

ISSN: 0067-2904

Jordan Triple Higher (σ, τ)-Homomorphisms on Prime Rings

Salah M. Salih ${ }^{1}$, Neshtiman N. Sulaiman ${ }^{* 2}$
${ }^{1}$ Department of Mathematics, College of Education, Al-Mustanseryah University, Baghdad, Iraq
${ }^{2}$ Department of Mathematics, College of Education, Salahaddin University, Erbil, Kurdistan Region, Iraq

Received: 13/11/2019
Accepted: 21/12/2019

Abstract

In this paper, the concept of Jordan triple higher (σ, τ)-homomorphisms on prime rings is introduced. A result of Herstein is extended on this concept from the ring R into the prime ring R^{\prime}. We prove that every Jordan triple higher (σ, τ)homomorphism of ring R into prime ring R^{\prime} is either triple higher (σ, τ)homomorphism or triple higher (σ, τ)-anti-homomorphism of R into R^{\prime}.

Keywords: Jordan homomorphisms, triple homomorphism, Jordan triple higher (σ, τ)- homomorphism.

$$
\text { الثلاثية العالية } \sigma, \tau) ت ش ا ك ل ا ت ~ ج و ر د ا ن ~ ع ل ى ~ ا ل ح ل ق ا ت ~ ا ل ا و ل ي ة ~
$$

$$
\begin{aligned}
& \text { صصلاح مهدي صالح , }{ }^{2} \text {, نيشتمان نورالدين سليمان } \\
& \text { 11 قسم الرياضيات، كلية التربية، الجامعة ا لمستتصرية، بغداد، العراق } \\
& \text { 2قـقم الرياضيات، كلية التربية، جامعة صلاح الدين، اربيل، العراق }
\end{aligned}
$$

الخلاصة
في هذا البحث ,قدمت مفهوم تثاكالت جوردان ($\sigma, \tau)$ الثثلاثية العالية على الحلقات الاولية. لتد عممت نتائج Herstein على هذا المفهوم من الحقة R الى الحلقة الاولية R ${ }^{\prime}$. حيث برهنا كل تشاكالات جوردان

$$
\text { اللضادة (} \sigma, \tau) \text { الثلاثية العالية من R الى 'R. }
$$

Introduction

The idea of Jordan homomorphism of rings initially appeared in Ancochea's [1] study of semiautomorphisms, the later investigated by Kaplansky, Jacobson and Rickart [2, 3]. Herstein [4] studied Jordan homomorphisms in prime rings. He proved that a Jordan homomorphism onto prime ring of characteristic different from 2 and 3 is either a homomorphism or an anti-homomorphism. Bresar [5] generalized Herstein's work on semiprime rings.

Throughout this paper, R is a ring with the center $Z(R)$ prime if $a R b=(0)$ implies $a=0$ or $b=0$ with $a, b \in R$, and is semiprime if $a R a=(0)$ implies $a=0 . R$ is n-torsion free if $n a=0 ; a \in R$, then $a=0$.

In this paper, we extend the result of Herstein to triple higher (σ, τ)-homomorphism and Jordan triple higher (σ, τ)-homomorphism. We show that every Jordan triple higher (σ, τ)-homomorphism, from prime ring R into prime ring R^{\prime}, is triple higher (σ, τ)-homomorphism or triple higher (σ, τ)-antihomomorphism.

[^0]
2. Preliminaries

We begin by the following definition.

Definition 2.1. [3, 4, 5]

An additive mapping θ of a ring R into a ring R^{\prime} is called,
(a) a homomorphism if $\theta(a b)=\theta(a) \theta(b)$ for all $a, b \in R$,
(b) anti-homomorphism if $\theta(a b)=\theta(b) \theta(a)$ for all $a, b \in R$,
(c) a Jordan homomorphism if $\theta(a b+b a)=\theta(a) \theta(b)+\theta(b)(a)$ for all $a, b \in R$ and
(d) a Jordan triple homomorphism if $\theta(a b a)=\theta(a) \theta(b) \theta(a)$ for all $a, b \in R$.

Obviously, every homomorphism or anti-homomorphism is a Jordan homomorphism and every Jordan homomorphism is Jordan triple homomorphism but the converse needs not to be true in general.
Definition 2.2. [6]
Let \mathbb{N} be the set of natural numbers. A family of additive mappings $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ of R into R^{\prime} is called
(a) a higher homomorphism if for all $n \in \mathbb{N}, a, b \in R$,

$$
\phi_{\mathrm{n}}(a b)=\sum_{i=1}^{n} \phi_{\mathrm{i}}(a) \phi_{\mathrm{i}}(b)
$$

(b) a higher anti-homomorphism if for all $n \in \mathbb{N}, a, b \in R$,

$$
\phi_{\mathrm{n}}(a b)=\sum_{i=1}^{n} \phi_{\mathrm{i}}(b) \phi_{\mathrm{i}}(a)
$$

(c) a Jordan higher homomorphism if for all $n \in \mathbb{N}, a, b \in R$,

$$
\phi_{\mathrm{n}}(a b+b a)=\sum_{i=1}^{n} \phi_{\mathrm{i}}(a) \phi_{\mathrm{i}}(b)+\phi_{\mathrm{i}}(b) \phi_{\mathrm{i}}(a)
$$

(d) a triple higher homomorphism if for all $n \in \mathbb{N}, a, b \in R$,
$\phi_{\mathrm{n}}(a b c)=\sum_{i=1}^{n} \phi_{\mathrm{i}}(a) \phi_{\mathrm{i}}(b) \phi_{\mathrm{i}}(c)_{\mathrm{i}}$,
(e) a Jordan triple higher homomorphism if for all $n \in \mathbb{N}, a, b \in R$,

$$
\phi_{\mathrm{n}}(a b a)=\sum_{i=1}^{n} \phi_{\mathrm{i}}(a) \phi_{\mathrm{i}}(b) \phi_{\mathrm{i}}(a)_{\mathrm{i}}
$$

Definition 2.3. [7]
Let \mathbb{N} be the set of natural numbers. A family of additive mappings $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ of R into R^{\prime} and σ, τ as two homomorphisms of R is said to be
(a) a (σ, τ)-higher homomorphism if for each $n \in \mathbb{N}$ and for all $a, b \in R$,

$$
\phi_{n}(a b)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a) \phi_{i}\left(\tau^{i}(b)\right)\right.
$$

(b) a (σ, τ)-higher anti-homomorphism if for each $n \in \mathbb{N}$ and for all $a, b \in R$,

$$
\phi_{n}(a b)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(b) \phi_{i}\left(\tau^{i}(a)\right)\right.
$$

(c) a Jordan (σ, τ)-higher homomorphism if for each $n \in \mathbb{N}$ and for all $a, b \in R$,

$$
\phi_{n}(a b+b a)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a) \phi_{i}\left(\tau^{i}(b)\right)+\phi_{i}\left(\sigma^{i}(b) \phi_{i}\left(\tau^{i}(a)\right)\right.\right.
$$

(d) a Jordan triple (σ, τ)-higher homomorphism if for all $n \in \mathbb{N}, a, b \in R$,

$$
\phi_{n}(a b a)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
$$

Definition 2.4.

Let \mathbb{N} be the set of natural numbers. A family of additive mappings $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ of R into R^{\prime} and σ, τ as two homomorphisms of R is said to be
(a) a triple (σ, τ)-higher homomorphism if for all $n \in \mathbb{N}, a, b \in R$,

$$
\phi_{n}(a b c)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right)
$$

(b) a triple (σ, τ)-higher anti-homomorphism if for all $n \in \mathbb{N}, a, b \in R$,

$$
\phi_{n}(a b c)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
$$

Now, we give an example of triple (σ, τ)-higher homomorphism and Jordan triple (σ, τ)-higher homomorphism.

Example 2.5:

Let $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a triple (σ, τ)-higher homomorphism from R into R^{\prime}. Then for each $n \in \mathbb{N}$ and for all $a, b, c \in R$, we have:

$$
\phi_{n}(a b c)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right)
$$

Let $T=R \times R \times R$ and $T^{\prime}=R^{\prime} \times R^{\prime} \times R^{\prime}$. Then T and T^{\prime} are rings. We define $\theta^{\prime}=\left(\phi_{\mathrm{i}}^{\prime}\right)_{\mathrm{i} \in \mathbb{N}}$ to be a family of mappings from T to T^{\prime} by:

$$
\phi_{n}^{\prime}((a, b, c))=\left(\phi_{n}(a), \phi_{n}(b), \phi_{n}(c)\right)
$$

for all $(a, b, c) \in T$.
Then ϕ is a triple (σ, τ)-higher homomorphism.
Let S be the subset $\{(a, a, a): a \in R\}$ of T and S^{\prime} be the subset $\left\{(b, b, b): b \in R^{\prime}\right\}$ of T^{\prime}. Then S and S^{\prime} are rings and the family of mappings $\theta^{\prime}=\left(\phi_{\mathrm{i}}^{\prime}\right)_{\mathrm{i} \in \mathbb{N}}$ from S to S^{\prime} is defined in terms of the Jordan (σ, τ)-higher homomorphism by

$$
\phi_{n}^{\prime}((a, b, a))=\left(\phi_{n}(a), \phi_{n}(b), \phi_{n}(a)\right)
$$

for all $(a, a, a) \in S$.
Then ϕ is a Jordan triple (σ, τ) - higher homomorphism from S to S^{\prime}.
Obviously, every triple (σ, τ) -higher homomorphism or triple (σ, τ)-higher anti-homomorphism is a Jordan triple (σ, τ)-higher homomorphism but the converse needs not to be true in general. In an earlier work[6], the author provided an example of Jordan higher homomorphism but not higher homomorphism on a ring. We extend it to triple (σ, τ)-higher homomorphism on ring as follows.

Example 2.6.

Suppose that S is a ring with non-trivial involution *, $R=S \oplus S \oplus S, a \in S$ such that $a \in Z(S)$ and $s_{1} a s_{2}=0$, for all $s_{1}, s_{2} \in R$. Let $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a family of mappings of R into itself defined, for each $n \in N$ and $(s, t, s) \in R$, by:

$$
\phi_{n}(s, t, s)=\left\{\begin{array}{cr}
\left((2-n) a \sigma^{i}(s),(n-1) \sigma^{i} \tau^{n-i}\left(t^{*}\right),(2-n) a \sigma^{i}(s)\right), & n=1,2 \\
0 & n \geq 3
\end{array}\right.
$$

Therefore, it is clear that ϕ is a Jordan triple (σ, τ)-higher homomorphism but not a triple (σ, τ) higher homomorphism.
Now, we will give the following lemmas which are used in the proofs of the main results.

Lemma 2.7: [5]

Let R be a 2-torsion free semiprime ring. If $x, y \in R$ such that $x r y+y r x=0$, for all $r \in R$, then $x r y=y r x=0$.

Lemma 2.8:

Let $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$. be a Jordan triple (σ, τ)-higher homomorphism of R into R^{\prime}. Then for each $n \in \mathbb{N}$ and for all $a, b, c \in R$,

$$
\begin{aligned}
\phi_{n}(a b c+c b a) & =\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
& +\phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
\end{aligned}
$$

Proof: Since ϕ is a Jordan triple (σ, τ)-higher homomorphism, hence

$$
\phi_{n}(a b a)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
$$

By linearizing a, we get

$$
\begin{align*}
& \phi_{n}((a+c) b(a+c))=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a+c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a+c)\right) \\
& \quad=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)+\phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
& \quad+\phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)+\phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \tag{1}
\end{align*}
$$

On the other hand:

$$
\begin{align*}
& \phi_{n}((a+c) b(a+c))=\phi_{n}(a b a+a b c+c b a+c b c)=\phi_{n}(a b a)+\phi_{n}(a b c+c b a)+\phi_{n}(c b c) \\
& =\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)+\phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
& \quad+\phi_{n}(a b c+c b a) \tag{2}
\end{align*}
$$

By comparing (1) and (2), we achieve the result.

Remark 2.9:

Let $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a Jordan triple (σ, τ)-higher homomorphism from R into R^{\prime}. Then for each $n \in \mathbb{N}$ and for all $a, b \in R$, we will write

$$
\begin{aligned}
& A_{n}(a, b, c)=\phi_{n}(a b c)-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
& B_{n}(a, b, c)=\phi_{n}(a b c)-\sum_{i=1}^{n=1} \phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
\end{aligned}
$$

Note that $A_{n}(a, b, c)=0$, if and only if ϕ is a triple (σ, τ)-higher homomorphism, and $B_{n}(a, b, c)=0$, if and only if ϕ is a triple (σ, τ)-higher anti-homomorphism.
For the purpose of this paper, we can list the following elementary properties about the above:
1- $A_{n}(a, b, c)+A_{n}(c, b, a)=0$,
2- $B_{n}(a, b, c)+B_{n}(c, b, a)=0$,

Lemma 2.10:

If $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ is a Jordan triple (σ, τ)-higher homomorphism from a ring R into a ring R^{\prime}, then for all $a, b \in R$ and $n \in \mathbb{N}$,
i) $A_{n}(a+b, c, d)=A_{n}(a, c, d)+A_{n}(b, c, d)$
ii) $A_{n}(a, b+c, d)=A_{n}(a, b, d)+A_{n}(a, c, d)$
iii) $A_{n}(a, b, c+d)=A_{n}(a, b, c)+A_{n}(a, b, d)$

Proof:

i) $A_{n}(a+b, c, d)=\phi_{n}((a+b) c d)-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a+b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right)$
$=\phi_{n}(a c d+b c d)-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right)$

$$
-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right)
$$

Since ϕ_{n} is an additive mapping for each n, then
$=\phi_{n}(a c d)-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right)+\phi_{n}(b c d)-$
$\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right)=A_{n}(a, c, d)+A_{n}(b, c, d)$
In a similarly way, we can prove (ii) and (iii).

3. Main Results

Lemma 3.1:

If $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ is a Jordan triple higher (σ, τ)-homomorphism of R into R^{\prime}, then for each $n \in \mathbb{N}$ and for all $a, b, c, r \in R$,
$A_{n}\left(\sigma^{n}(a b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a b, c)\right)+B_{n}\left(\sigma^{n}(a b c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right)=0$.

Proof:

We proceed by the induction on $n \in \mathbb{N}$. Assume that θ is a Jordan triple higher (σ, τ) homomorphism and take $a, b, c, r \in R$.
If $n=1$: Definew $=a b c r c b a+c b a r a b c$, then we get the required result.
We can assume that the following equation is true for all $a, b, c, r \in R, n \in \mathbb{N}$ and $m<n$: $A_{m}\left(\sigma^{m}(a, b, c)\right) \phi_{m}\left(\sigma^{m}(r)\right) B_{m}\left(\tau^{m}(a, b, c)\right)+B_{m}\left(\sigma^{m}(a, b, c)\right) \phi_{m}\left(\sigma^{m}(r)\right) A_{m}\left(\tau^{m}(a, b, c)\right)=0$
Now, we have

$$
\begin{align*}
& \phi_{n}(w)=\phi_{n}(a(b c r c b) a+c(b a r a b) c) \\
& =\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b c r c b)\right) \phi_{i}\left(\tau^{i}(a)\right)+\phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(\operatorname{barab})\right) \phi_{i}\left(\tau^{i}(c)\right) \\
& =\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i}(b)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{i} \tau^{n-i}(c r c)\right)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right) \\
& +\phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i}(b)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{i} \tau^{n-i}(a r a)\right)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
& =\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i}(b)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \sigma^{i} \tau^{n-i}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i} \tau^{n-i}(r)\right) \phi_{j}\left(\tau^{j} \sigma^{i} \tau^{n-i}(c)\right)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right) \\
& +\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i}(b)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \sigma^{i} \tau^{n-i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i} \tau^{n-i}(r)\right) \phi_{j}\left(\tau^{j} \sigma^{i} \tau^{n-i}(a)\right)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
& \left.=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i} \sigma^{i} \tau^{n-i}(c)\right)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right) \\
& \left.+\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \sigma^{i} \tau^{n-i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i} \sigma^{i} \tau^{n-i}(a)\right)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
& \left.=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i} \tau^{n-i}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\tau^{j} \sigma^{j} \tau^{n-j}(c)\right)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(a)\right) \\
& \left.+\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \sigma^{i} \tau^{n-i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i} \tau^{n-i}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\tau^{j} \sigma^{j} \tau^{n-i}(a)\right)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(c)\right) \\
& =\phi_{n}\left(\sigma^{n}(a)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n} \sigma^{n}(c) \phi_{i}\left(\sigma^{n} \sigma^{n}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\tau^{j} \sigma^{j} \tau^{n-j}(c)\right)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(a)\right) \\
& \left.+\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i} \tau^{n-i}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\tau^{j} \sigma^{j} \tau^{n-j}(c)\right)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(a)\right) \\
& +\phi_{n}\left(\sigma^{n}(c)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n} \sigma^{n}(a) \phi_{i}\left(\sigma^{n} \sigma^{n}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\tau^{j} \sigma^{j} \tau^{n-j}(a)\right)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(c)\right) \\
& \left.+\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \sigma^{i} \tau^{n-i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i} \tau^{n-i}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\tau^{j} \sigma^{j} \tau^{n-i}(a)\right)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(c)\right) \tag{3}
\end{align*}
$$

On the other hand

$$
\phi_{n}(w)=\phi_{n}((a b c) r(c b a)+(c b a) r(a b c))
$$

$$
=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(c b a)\right)+f_{i}\left(\sigma^{i}(c b a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right)
$$

Since θ is a Jordan triple higher (σ, τ)-homomorphism, then

$$
\begin{aligned}
& =\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\tau^{j}(c)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(a)\right)\right. \\
& +\phi_{j}\left(\tau^{j}(a)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(c)\right)-\phi_{j}\left(\tau^{j}(a b c)\right) \\
& +\sum_{i=1}^{n}\left(\sum _ { j = 1 } ^ { i } \left(\phi_{j}\left(\sigma^{j} \sigma^{j}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{j}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{j}(a)\right)\right.\right. \\
& \left.+\phi_{j}\left(\sigma^{j} \sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{j}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{j}(c)\right)-\phi_{i}\left(\sigma^{i}(a b c)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
& =\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\tau^{j}(c)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(a)\right) \\
& +\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\tau^{j}(a)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(c)\right) \\
& -\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right. \\
& +\sum_{i=1}^{n} \sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \sigma^{j}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{j}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{j}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
& +\sum_{i=1}^{n} \sum_{j=1}^{i}\left(\phi_{j}\left(\sigma^{j} \sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{j}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{j}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right)\right. \\
& \left.-\sum_{i=1}^{n} \sum_{j=1}^{i} \phi_{i}\left(\sigma^{i}(a b c)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
& =-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\sum _ { j = 1 } ^ { i } \phi _ { i } \left(\tau^{i}(a b c)-\phi_{j}\left(\tau^{j}(c)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(a)\right)\right.\right. \\
& -\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\sum _ { j = 1 } ^ { i } \phi _ { i } \left(\tau^{i}(a b c)-\phi_{j}\left(\tau^{j}(a)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(c)\right)\right.\right. \\
& +\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
& +\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right)
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{l}
=-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a), \tau^{i}(b), \tau^{i}(c)\right) \\
\quad-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a), \tau^{i}(b), \tau^{i}(c)\right. \\
+\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
+\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
\begin{array}{r}
=-\phi_{n}\left(\sigma^{n}(a b c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)-\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a, b, c)\right) \\
-\phi_{n}\left(\sigma^{n}(a b c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right)-\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a, b, c)\right) \\
+
\end{array} \phi_{n}\left(\sigma^{n}(c)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n}(a)\right) \phi_{n}\left(\sigma^{n}(r)\right) \phi_{n}\left(\tau^{n}(a b c)\right) \\
\quad+\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
+\phi_{n}\left(\sigma^{n}(a)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n}(c)\right) \phi_{n}\left(\sigma^{n}(r)\right) \phi_{n}\left(\tau^{n}(a b c)\right) \\
\quad+\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right)
\end{array}
\end{align*}
$$

From equation (3) and (4), we get

$$
\begin{aligned}
& 0=-\phi_{n}\left(\sigma^{n}(a b c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)-\phi_{n}\left(\sigma^{n}(a b c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right.\right. \\
& \begin{array}{r}
+\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\phi_{i}\left(\tau^{i}(a b c)\right)\right. \\
\left.\left.\quad-\phi_{i}\left(\tau^{i}(a)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right)\right)\right) \\
+\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\phi_{i}\left(\tau^{i}(a b c)\right)\right. \\
\left.\left.\quad-\phi_{i}\left(\tau^{i}(c)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)\right)\right) \\
+\phi_{n}\left(\sigma^{n}(c)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n}(a)\right) \phi_{n}\left(\sigma^{n}(r)\right)\left(\phi_{n}\left(\tau^{n}(a b c)\right)\right) \\
\quad-\sum_{i=1}^{n} \phi_{i}\left(\tau^{i}(a)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right)
\end{array} \\
& +\phi_{n}\left(\sigma^{n}(a)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n}(c)\right) \phi_{n}\left(\sigma^{n}(r)\right)\left(\phi_{n}\left(\tau^{n}(a b c)\right)\right) \\
& \quad-\sum_{i=1}^{n} \phi_{i}\left(\tau^{i}(c)\right) \phi_{i}\left(\tau^{i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a, b, c)\right) \\
& \quad-\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a, b, c)\right) \\
& \begin{array}{l}
=-\phi_{n}\left(\sigma^{n}(a b c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)-\phi_{n}\left(\sigma^{n}(a b c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right.\right. \\
+\phi_{n}\left(\sigma^{n}(c)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n}(a)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)+\phi_{n}\left(\sigma^{n}(a)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n}(c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right.\right. \\
+\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right. \\
+\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right. \\
-\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a, b, c)\right) \\
\quad-\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a, b, c)\right) \\
=-\phi_{n}\left(\sigma^{n}(a b c)-\phi_{n}\left(\sigma^{n}(a)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n}(c)\right)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right. \\
-\phi_{n}\left(\sigma^{n}(a b c)-\phi_{n}\left(\sigma^{n}(c)\right) \phi_{n}\left(\sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n}(a)\right)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right. \\
-\left(\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(a b c)\right)-\phi_{i}\left(\sigma^{i} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(a)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right. \\
-\left(\sum_{i=1}^{n-1} \phi_{i}\left(\sigma^{i}(a b c)\right)-\phi_{i}\left(\sigma^{i} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i}(b)\right) \phi_{i}\left(\tau^{i} \sigma^{i}(c)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right. \\
=-\left(\sum _ { i = 1 } ^ { n - 1 } A _ { n } (\sigma ^ { n } (a , b , c)) \phi _ { i } (\sigma ^ { i } \tau ^ { n - i } (r)) B _ { n } \left(\tau^{n}(a, b, c)\right.\right.
\end{array} \\
& -\left(\sum _ { i = 1 } ^ { n - 1 } B _ { n } \left(\sigma ^ { n } (a , b , c) \phi _ { n } (\sigma ^ { n } (r)) B _ { n } (\tau ^ { n } (a , b , c)) \phi _ { i } (\sigma ^ { i } \tau ^ { n - i } (r)) A _ { n } \left(\tau^{n}(a, b, c)\right.\right.\right. \\
& \quad-B_{n}\left(\sigma ^ { n } (a , b , c) \phi _ { n } (\sigma ^ { n } (r)) A _ { n } \left(\tau^{n}(a, b, c)\right.\right.
\end{aligned}
$$

Hence, we have

$$
A_{n}\left(\sigma ^ { n } (a , b , c) \phi _ { n } (\sigma ^ { n } (r)) B _ { n } \left(\tau^{n}(a, b, c)+B_{n}\left(\sigma ^ { n } (a , b , c) \phi _ { n } (\sigma ^ { n } (r)) A _ { n } \left(\tau^{n}(a, b, c)=0\right.\right.\right.\right.
$$

Lemma 3.2:

Let $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a Jordan triple higher (σ, τ)-homomorphism of R into R ', then for each $n \in \mathbb{N}$ and for all $a, b, c, r \in R$,

$$
A_{n}\left(\sigma ^ { n } (a , b , c) \phi _ { n } (\sigma ^ { n } (r)) B _ { n } \left(\tau^{n}(a, b, c)=B_{n}\left(\sigma ^ { n } (a , b , c) \phi _ { n } (\sigma ^ { n } (r)) A _ { n } \left(\tau^{n}(a, b, c)=0\right.\right.\right.\right.
$$

Proof.

By Lemma 3.1 and Lemma 2.7, we achieve the result.

Theorem 3.3:

Let $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a Jordan triple higher (σ, τ)-homomorphism of ring R into prime ring R^{\prime}. Then for each $n \in \mathbb{N}$ and for all $a, b, c, r, x, y, z \in R$,
$A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)=0$.

Proof.

By replacing $a+x$ by a in Lemma 3.2, we get

$$
A_{n}\left(\sigma^{n}(a+x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a+x, b, c)\right)=0
$$

Hence

$$
\begin{aligned}
& A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)+A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)+ \\
& A_{n}\left(\sigma^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)+A_{n}\left(\sigma^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)=0
\end{aligned}
$$

By Lemma 3.2, we obtain

$$
A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)+A_{n}\left(\sigma^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)=0
$$

Therefore, we get

$$
\begin{aligned}
& 0=A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right) \\
& =-A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\sigma^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right)
\end{aligned}
$$

Since R^{\prime} is prime, we obtain

$$
\begin{equation*}
A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)=0 . \tag{5}
\end{equation*}
$$

By replacing $\mathrm{b}+y$ for b in equation (5), we get

$$
A_{n}\left(\sigma^{n}(a, b+y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b+y, c)\right)=0
$$

Hence

$$
\begin{aligned}
& A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)+A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)+ \\
& A_{n}\left(\sigma^{n}(a, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)+A_{n}\left(\sigma^{n}(a, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)=0
\end{aligned}
$$

We can use equation (5), then we get

$$
A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)+A_{n}\left(\sigma^{n}(a, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)=0
$$

Therefore, we get
$0=A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)$
$=-A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\sigma^{n}(x, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right)$
Since R^{\prime} is prime, we obtain

$$
\begin{equation*}
A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)=0 \tag{6}
\end{equation*}
$$

By replacing $c+z$ for c in equation (6), we get

$$
A_{n}\left(\sigma^{n}(a, b, c+z)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c+z)\right)=0
$$

Hence

$$
\begin{aligned}
& A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)+A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)+ \\
& A_{n}\left(\sigma^{n}(a, b, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)+A_{n}\left(\sigma^{n}(a, b, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)=0
\end{aligned}
$$

We can use equation (5), then we get

$$
A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)+A_{n}\left(\sigma^{n}(a, b, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)=0
$$

Therefore, we get
$0=A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)$ $=-A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\sigma^{n}(x, y, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right)$
Since R^{\prime} is prime, we obtain

$$
A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)=0
$$

In the following theorem we give the conditions which make the Jordan triple higher (σ, τ)homomorphism is either triple higher (σ, τ)-homomorphism or triple higher (σ, τ)-antihomomorphism.

Theorem 3.4:

Every Jordan triple higher (σ, τ)-homomorphism of ring R into prime ring R^{\prime} is either triple higher (σ, τ)-homomorphism or triple higher (σ, τ)-anti-homomorphism.

Proof.

Let θ be a Jordan triple higher (σ, τ)-homomorphism. Then by Theorem 3.3, we have

$$
A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)=0
$$

Since R^{\prime} is prime, therefore either $A_{n}\left(\sigma^{n}(a, b, c)\right)=0$ or $B_{n}\left(\tau^{n}(x, y, z)\right)=0$, for each $n \in \mathbb{N}$ and for all $a, b, c, x, y, z \in R$.
If $B_{n}\left(\tau^{n}(x, y, z)\right)=0$, then by Remark 2.9, we obtain θ is triple higher (σ, τ)-anti-homomorphism.
But if $A_{n}\left(\sigma^{n}(a, b, c)\right)=0$, then by Remark 2.9, we obtain θ is triple higher (σ, τ)-homomorphism.

Proposition 3.5:

Let $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a Jordan triple higher (σ, τ)-homomorphism from prime ring R into prime ring R^{\prime}, then θ is higher (σ, τ)-homomorphism.

Proof:

Since θ is a Jordan triple higher (σ, τ)-homomorphism, then for all $a, r \in R$ and $n \in \mathbb{N}$, we have

$$
\phi_{n}(a r a)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a)\right)
$$

By replacing a by $a b$, we get

$$
\begin{gather*}
\phi_{n}((a b) r(a b))=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b)\right) \\
\quad=\phi_{n}\left(\sigma^{n}(a b)\right) r a b+a b \sum_{i=1}^{n} \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b)\right) \tag{7}
\end{gather*}
$$

On the other hand, we get
$\phi_{n}((a b) r(a b))=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{\mathrm{i}}\left(\tau^{i}(a b)\right)$
$=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i}(b)\right) r a b+a b \sum_{i=1}^{n} \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b)\right)$
By comparing (7) and (8), we get

$$
\begin{equation*}
\left(\phi_{n}\left(\sigma^{n}(a b)\right)-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i}(b)\right)\right) r a b=0 . \tag{8}
\end{equation*}
$$

Since R is prime and $a b \neq 0$, we get

$$
\phi_{n}(a b)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{\mathrm{i}}\left(\tau^{i}(b)\right)
$$

Hence θ is a higher (σ, τ)-homomorphism.

References

1. Ancochea, G. 1947. On semi-automorphisms of division algebras. Ann. of Math., 48: 147-154.
2. Kaplansky, I. 1947. Semi-automorphisms of rings. Duke Math. J., 14: 521-527.
3. Jacobson, N. and Rickart, C. E. 1950. Jordan homomorphisms of rings. Trans. Amer. Math. Soc., 69: 479-502.
4. Herstein, I. N. 1956. Jordan homomorphisms. Trans. Amer. Math. Soc., 81: 331-351.
5. Breŝar, M. 1989. Jordan mappings of semiprime rings. Journal of Algebra, 1(127): 218-228.
6. Faraj, A. K., Majeed A. H., Haetinger C. and Ur-Rehman N. 2014. On Generalized Jordan higher homomorphisms. Palestine Journal of Mathematics, 3(Spec 1): 406-421.
7. Salih, S. M. and Jarallah F.R. 2014. Generalized Jordan (σ, τ)-higher homomorphisms of a ring R into a ring R. International Mathematical Forum, 9(32): 1563 - 1580.

[^0]: *Email: neshtiman.suliman@su.edu.krd

