omega O(G, g)$ ;  $g \in T \subseteq \omega cl(T) \subseteq S$ .

**Theorem 2.10.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that G be an  $\omega$ -regular space. If  $\lambda$  is almost weakly  $\omega$ -perfect mapping then it is  $\theta$ - $\omega$ -perfect mapping.

**Proof:** Assume that  $\lambda$  is almost weakly  $\omega$ -perfect mapping. It suffices to be demonstrated that  $\lambda$  is  $\theta$ - $\omega$ -continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Because  $\lambda$  is almost weakly  $\omega$ -continuous, there is an  $\omega$ -open set S containment g, such that  $\lambda$  (S)  $\subseteq$  cl(T). Since G is an  $\omega$ -regular space, by Lemma 2.9, there is  $W \in \omega O(G, g)$  such that  $g \in W \subseteq \omega cl(W) \subseteq S$ . Therefore,  $\lambda(\omega cl(W)) \subseteq cl(T)$ . Then  $\lambda$  is  $\theta$ - $\omega$ -continuous, so  $\lambda$  is  $\theta$ - $\omega$ -perfect mapping.

**Corollary 2.11.** Let  $(G, \tau)$  be  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is almost weakly  $\omega$ -perfect if and only if it is  $\theta$ - $\omega$ -perfect.

**Theorem 2.12.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be an  $\omega$ -perfect mapping, and let  $\mu : (H, \sigma) \to (I, \psi)$  be almost weakly  $\omega$ -perfect. Then  $\mu o \lambda : (G, \tau) \to (I, \psi)$  is almost weakly  $\omega$ -perfect.

**Proof:** Assume that  $g \in G$  and W is an open set containment  $(\mu o \lambda)_{(g)}$  in I. Since  $\mu$  is almost weakly  $\omega$ continuous, there is an open set T containment  $\lambda$  (g) in H such that  $\mu$  (T)  $\subseteq$  cl(W). Since  $\lambda$  is  $\omega$ continuous, then for each  $g \in G$  and each open set T of  $\lambda$  (g) = h, there is an  $\omega$ -open S of g in G such
that  $\lambda$  (S)  $\subseteq$  T, so  $\mu$  ( $\lambda$ (S))  $\subseteq \mu$  (T) also ( $\mu o \lambda$ )<sub>(s)</sub>  $\subseteq \mu$  (T), then ( $\mu o \lambda$ )<sub>(s)</sub>  $\subseteq$  cl(W). Also  $\mu o \lambda$  is almost
weakly  $\omega$ -continuous. Hence,  $\mu o \lambda$  is almost weakly  $\omega$ -perfect mapping.

**Theorem 2.13.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping, such that G be an  $\omega$ -regular space. If  $\lambda$  is weakly  $\theta$ - $\omega$ -perfect mapping then it is  $\omega$ -perfect mapping.

**Proof**: Let  $\lambda$  be a weakly  $\theta$ - $\omega$ -perfect mapping. It suffices to be demonstrated that  $\lambda$  is  $\omega$ -continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Since H is an  $\omega$ -regular space, yond is an open set T1 in H such that  $\lambda$  (g)  $\in T1$  and  $cl(T1) \subseteq T$ . Since  $\lambda$  is weakly  $\theta$ - $\omega$ -continuous, there is an  $\omega$ -open set S containment g, such that  $\lambda$  (S)  $\subseteq$  cl(T1). It follows that  $\lambda$  (S)  $\subseteq T$ , therefore  $\lambda$  is  $\omega$ -continuous. Hence  $\lambda$  is  $\omega$ -perfect mapping.

**Corollary 2.14.** Let  $(G, \tau)$  be  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is weakly  $\theta$ - $\omega$ -perfect if and only if it is  $\omega$ -perfect.

**Theorem 2.15.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping, such that G be an  $\omega$ -regular space. If  $\lambda$  is  $\theta$ - $\omega$ -perfect mapping then it is almost  $\omega$ -perfect mapping.

**Proof:** Let  $\lambda$  be a  $\theta$ - $\omega$ -perfect mapping. It suffices to be demonstrated that  $\lambda$  is almost  $\omega$ -continuous, let  $g \in G$  and T be an open set containing  $\lambda$  (g) in H. Because  $\lambda$  is  $\theta$ - $\omega$ -continuous, yond is an  $\omega$ -open set S containing g, such that  $\lambda$  ( $\omega$ cl(S))  $\subseteq$  cl(T)). Because int( cl(T))  $\subseteq$  cl(T), then  $\lambda$  ( $\omega$ cl(S))  $\subseteq$  int (cl(T))  $\subseteq$  cl(T), then  $\lambda$  ( $\omega$ cl(S))  $\subseteq$  cl(T). Also G is  $\omega$ -regular space, and there is an  $\omega$ -open set SI in

*G*, such that  $g \in SI$  and  $cl(SI) \subseteq S$ , so  $\lambda(\omega cl(S1)) \subseteq \lambda(S)$  and int( $cl(T)) \subseteq cl(T)$ . It follows that  $\lambda(S) \subseteq int(cl(T))$ . So  $\lambda$  is almost  $\omega$ -continuous. Hence, consider that  $\lambda$  is almost  $\omega$ -perfect mapping.

**Corollary 2.16.** Let  $(G, \tau)$  be a  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is  $\theta$ - $\omega$ -perfect if and only if it is almost  $\omega$ -perfect.

**Theorem 2.17.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that H be an  $\omega$ -regular space. If  $\lambda$  is almost weakly  $\omega$ -perfect mapping on G, then it is  $\omega$ -perfect mapping on G.

**Proof**: Let  $\lambda$  be almost weakly  $\omega$ -perfect mapping. It suffices to be demonstrated that  $\lambda$  is  $\omega$ continuous, let  $g \in G$  and T be an open set containing  $\lambda$  (g) in H. Since H is an

 $\omega$ -regular space, there is an open set T1 in H such that  $\lambda(g) \in T1$  and  $cl(T1) \subseteq T$ . Since  $\lambda$  is almost weakly  $\omega$ -continuous, there is an  $\omega$ -open set S containment g, such that  $\lambda(S) \subseteq cl(T1)$ . It follows that  $\lambda(S) \subseteq T$ , therefore  $\lambda$  is  $\omega$ -continuous on G. Hence  $\lambda$  is  $\omega$ -perfect mapping on G.

**Corollary 2.18.** Let  $(H, \tau)$  be  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is almost weakly  $\omega$ -perfect if and only if it is  $\omega$ -perfect.

**Theorem 2.19.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping, such that G be an  $\omega$ -regular space. If  $\lambda$  is weakly  $\theta$ - $\omega$ -perfect mapping then it is  $\theta$ - $\omega$ -perfect mapping.

**Proof**: Let  $\lambda$  be weakly  $\theta$ - $\omega$ -perfect mapping. It suffices to be demonstrated that  $\lambda$  is  $\theta$ - $\omega$ -continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Since G is an  $\omega$ -regular space, there is an open set T1 in H such that  $\lambda$  (g)  $\in T1$  and  $cl(S1) \subseteq S$ . Since  $\lambda$  is weakly  $\theta$ - $\omega$ -continuous, there is an  $\omega$ -open set S containment g, such that  $\lambda$  (S)  $\subseteq$  cl(T). It follows that  $\lambda(\omega cl(S)) \subseteq cl(T)$ , therefore  $\lambda$  is  $\theta$ - $\omega$ -continuous. Hence,  $\lambda$  is  $\theta$ - $\omega$ -perfect mapping.

**Corollary 2.20.** Let  $(G, \tau)$  be  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is weakly  $\theta$ - $\omega$ -perfect if and only if it is  $\theta$ - $\omega$ -perfect.

**Theorem 2.21.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping, such that *H* be an  $\omega$ -regular space. If  $\lambda$  is almost  $\omega$ -perfect mapping then it is  $\omega$ -perfect mapping.

**Proof:** Let  $\lambda$  be an almost  $\omega$ -perfect mapping. It suffices to be demonstrated that  $\lambda$  is  $\omega$ -continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Because  $\lambda$  is almost  $\omega$ -continuous, there is an  $\omega$ -open set S containment g, such that  $\lambda$  (S)  $\subseteq$  int(cl(T)). Because int( cl(T))  $\subseteq$  cl(T), then  $\lambda$  (S)  $\subseteq$  int(cl(T))  $\subseteq$  cl(T). Then  $\lambda$  (S)  $\subseteq$  cl(T), H is  $\omega$ -regular space, and there is an  $\omega$ -open set SI in G, such that  $g \in SI$  and cl(TI)  $\subseteq T$ , so  $\lambda$ (S)  $\subseteq$  cl(TI)  $\subseteq T$ . It follows that  $\lambda$  (S)  $\subseteq T$ . So  $\lambda$  is  $\omega$ -continuous. Hence, consider that  $\lambda$  is  $\omega$ -perfect mapping.

**Corollary 2.22.** Let  $(G, \tau)$  be  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is almost  $\omega$ -perfect if and only if it is almost  $\omega$ -perfect.

**Theorem 2.23.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that *H* be an  $\omega$ -regular space. If  $\lambda$  is weakly  $\theta$ - $\omega$ -perfect mapping then it is almost  $\omega$ -perfect mapping.

**Proof**: Let  $\lambda$  be weakly  $\theta$ - $\omega$ -perfect mapping. It suffices to be demonstrated that  $\lambda$  is almost  $\omega$ continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Since H is an  $\omega$ -regular space then
it is an open set TI in H such that  $\lambda$  (g)  $\in TI$  and  $cl(TI) \subseteq T$ . Since  $\lambda$  is weakly  $\theta$ - $\omega$ -continuous, there is
an  $\omega$ -open set S containment g, such that  $\lambda(S) \subseteq cl(TI)$ . Also, int( $cl(T)) \subseteq cl(T)$ . It follows that  $\lambda(S)$   $\subseteq$  int( $cl(T)) \subseteq cl(T)$ , therefore  $\lambda(S) \subseteq$  int(cl(T)). So  $\lambda$  is almost  $\omega$ -continuous on G. Hence  $\lambda$  is
almost  $\omega$ -perfect mapping on G.

**Corollary 2.24.** Let  $(H, \tau)$  be  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is weakly  $\theta$ - $\omega$ -perfect if and only if it is almost  $\omega$ -perfect.

**Theorem 2.25.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping and  $\mu : G \to G \times H$  be the graph mapping of  $\lambda$  defined by  $\mu(g) = (g, \lambda(g))$  for every  $g \in G$ . Then  $\mu$  is  $\theta$ - $\omega$ -perfect if and only if  $\lambda$  is  $\theta$ - $\omega$ -perfect.

**Proof** : Necessity. Assume that  $\mu$  is  $\theta$ - $\omega$ -perfect mapping. It suffices to be demonstrated that  $\lambda$  is  $\theta$ - $\omega$ continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g). Then  $G \times T$  is an open set of  $G \times H$ containment  $\mu$  (g). Because  $\mu$  is  $\theta$ - $\omega$ -continuous, there is  $S \in \omega O(G, g)$  such that  $\mu$  ( $\omega$ cl(S))  $\subseteq$  cl( $G \times T$ ) =  $G \times$  cl(T). Therefore,  $\lambda(\omega$ cl(S))  $\subseteq$  cl(T), then  $\lambda$  is  $\theta$ - $\omega$ -continuous. So  $\lambda$  is  $\theta$ - $\omega$ -perfect mapping.

**Sufficiency.** Assume that  $\lambda$  is  $\theta$ - $\omega$ -perfect mapping. It suffices to be demonstrated that  $\lambda$  is  $\theta$ - $\omega$ -continuous, let  $g \in G$  and W be an open set of  $G \times H$  containment  $\mu(g)$ . There are the open sets  $S1 \subseteq G$  and  $T \subseteq H$  such that  $\mu(g) = (g, \lambda(g)) \in S1 \times T \subseteq W$ . Because  $\lambda$  is  $\theta$ - $\omega$ -continuous, there is  $S2 \in \omega O(G, g)$  such that  $\lambda(\omega cl(S2)) \subseteq cl(T)$ . Assume that  $S = S1 \cap S2$ , then  $S \in \omega O(G, g)$ . Therefore,  $\mu(\omega cl(S)) \subseteq cl(S1) \times \lambda(\omega cl(S2)) \subseteq cl(S1) \times cl(T) \subseteq cl(W)$ . Then  $\mu$  is  $\theta$ - $\omega$ -continuous. So  $\mu$  is  $\theta$ - $\omega$ -perfect mapping.

**Theorem 2.26.** For a mapping  $\lambda : G \to H$  and *H* is regular, the following properties are equivalent. (a)  $\lambda$  is weakly  $\theta$ - $\omega$ -perfect.

- (a)  $\lambda$  is weakly  $\theta$ - $\omega$ -per
- (b)  $\lambda$  is  $\omega$ -perfect.
- (c)  $\lambda$  is almost  $\omega$ -perfect.
- (d)  $\lambda$  is  $\theta$ - $\omega$ -perfect.
- (e)  $\lambda$  is almost  $\omega$ -perfect.

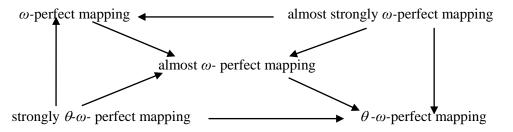
## **3.** Strongly $\theta$ - $\omega$ -Perfect Mappings

In this section we study the strongly  $\theta$ - $\omega$ -perfect mappings and some of their theorems.

**Definition 3.1.** A mapping  $\lambda: (G, \tau) \to (H, \sigma)$  is said to be almost strongly  $\omega$ -continuous if, for each  $g \in G$  and each regular open set T of H containing  $\lambda(g)$ , there exists an  $\omega$ -open subset S in G, such that  $\lambda(\operatorname{cl}(S) \subseteq T$ .

**Definition 3.2.** A mapping  $\lambda$ :  $(G, \tau) \to (H, \sigma)$  is said to be strongly  $\theta$ - $\omega$ -perfect mapping (resp., almost strongly  $\omega$ -perfect mapping ) if it is strongly  $\theta$ - $\omega$ -continuous (resp., almost strongly  $\omega$ -continuous), closed, and, for every  $h \in H$ ,  $\lambda^{-1}(h)$ , compact.

The relationships among the strongly  $\omega$ -perfect mappings are given by the following figure:



In the figure above, the converses are not to be right, as demonstrated by the following examples:

**Example 3.3.** Let  $\lambda : (G, \tau) \to (G, \tau)$  be a mapping such that  $G = \{K, L, M, \text{ and } \tau = \{\varphi, G, \{K\}, \{L\}, \{K, L\}\}$  such that  $\lambda(K) = \lambda(L) = K$ ,  $\lambda(M) = M$ . Then  $\lambda$  is  $\omega$ -perfect mapping but is not strongly  $\theta$ - $\omega$ -perfect mapping.

**Theorem 3.4.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that *H* be an regular space. If  $\lambda$  is  $\omega$ -perfect mapping then it is strongly  $\theta$ - $\omega$ -perfect mapping.

**Proof**: Let  $\lambda$  be an  $\omega$ -perfect mapping. It suffices to demonstrate that  $\lambda$  is strongly  $\theta$ - $\omega$ -continuous. Let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Because of H is an regular space, there is an open set W such that  $\lambda$  (g)  $\in W \subseteq cl(W) \subseteq T$ . Since  $\lambda$  is  $\omega$ -continuous, then,  $\lambda^{-1}(W)$  is an  $\omega$ -open set and  $\lambda^{-1}(cl(W))$  is an  $\omega$ -closed. Assume that  $S = \lambda^{-1}(W)$ , then  $g \in \lambda^{-1}(W) \subseteq \lambda^{-1}(cl(W))$ ,  $S \in \omega O(G, g)$  and  $\omega cl(S) \subseteq \lambda^{-1}(cl(W))$ . We have  $\lambda(\omega cl(S)) \subseteq cl(W) \subseteq T$ , therefore  $\lambda$  is strongly  $\theta$ - $\omega$ -continuous. Hence  $\lambda$  is strongly  $\theta$ - $\omega$ -perfect mapping.

**Corollary 3.5.** Let  $(H, \tau)$  be regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is  $\omega$ -perfect if and only if it is strongly  $\theta$ - $\omega$ -perfect.

**Example 3.6.** Let  $\lambda : (\mathcal{R}, \tau) \to (\mathcal{R}, \tau)$  be a mapping where  $\lambda(g) = g$ , and let  $(\mathcal{R}, \tau)$  where  $\tau$  is the topology with a basis whose members are of the form (a, b) and (a, b) -*N* such that  $N = \{1 \mid n \in \mathbb{Z}^+\}$ . Then  $(\mathcal{R}, \tau)$  is a Hausdorff but not  $\omega$ -regular. Then  $\lambda$  is  $\omega$ -perfect but not almost strongly  $\omega$ -perfect mapping.

**Theorem 3.7.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that G be an  $\omega$ -regular space. If  $\lambda$  is  $\omega$ -perfect mapping then it is almost strongly  $\omega$ -perfect mapping.

**Proof**: Let  $\lambda$  be an  $\omega$ -perfect mapping. It suffices to demonstrate that  $\lambda$  is almost strongly  $\omega$ continuous. Let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Since  $\lambda$  is  $\omega$ -continuous, there is an  $\omega$ -open set S containment g in G such that  $\lambda(S) \subseteq T$  and  $T \subseteq cl(T)$ , then  $\lambda(S) \subseteq cl(T)$ . Since G is  $\omega$ regular, there is an  $\omega$ -open set SI in G such that  $g \in SI$  and  $cl(SI) \subseteq S$ , so  $\lambda(cl(SI)) \subseteq \lambda(S), \lambda(S) \subseteq$ cl(T) and  $int(cl((T)) \subseteq cl(T)$ . It follows that  $\lambda(cl(SI)) \subseteq int(cl((T))$ , therefore  $\lambda$  is almost strongly  $\omega$ continuous. Hence  $\lambda$  is almost strongly  $\omega$ -perfect mapping.

**Corollary 3.8.** Let  $(G, \tau)$  be  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is  $\omega$ -perfect if and only if it is almost strongly  $\omega$ -perfect.

**Example 3.9.** Let  $G = \{u, v, w\}$  and  $\lambda: (G, \tau) \rightarrow (G, \sigma)$ , such that  $\tau = \{G, \varphi, \{u, v\}\}$ ,  $\sigma = \{G, \varphi, \{v, w\}\}$ , and  $\lambda(u) = \lambda(w) = w$ ,  $\lambda(v) = v$ . Then  $\lambda$  is  $\theta$ - $\omega$ -perfect mapping but not strongly  $\theta$ - $\omega$ -perfect mapping.

**Theorem 3.10.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that *H* be an regular space. If  $\lambda$  is  $\theta \cdot \omega$ -perfect mapping then it is strongly  $\theta \cdot \omega$ -perfect mapping.

**Proof**: Let  $\lambda$  be an  $\theta$ - $\omega$ -perfect mapping. It suffices to demonstrate that  $\lambda$  is a strongly  $\theta$ - $\omega$ continuous, let  $g \in G$  also T be an open set containment  $\lambda$  (g) in H. Since  $\lambda$  is  $\theta$ - $\omega$ -continuous, there is an  $\omega$ -open set S containment g in G such that  $\lambda(\omega cl(S)) \subseteq cl(T)$ . Since H is regular, there is an open set W such that  $\lambda(g) \in W \subseteq cl(W) \subseteq T$ , then  $\lambda(\omega cl(S)) \subseteq cl(W) \subseteq T$ , therefore  $\lambda(cl(S)) \subseteq T$ . So  $\lambda$  is strongly  $\theta$ - $\omega$ -continuous. Hence  $\lambda$  is strongly  $\theta$ - $\omega$ -perfect mapping.

**Corollary 3.11.** Let  $(H, \tau)$  be regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is  $\theta \cdot \omega$ -perfect if and only if it is strongly  $\theta \cdot \omega$ -perfect.

**Theorem 3.12.** A space G is  $\omega$ \*-regular if and only if, for any space H, any perfect mapping  $\lambda : (G, \tau) \rightarrow (H, \sigma)$  is strongly  $\theta$ - $\omega$ -perfect.

**Proof : Sufficiency.** Let  $\lambda : G \to G$  be the identity mapping. Then  $\lambda$  is continuous and strongly  $\theta$ - $\omega$ -continuous by our hypothesis. For any open set S of G and for any point g of S, we have  $\lambda(g) = g \in S$ . Also, there is  $T \in \omega O(G, g)$  such that  $\lambda(\omega cl(T)) \subseteq S$ , therefore  $g \in T \subseteq \omega cl(T) \subseteq S$ . It follows from Lemma 2.9 that G is  $\omega$ \*-regular.

**Necessity.** Assume that  $\lambda : G \to H$  is continuous and *G* is  $\omega$ \*-regular. For any  $g \in G$  and any open neighborhood *T* of  $\lambda$  (g),  $\lambda^{-1}(T)$  is an open set of *G* containing g. Since *G* is  $\omega$ \*-regular, there is  $S \in \omega O(G)$  such that  $g \in S \subseteq \omega cl(S) \subseteq \lambda^{-1}(T)$  by Lemma 2.9. Therefore,  $\lambda(\omega cl(S)) \subseteq T$ . Hence  $\lambda$  is strongly  $\theta$ - $\omega$ -perfect.

**Example 3.13.** Let  $\lambda : (G, \tau) \to (G, \tau)$  be a mapping such that  $G = \{K, L, M\}$  and  $\tau = \{\varphi, G, \{K\}, \{L\}, \{K, L\}\}$ , such that  $\lambda(K) = \lambda(L) = \lambda(M) = M$ . Then  $\lambda$  is  $\theta$ - $\omega$ -perfect mapping, but not almost strongly  $\omega$ -perfect mapping.

**Theorem 3.14.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that *H* be an  $\omega$ -regular space. If  $\lambda$  is  $\theta$ - $\omega$ -perfect mapping then it is almost strongly  $\omega$ -perfect mapping.

**Proof**: Let  $\lambda$  be an  $\theta$ - $\omega$ -perfect mapping. It suffices to demonstrate that  $\lambda$  is almost strongly  $\omega$ continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Since  $\lambda$  is  $\theta$ - $\omega$ -continuous, there is
an  $\omega$ -open set S containment g in G such that  $\lambda(\omega \operatorname{cl}(S)) \subseteq \operatorname{cl}(T)$ . Since H is an  $\omega$ -regular, there is an  $\omega$ -open set T1 in H such that  $\lambda$  (g)  $\in T1$ , also  $\operatorname{cl}(T1) \subseteq T$  and  $\operatorname{int}(\operatorname{cl}(T1) \subseteq \operatorname{cl}(T1)$ . It follows that  $\lambda(\operatorname{cl}(S)) \subseteq \operatorname{int}(\operatorname{cl}(T1)$ , therefore  $\lambda$  is almost strongly  $\omega$ -continuous. So  $\lambda$  is almost strongly  $\omega$ -perfect
mapping.

**Corollary 3.15.** Let  $(G, \tau)$  be  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is  $\omega$ -perfect if and only if it is almost strongly  $\omega$ -perfect.

**Example 3.16.** Let  $\lambda : (G, \tau) \rightarrow (H, \sigma)$  such that  $G = \{u, v, w\}, H = \{a, b, c\}, \tau = \{G, \varphi, \{u\}, \{v\}, \{u, v\}\}$  and  $\sigma = \{H, \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ , such that  $\lambda (u) = b, \lambda (v) = \lambda$ (w) = a. Then  $\lambda$  is almost  $\omega$ -perfect mapping, but not almost strongly  $\omega$ -perfect mapping.

**Theorem 3.17.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that G be an  $\omega$ -regular space. If  $\lambda$  is almost  $\omega$ -perfect mapping then it is almost strongly  $\omega$ -perfect mapping.

**Proof**: Let  $\lambda$  be almost  $\omega$ -perfect mapping. It suffices to demonstrate that  $\lambda$  is almost strongly  $\omega$ continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Since  $\lambda$  is almost  $\omega$ -continuous,
there is an  $\omega$ -open set S containment g in G such that  $\lambda(S) \subseteq int(cl(T))$ . Since G is  $\omega$ -regular, there is
an  $\omega$ -open set S1 in G such that  $g \in S1$ , also  $cl(S1) \subseteq S$ , so  $\lambda(cl(S1)) \subseteq \lambda(S)$ , then  $\lambda(cl(S1)) \subseteq \lambda(S)$ 

int(cl(*T*)). It follows that  $\lambda$ (cl(*S1*))  $\subseteq$  int(cl(*T*)), therefore  $\lambda$  is almost strongly  $\omega$ -continuous. So  $\lambda$  is almost strongly  $\omega$ -perfect mapping.

**Corollary 3.18.** Let  $(G, \tau)$  be  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is almost  $\omega$ -perfect if and only if it is almost strongly  $\omega$ -perfect.

**Lemma 3.19.** Let a mapping  $\lambda : G \to H$  be strongly  $\theta \cdot \omega$ -perfect and  $\mu : H \to L$  be perfect. Then  $\mu o \lambda$  is strongly  $\theta \cdot \omega$ -perfect.

**Theorem 3.20.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping and  $\mu : G \to G \times H$  the graph mapping of  $\lambda$  defined by  $\mu(g) = (g, \lambda(g))$  for each  $g \in G$ . Then  $\mu : G \to G \times H$  is strongly  $\theta$ - $\omega$ -perfect if and only if  $\lambda : (G, \tau) \to (H, \sigma)$  is strongly  $\theta$ - $\omega$ -perfect and *G* is an  $\omega$ -regular.

**Proof :** By Lemma 3.19,  $\lambda$  is strongly  $\theta$ - $\omega$ -perfect if the graph mapping  $\mu$  is strongly  $\theta$ - $\omega$ -perfect. Also it follows that *G* is regular. To prove the converse, assume that  $\lambda$  is strongly  $\theta$ - $\omega$ -perfect. Let  $g \in G$  and *W* be an open set of  $G \times H$  containment  $\mu(g)$ . There are the open sets  $SI \subseteq G$  and  $T \subseteq H$  such that  $\mu(g) = (g, \lambda(g)) \in SI \times T \subseteq W$ . Since  $\lambda$  is strongly  $\theta$ - $\omega$ -continuous, there is  $S2 \in \omega O(G, g)$  such that  $\lambda(\omega cl(S2)) \subseteq T$ . Because *G* is an  $\omega$ -regular and  $SI \cap S2 \in \omega O(G, g)$ , there is  $S \in \omega O(G, g)$  such that  $g \in S \subseteq \omega cl(S) \subseteq SI \cap S2$  (by Lemma 2.9). Therefore,  $\mu(\omega cl(S1)) \subseteq SI \times \lambda(\omega cl(S2)) \subseteq SI \times T \subseteq W$ . Then  $\mu$  is strongly  $\theta$ - $\omega$ -continuous. So  $\mu$  is strongly  $\theta$ - $\omega$ -perfect mapping.

**Example 3.21.** Let  $\lambda : (G, \tau) \to (H, \sigma)$ , such that  $G = H = \{u, v, w\}$  and  $\tau = \{\varphi, G, \{u\}, \{v\}, \{u, v\}\}$ ,  $\sigma = \{\varphi, H, \{w\}\}$ , defined by  $\lambda(u) = \lambda(v) = \lambda(w) = w$ . Then  $\lambda$  is strongly  $\theta$ - $\omega$ -perfect doesn't the mappings  $\mu$  of the  $\lambda$ . Then,  $\mu(g) = (g, \lambda(g))$ , then it is not strongly  $\theta$ - $\omega$ -perfect mapping at u and v.

**Example 3.22.** from in Example 3.9,  $\lambda$  is almost  $\omega$ -perfect mapping, but not strongly  $\theta$ - $\omega$ -perfect mapping.

**Theorem 3.23.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping, such that *H* be an  $\omega$ -regular space. If  $\lambda$  is almost  $\omega$ -perfect mapping then it is strongly  $\theta$ - $\omega$ -perfect mapping.

**Proof:** Let  $\lambda$  be almost  $\omega$ -perfect mapping. It suffices to demonstrate that  $\lambda$  is strongly  $\theta$ - $\omega$ continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Since  $\lambda$  is almost  $\omega$ -continuous,
there is an  $\omega$ -open set S containment g in G such that  $\lambda(S) \subseteq int(cl(T))$ . Since G is  $\omega$ -regular, there is
an  $\omega$ -open set SI in G such that  $g \in SI$  and  $cl(SI) \subseteq S$ . So  $\lambda(cl(SI)) \subseteq \lambda(S)$ , also  $int(cl(T)) \subseteq cl(T)$ . It
follows that  $\lambda(cl(SI)) \subseteq T$ , therefore  $\lambda$  is strongly  $\theta$ - $\omega$ -continuous. So  $\lambda$  is strongly  $\theta$ - $\omega$ -perfect
mapping.

**Corollary 3.24.** Let  $(G, \tau)$  be a  $\omega$ -regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is almost  $\omega$ -perfect if and only if it is strongly  $\theta$ - $\omega$ -perfect

**Theorem 3.25.** For a mapping  $\lambda : (G, \tau) \to (H, \sigma)$  and *H* is regular space, the following properties are equivalent :

(a)  $\lambda$  is almost strongly  $\theta$ - $\omega$ -perfect.

- (b)  $\lambda$  is  $\omega$ -perfect.
- (c)  $\lambda$  is almost  $\omega$ -perfect.
- (d)  $\lambda$  is  $\theta$ - $\omega$ -perfect.

## 4. Relationship between Weak and Strong Forms of ω-Perfect Mappings

In this section, we study the relationship between weakly  $\theta$ - $\omega$ -perfect mappings and strongly  $\theta$ - $\omega$ -perfect mappings and some theorems concerning them.

**Definition 4.1.** A mapping  $\lambda: (G, \tau) \to (H, \sigma)$  is said to be super (resp., weakly, strongly)  $\omega$ continuous if for each  $g \in G$  and each open neighborhood (resp., open set) T of H containing  $\lambda(g)$ ,
there exists an  $\omega$ -open neighborhood (resp.,  $\omega$ -open set) S of G, such that  $\lambda$  (int (cl(S))  $\subseteq T$  (resp.,  $\lambda$  (S))  $\subseteq$  cl(T),  $\lambda$  ((cl(S))  $\subseteq T$ )).

**Definition 4.2.** A mapping  $\lambda: (G, \tau) \to (H, \sigma)$  is said to be almost weakly (resp., almost

strongly) continuous if for each  $g \in G$  and each open (resp., regular open) set T of H

containing  $\lambda(g)$ , there exists an open set *S* in *G*, such that  $\lambda(S) \subseteq cl(T)$  (resp.,  $\lambda(cl(S) \subseteq T)$ .

**Definition 4.3.** A mapping  $\lambda: (G, \tau) \to (H, \sigma)$  is said to be weakly  $\theta$ -continuous if for each  $g \in G$  and each open set *T* of *H* containing  $\lambda(g)$ , there exists an open set *S* in *G*, such that  $\lambda(S) \subseteq cl(T)$ .

**Definition 4.4.** A mapping  $\lambda: (G, \tau) \to (H, \sigma)$  is called to be super  $\omega$ -perfect mapping (resp., weakly  $\omega$ -perfect mapping, strongly  $\omega$ -perfect mapping, almost weakly perfect mapping, almost strongly perfect mapping, weakly  $\theta$ -perfect mapping) if it is super  $\omega$ -continuous (resp., weakly  $\omega$ -continuous

,strongly *ω*-continuous, almost weakly continuous, almost strongly continuous, weakly *θ*-continuous), closed, and, for every  $h \in H$ ,  $\lambda^{-1}(h)$ ,compact.

| The relationships weakly and strongly $\omega$ -perfect mappings are given by the following figure: |                                                                                                            |                                                   |               |                                                |                                          |   |                                                             |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------|------------------------------------------------|------------------------------------------|---|-------------------------------------------------------------|
| strongly<br>θ-ω-perfect<br>Mapping<br>↓                                                             | ⇒                                                                                                          | <i>ω</i> -perfect mapping ↓                       |               |                                                | ⇒                                        |   | weakly <i>θ-</i><br>ω-perfect<br>mapping<br>↑               |
| super ω-<br>perfect<br>mapping                                                                      | ⇒                                                                                                          | almost ω-<br>perfect<br>mapping                   |               |                                                | ⇒                                        |   | θ-ω-<br>perfect<br>mapping                                  |
| ↓<br><i>∞</i> -perfect<br>mapping<br>↑                                                              | ¢                                                                                                          | almost<br>stronglyω-<br>perfect<br>mapping<br>↓ ▼ | ,             |                                                | ⇒                                        |   | ↓<br>almost<br>weakly <i>∞</i> -<br>perfect<br>mapping<br>↑ |
| θ-ω-perfect<br>mapping                                                                              | $\begin{array}{cc} \theta & \Rightarrow \\ \Leftrightarrow & \text{perfect} \\ \text{mapping} \end{array}$ | weakly <i>θ</i> -<br>perfect<br>mapping           | ¢             | perfect<br>mapping<br>↓                        | $\Rightarrow$                            |   | almost<br>perfect<br>mapping<br>↑                           |
|                                                                                                     |                                                                                                            |                                                   |               | almost<br>weakly<br>perfect<br>mapping<br>↑    | ¢                                        |   | almost<br>strongly<br>perfect<br>mapping<br>↑               |
|                                                                                                     |                                                                                                            | weakly <i>θ-</i><br>perfect<br>mapping<br>↓       | $\Rightarrow$ | weakly ⇐<br>perfect<br>mapping<br>↓            | perfect<br>mapping<br>↓                  | ¢ | strongly<br>perfect<br>mapping<br>↓                         |
|                                                                                                     |                                                                                                            | weaklyθ-<br>ω-perfect<br>mapping                  | ⇒             | weakly $\Leftarrow \omega$ -perfect<br>mapping | <ul><li>ω- perfect<br/>mapping</li></ul> | ⇐ | strongly ω-<br>perfect<br>mapping                           |

In the figure above, the converses are not to be right as demonstrated by the following examples: **Example 4.5.** Let  $\lambda$ :  $(G, \tau) \rightarrow (G, \tau)$ , such that  $G = \{u, v, w\}$  and  $\tau = \{\varphi, G, \{u\}, \{v\}, \{u, v\}\}$ defined by  $\lambda(u) = u, \lambda(v) = v, \lambda(w) = w$ . Then  $\lambda$  is super  $\omega$ -perfect mapping but it is not strongly  $\theta$ - $\omega$ perfect mapping.

**Theorem 4.6.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping, such that G be a regular space. If  $\lambda$  is super  $\omega$ -perfect mapping then it is strongly  $\theta$ - $\omega$ -perfect mapping.

**Proof:** Let  $\lambda$  be a super  $\omega$ -perfect mapping. It suffices to demonstrate that  $\lambda$  is strongly  $\theta$ - $\omega$ continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Because of  $\lambda$  is a super  $\omega$ continuous, there is a regular open set S containment g, such that  $\lambda$  (S)  $\subseteq T$ . Because  $int(cl(T)) \subseteq$  cl(T), then  $\lambda$  (S)  $\subseteq$   $int(cl(T)) \subseteq cl(T)$ , then  $\lambda$  (S)  $\subseteq$  cl(T). Also G is a regular space, there is an open set W such that  $g \in W \subseteq cl(W) \subseteq S$ , so  $\lambda(cl(W)) \subseteq T$ . Therefore  $\lambda$  is strongly  $\theta$ - $\omega$ -continuous. Hence
consider that  $\lambda$  is strongly  $\theta$ - $\omega$ -perfect mapping.

**Corollary 4.7.** Let  $(G, \tau)$  be regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is super  $\omega$ -perfect if and only if it is strongly  $\theta$ - $\omega$ -perfect.

**Example 4.8.** Let  $\lambda$ :  $(G, \tau) \rightarrow (H, \sigma)$  be a mapping, such that  $G = \{u, v, w\}, H = \{a, b\}$ , and  $\tau = \{\varphi, G, \{u\}, \{v\}, \{u, v\}, \{v, w\}\}, \sigma = \{H, \varphi, \{a\}\}$  defined by  $\lambda(u) = \lambda(w) = b$ ,  $\lambda(v) = a$ . Then,  $\lambda$  is  $\omega$ -perfect but it is not super  $\omega$ -perfect.

**Theorem 4.9.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping, such that *G* be a regular space. If  $\lambda$  is  $\omega$ -perfect mapping then it is super  $\omega$ -perfect mapping.

**Proof:** Let  $\lambda$  be  $\omega$ -perfect mapping. It suffices to demonstrate that  $\lambda$  is super  $\omega$ -continuous, let  $g \in G$ and T be an open set containment  $\lambda$  (g) in H. Because of  $\lambda$  is  $\omega$ -continuous, there is  $S \in \omega O(G, g)$ , such that  $\lambda$  (S)  $\subseteq T$ . Also, int( cl(S))  $\subseteq$  cl(S), then  $\lambda$  (int( cl(S))  $\subseteq \lambda$  (cl(S)). Also G is a regular space, there is an open set S1 such that  $g \in S1 \subseteq$  cl(S1)  $\subseteq S$ , so  $\lambda$ (int(cl(S))  $\subseteq \lambda$  (cl(S1)) also  $\lambda$  (S)  $\subseteq T$ . So  $\lambda$ (int(cl(S))  $\subseteq T$ , then  $\lambda$  is super  $\omega$ -continuous. Hence consider that  $\lambda$  is super  $\omega$ -perfect mapping.

**Corollary 4.10.** Let  $(G, \tau)$  be regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is  $\omega$ -perfect if and only if it is super  $\omega$ -perfect.

**Example 4.11.** Let  $\lambda : (\mathcal{R}, \tau) \to (\mathcal{R}, \tau)$  be a mapping, such that  $\lambda(g) = g$ , and let  $(\mathcal{R}, \tau)$  where  $\tau$  is the topology with a basis whose members are of the form (a, b) and (a, b) -N, such that  $N = \{1 \mid n ; n \in \mathbb{Z}^+\}$ . Then  $(\mathcal{R}, \tau)$  is a Hausdorff but not  $\omega$ -regular. Then  $\lambda$  is perfect but it is not strongly perfect mapping.

**Theorem 4.12.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that G be an regular space. If  $\lambda$  is perfect mapping then it is strongly perfect mapping.

**Proof:** Let  $\lambda$  be perfect mapping. It suffices to demonstrate that  $\lambda$  is strongly continuous, let  $g \in G$  and T be an open set containment  $\lambda$  (g) in H. Since  $\lambda$  is continuous, there is an open set S containment g in G such that  $\lambda(S) \subseteq T$ . Since G is regular space, there is an open set S1 in G such that  $g \in S1$  and  $cl(S1) \subseteq S$ , so  $\lambda(cl(S1)) \subseteq \lambda(S)$ . Then  $\lambda(cl(S1)) \subseteq T$ , therefore  $\lambda$  is strongly continuous. So  $\lambda$  is strongly perfect mapping.

**Corollary 4.13.** Let  $(G, \tau)$  be regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is perfect if and only if it is strongly perfect.

**Theorem 4.14.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping such that *H* be a regular space. If  $\lambda$  is weakly perfect mapping then it is perfect mapping.

**Proof:** Let  $\lambda$  be weakly perfect mapping. It suffices to demonstrate that  $\lambda$  is continuous, let  $g \in G$  and *T* be an open set containment  $\lambda$  (g) in *H*. Since *H* is regular, there is an open set *T1* in *H* such that  $\lambda(g) \in T1$  and  $\operatorname{cl}(T1) \subseteq T$ . Since  $\lambda$  is weakly continuous, there is an open set *S* containment g in *G*, such that  $\lambda(S) \subseteq \operatorname{cl}(T1)$ , then  $\lambda(S) \subseteq T$ . It follows that  $\lambda$  is continuous. So  $\lambda$  is perfect mapping.

**Corollary 4.15.** Let  $(G, \tau)$  be regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is weakly perfect if and only if it is perfect.

**Example 4.16.** A mapping  $\lambda : (G, \tau) \to (H, \sigma)$  such that  $G = \{u, v, w\}, H = \{a, b\}, \tau = \{G, \phi, \{u\}, \{v\}, \{u, v\}, \{v, w\}\}, \sigma = \{H, \phi, \{a\}\}, \text{ defined by } \lambda(u) = \lambda(v) = \lambda(w) = b$ . The mapping  $\lambda$  is almost  $\omega$ -perfect mapping but it is not super  $\omega$ -perfect mapping.

**Theorem 4.17.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping, such that G and H are semi-regular spaces. If  $\lambda$  is almost  $\omega$ -perfect mapping then it is super  $\omega$ -perfect mapping.

**Proof:** Let  $\lambda$  be an almost  $\omega$ -perfect mapping. It suffices to demonstrate that  $\lambda$  is super  $\omega$ continuous, let  $g \in G$  and let T be an open set containment  $\lambda$  (g) in H. Because of  $\lambda$  is almost  $\omega$ continuous, there is an  $\omega$ -open set S containment g, for each regular open set T of H containment  $\lambda$ (g) such that  $\lambda$  (S)  $\subseteq T$ . So  $\lambda$  (S)  $\subseteq$  int(cl(T)). Because the space G is semi-regular space, there is an
open set S1 in G such that  $g \in S1$  and  $T \subseteq$  int(cl(T))  $\subseteq S$ , so  $\lambda$  (T)  $\subseteq \lambda$  (int(cl(T)))  $\subseteq \lambda$  (S). Also  $\lambda$  (S)  $\subseteq$  int(cl(T)). Then  $\lambda$  (int(cl(T)))  $\subseteq \lambda$  (S)  $\subseteq$  int(cl(T)). Also the space H is semi-regular space, there is
an open set T1 in H such that  $\lambda$  (g)  $\in T1$ , and  $S \subseteq$  int(cl(S))  $\subseteq T$ , so  $\lambda$  (S)  $\subseteq \lambda$  (int(cl(S)))). It follows
that  $\lambda$  (int(cl(S))))  $\subseteq T$ . Then  $\lambda$  is super  $\omega$ -continuous. Hence  $\lambda$  is super  $\omega$ - perfect mapping.

**Corollary 4.18.** Let  $(G, \tau)$  and  $(H, \sigma)$  be semi-regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is almost  $\omega$ -perfect if and only if it is super  $\omega$ -perfect.

**Example 4.19.** A mapping  $\lambda : (G, \tau) \to (G, \tau)$  such that  $G = \{u, v, w\} \tau = \{G, \varphi, \{u\}, \{v\}, \{u, v\}\}$ ,  $\lambda(u) = \lambda(v) = u$ , and  $\lambda(w) = w$ , then  $\lambda$  is almost weakly perfect mapping but it is not almost strongly perfect mapping

**Theorem 4.20.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping, such that G is a regular space. If  $\lambda$  is almost weakly perfect mapping then it is almost strongly perfect mapping.

**Proof:** Let  $\lambda$  be almost weakly perfect mapping. It suffices to demonstrate that  $\lambda$  is almost strongly continuous, let  $g \in G$  and let *T* be an open set containment  $\lambda$  (g) in *H*. Because of  $\lambda$  is almost weakly

continuous and  $g \in G$  for each open set *T* of *H* containment  $\lambda(g)$ , there is an open set *S* containment *g*, such that  $\lambda(S) \subseteq cl(T)$ . Because the space *G* is a regular space, there is an open set *S*1 in *G* such that  $g \in S1$  also  $cl(S1) \subseteq S$ , so  $\lambda(cl(S1)) \subseteq \lambda(S)$ . Also  $\lambda(S) \subseteq cl(T)$ . Then  $\lambda(cl(S1)) \subseteq cl(T)$  and  $int(cl(T1)) \subseteq cl(T1)$ . Then  $\lambda(cl(S1)) \subseteq int(cl(T1))$ . It follows that  $\lambda$  is almost strongly continuous. Hence  $\lambda$  is almost strongly perfect mapping.

**Corollary 4.21.** Let  $(G, \tau)$  and  $(H, \sigma)$  are regular spaces. The mapping  $\lambda : (G, \tau) \to (H, \sigma)$  is almost weakly perfect if and only if it is almost strongly perfect.

**Theorem 4.22.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  and  $(H, \sigma)$  be regular spaces, then the following properties are equivalent :

- (a)  $\lambda$  is strongly perfect.
- (b)  $\lambda$  is perfect.
- (c)  $\lambda$  is weakly perfect.

**Theorem 4.23.** Let  $\lambda : (G, \tau) \to (H, \sigma)$  be a mapping with a regular space and  $\mu : G \to G \times H$ . where the  $\lambda$  defined by  $\mu(g) = (g, \lambda(g))$  for each  $g \in G$ . If  $\lambda : (G, \tau) \to (H, \sigma)$  is strongly perfect, then  $\mu : G \to G \times H$  is strongly perfect.

**Proof :** Assume that  $\lambda$  is strongly perfect, let  $g \in G$  and W be an open set of  $G \times H$  containment  $\mu(g)$ . Yond represents open sets  $S1 \subseteq G$  and  $T \subseteq H$  such that  $\mu(g) = (g, \lambda(g)) \in S1 \times T \subseteq W$ . Since  $\lambda$  is strongly continuous and G is a regular space. an open set S containing g in G such that  $cl(S) \subseteq S1$  and  $\lambda(cl(S) \subseteq T)$ . Therefore  $\mu(cl(S)) \subseteq S1 \times T \subseteq W$ , then  $\mu$  is strongly continuous. So the mapping  $\mu = id_x \Delta \lambda : G \to G \times H$  maps G homeomorphically onto the graph  $\mu(g)$  which is a closed subset of  $G \times H$ . So  $\mu$  is perfect, and because G is regular, then  $G \times H$  is regular by theorem 4.22. Hence  $\mu: G \to G \times H$  is strongly perfect.

**Theorem 4.24.** For a mapping  $\lambda : (G, \tau) \to (H, \sigma)$  and since *H* is a regular space, the following properties are equivalent :

- (a)  $\lambda$  is almost strongly  $\theta$ - $\omega$ -perfect.
- (b)  $\lambda$  is  $\omega$ -perfect.
- (c)  $\lambda$  is almost  $\omega$ -perfect.
- (d)  $\lambda$  is  $\theta$ - $\omega$ -perfect.
- (e)  $\lambda$  is almost weakly  $\omega$ -perfect.

## References

- 1. Formin, S. 1943. " Extension of topological spaces," Annals of Mathematics. Second Series, 44: 471-480, 1943.
- 2. Bourbaki, N. 1966. General Topology, Part I, Addison-Wesly, Reding, Mass.
- **3.** Velicko, N.V. **1968**. H-closed topological spaces, *Amer. Math. Soc. Transl.*, **78**: 103-118. Current address: Selcuk University Faculty of Science and Arts Department of Mathematics.
- **4.** Singal, M.K. and Singal, A.R. **1968**. Almost- continuous mappings, *Yokohama*. *Math. J.*, **16**: 63-73.
- **5.** Long, P.E. and Herrington, L.L. **1981**. Strongly *θ*-continuous functions, *J.of the Korean Math. Soc.*, **18**(1): 21-28.
- 6. Hdeib, H.Z. 1989. " ω-continuous functions" Dirasat, 16(2): 136-142.
- 7. Chew, J. and Tong, J. 1991. Some Remarks on Weak continuity, *American Mathematical Monthly*, 98: 931-934.
- 8. Noiri, T., Al-Omari, A. and Noorani, M.S.M. 2009. "Weak forms of  $\omega$  -open sets and decomposition of continuity ", *E.J.P.A.M.* 2(1): 73-84.
- 9. Noiri, T. 1980. On  $\delta$ -continuous functions. J. Korean Math. Soc., 16: 161-166.
- **10.** Noiri, T. **1989**. " On almost continuous function," *Indian Journal of pure and Applied Mathematics*, **20**(6): 571-576.
- **11.** AI-Omari, A. and Noorani, M.S.M. **2007**. " Contra-ω-continuous and almost contra-ω-continuous," *International Journal of Mathematics and Mathematical Sciences*, VoI. 2007, Article ID 40469, 13 pages.

- **12.** AI-Omari, A. and Noorani, M.S.M. **2007**. "Regular generalized ω-closed sets,"*International Journal of Mathematics and Mathematical, Sciences*, VoI. Article ID 16292, 2007, 11 pages, 2007.
- **13.** AI-Omari, A. and Noorani, M.S.M. 2009. "Weak and Strong form of ω-continuous"*International Journal of Mathematics and Mathematical Sciences*, VoI. Article ID 174042, 12 pages.
- 14. N. Bourbaki, N. 1989. "Regular Space. " in Elements of Mathematics: General Topology. Berlin: Springer- Verlag, pp. 80-81.
- 15. Stone, M.H. 1937. Applications of the theory boolean rings to General Topology. *Trans. Am. Math, Soc.*, 41: 375-481.
- **16.** Devi, R., Balachan dran, K. and Maki, H. **1995**. on Generalized α-continuous maps, *Far.East J. Math.*, **16**: 35-48.