Mahmood et al.

Iraqi Journal of Science, 2020, Special Issue, pp: 35-44 DOI: 10.24996/ijs.2020.SI.1.6

Generalized Higher Derivations on FM-Modules

Auday Hekmat Mahmood^{*}, **Mahdi Saleh Nayef**, **Salah Mehdi Salih** Depart of Mathematics College of education AL- Mustansiriyah University, Baghdad. Iraq

Received: 12/11/2019 Accepted: 15/3/2020

Abstract

The concepts of generalized higher derivations, Jordan generalized higher derivations, and Jordan generalized triple higher derivations on Γ -ring M into Γ M-modules X are presented. We prove that every Jordan generalized higher derivation of Γ -ring M into 2-torsion free Γ M-module X, such that $\alpha\alpha\beta\beta c=\alpha\beta\beta\alpha c$, for all a, b, c \in M and $\alpha,\beta\in\Gamma$, is Jordan generalized triple higher derivation of M into X.

Keywords: generalized higher derivations, Jordan generalized higher derivations, Γ M-module.

 ΓM - تعميمات المشتقات العليا على المقاسات من النمط

عدي حكمت محمود *، مهدي صالح نايف، صلاح مهدي صالح قسم الرياضيات، كلية التربية، الجامعة المستنصرية, بغداد، العراق

الخلاصة

قدمنا المفاهيم التالية تعميمات المشتقات العليا , تعميمات جوردان للمشتقات العليا وتعميمات جوردان الثلاثية للمشتقات العليا من الحلقات M من النمط – Γ الى المقاسات X من النمط – Γ وايضا برهنا كل تعميم جوردان للمشتقات العليا من حلقات M من النمط – Γ الى المقاسات X طليقة الالتواء –2 من النمط $-\Gamma$ تحقق عمدامهم عمال عليا من حلقات M من النمط – Γ الى المقاسات X طليقة الالتواء –2 من النمط الى X.

1. Introduction

Let M and Γ be two additive abelian groups. Suppose that there is a mapping from $M \times \Gamma \times M \rightarrow M$ (the image of (a, α ,b) being denoted by a α b, a,b \in M and $\alpha \in \Gamma$) satisfying the following for all a,b,c \in M, α , $\beta \in \Gamma$:

i) $(a+b)\alpha c = a\alpha c + b\alpha c$ $a(\alpha +\beta)c = a\alpha c + a\beta c$ $a\alpha(b+c) = a\alpha b + a\alpha c$ ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$

Then M is called a Γ -ring. This definition is due to Barnes [1], where every ring is a Γ -ring. M is said to be 2-torsion free if 2a = 0 implies a=0 for all a \in M. Besides, M is called a prime Γ -ring if for all a,b \in M, aM Γ Mb = (0) implies either a=0 or b=0. M is called a semiprime if aM Γ Ma = (0) with a \in M

implies a=0. Note that every prime Γ -ring is obviously a semiprime [2].

Let M be a Γ -ring and X be an additive abelian group. X is a left Γ M- module if there exists a mapping $M \times \Gamma \times X \to X$ (sending (m,α,x) into max where $m \in M$, $\alpha,\beta \in \Gamma$ and $x \in X$) satisfying the following, for all $m,m_1,m_2 \in M$, $\alpha,\beta \in \Gamma$ and $x,x_1,x_2 \in X$ [3]:

i) $(m_1+m_2)\alpha x = m_1\alpha x + m_2\alpha x$

ii) m(α + β)x=m α x+m β x

iii) ma(x_1+x_2)=max₁+max₂

iv) $(m_1 \alpha m_2)\beta x = m_1 \alpha (m_2 \beta x)$

X is called a right Γ M- module if there exists a mapping $X \times \Gamma \times M \rightarrow X$. X is called a Γ M-module if X is both a left and right Γ M- module. X is called a left prime (right prime) if $a\Gamma$ M Γ b=(0) then a=0 or b=0, a \in M, b \in X (a \in X,b \in M respectively) and X is a prime if it is both a left and right prime. X is called a semipeime if $a\Gamma$ M Γ a =(0) where $a\in$ X implies a=0. X is called 2-torsion free if 2x=0 implies x=0 for all x \in X [3].

Paul and Halder [3] defined a left derivation and a Jordan left derivation of Γ -ring M onto Γ Mmodule X as follows: d:M \rightarrow X is a left derivation if $d(a\alpha b) = a\alpha d(b) + b\alpha d(a)$, and a Jordan left derivation $d(a\alpha a)=2a\alpha d(a)$. Also Paul and Halder proved that every Jordan left derivation of Γ -ring M into Γ M-module is a left derivation. Salih [4] defined derivation and Jordan derivation on a Γ Mmodule as follows:

d:M \rightarrow X is a derivation if $d(a\alpha b) = d(a)\alpha b + a\alpha d(b)$, and a Jordan derivation $d(a\alpha a) = d(a)\alpha a + a\alpha d(a)$

They also proved that every Jordan derivation of a Γ -ring M into Γ M-module X is a derivation . In addition, Salih [5] defined the generalized derivation and the Jordan generalized derivation of a Γ -ring M into Γ M-module X as follows :

 $f\colon M\to X$ is an additive mapping of M into a $\Gamma M\text{-module }X$, then f is called a

generalized derivation of M into X if there exists a derivation d:M \rightarrow X such that for every a,b \in M, $\alpha \in \Gamma$.

 $f(a\alpha b)= f(a)\alpha b + a\alpha d(b)$, then f is called a Jordan generalized derivation of M into X if there exists a Jordan derivation d:M \rightarrow X such that for every $a\in M$, $\alpha\in\Gamma$.

f ($a\alpha a$)= f($a\alpha a$) + $a\alpha d(a)$. Salih [5] also proved that every Jordan generalized derivation of a Γ -ring M into a 2-tortion free prime Γ M-module X is a generalized derivation of M into X.

In this paper we present the concepts of higher derivations and Jordan higher derivations of a Γ -ring M into Γ M-module X. We also prove that every Jordan higher derivation of a Γ -ring M into a 2-torsion free prime Γ M-module X is a higher derivation of M into X.

We need the following lemma

Lemma 1.1: [6]

Let M be a 2-torsion free semiprime Γ -ring and suppose that $a, b \in M$, if $a\Gamma m\Gamma b + b\Gamma m\Gamma a = 0$ for all $m \in M$, then $a\Gamma m\Gamma b = b\Gamma m\Gamma a = 0$.

2. Generalized Higher derivations on Γ-ring into ΓM-module

The generalized higher derivations, Jordan generalized higher derivations and Jordan generalized triple higher derivations on a Γ -ring into a Γ M-module are introduced. We begin with the following definition:

Definitions 2.1

Let M be a Γ -ring and $F=(f_i)_{i\in N}$ be a family of additive mappings of M into a Γ M-module X, such that $f_0=id$, then F is called a generalized higher derivation of M into X if there exists a higher derivations $D=(d_i)_{i\in N}$ of M into X, if for every $a,b\in M, \alpha\in\Gamma$ and $n\in N$.

$$f_n(a\alpha b) = \sum_{i+j=n} f_i(a)\alpha d_j(b) \qquad ... (i)$$

F is said to be a Jordan generalized higher derivation of M into X if there exist Jordan higher derivations $D=(d_i)_{i\in N}$ of M into X if for every $a\in M$, $\alpha\in\Gamma$ and $n\in N$.

$$f_n(a\alpha a) = \sum_{i+j=n} f_i(a)\alpha d_j(a)$$
 ... (ii)

F is called a Jordan generalized triple higher derivation of M into X if there exist Jordan higher triple derivations $D=(d_i)_{i\in N}$ of M into X if for every $a,b\in M, \alpha, \Box\in\Gamma$ and $n\in N$.

$$f_{n}(a\alpha b\beta a) = \sum_{i+j+l=n} f_{i}(a)\alpha d_{j}(b)\beta d_{l}(a) \qquad \dots (iii)$$

The following is an example of the generalized higher derivation of M into X: **Example 2.2**

Let R be a ring, $f=(f_i)_{i\in N}$ be a generalized higher derivations of R into an R-module Y associated with $d=(d_i)_{i\in N}$, which is a higher derivation of R into R-module Y. Let $M=M_{1\times 2}(R)$, $\Gamma=\begin{cases}m\\0\end{cases}$: m is

an integer number $\left.\right\}$, then M is a Γ -ring and X = M_{1×2}(Y). We use the usual addition and

multiplication on matrices. We define

 $F=(F_i)_{i\in N}$ be a family of additive mapping of M into a Γ M-module X such that

 $F_n(a \ b) = (f_n(a) \ f_n(b))$ associated with $D=(D_i)_{i \ N}$ be a family of additive mappings of M into a Γ M-module X such that $D_n(a \ b) = (d_n(a) \ d_n(b))$. Then F is a generalized higher derivation of M into X.

It is clear that every higher derivation of a Γ -ring M into a Γ M-module X is a Jordan higher derivation of M into X, but the converse is not true in general, as shown by the following example: **Example 2.3**

Let M be a Γ -ring, X be a Γ M-module and let $a \in X$ such that $a\Gamma a=(0)$ and $x\alpha a\beta x=0$, for all $x \in M$, α , $\beta \in \Gamma$, but $x\alpha a\beta y \neq 0$, for some $x, y \in M$, $x \neq y$. Also, let $D=(d_i)_{i \subseteq N}$ be a family of mappings on M into a Γ M-module X defined by the following relation, for each $n \in N$:

 $d_n(x)=nx\alpha a + a\alpha x$, for all $x \in M$, $\alpha \in \Gamma$, $a \in X$.

Let $F=(f_i)_{i\in N}$ be a family of mappings on M into a Γ M-module X, defined by the following, for each $n\in N$:

 $f_n(x) = nx\alpha a$, for all $x \in M$, $\alpha \in \Gamma$, $a \in X$.

It is clear that F is a Jordan generalized higher derivation of M into X but not a higher derivation of M into X.

Now, we give some properties of the generalized higher derivation on a \Box -ring into a Γ M-module. Lemma 2.4

Let M be a Γ -ring and $F=(f_i)_{i \square N}$ be a Jordan generalized higher derivation of M into a 2-torsion free Γ M-module X. Then for all $a,b,c \in M$, $\alpha,\beta \in \Gamma$, and $n \in N$, the following statements hold:

i)
$$f_n(a\alpha b+b\alpha a) = \sum_{i+j=n} f_i(a)\alpha d_j(b)+d_i(b)\alpha d_j(a)$$

ii) $f_n(a\alpha b\beta a+a\beta b\alpha a) = \sum_{i+j+l=n} f_i(a) \alpha d_j(b) \beta d_l(a)+f_i(a) \beta d_j(b)\alpha d_l(a)$
iii) $f_n(a\alpha b\alpha a) = \sum_{i+j+l=n} f_i(a) \alpha d_j(b) \alpha d_l(a)$
iv) $f_n(a\alpha b\alpha c+c\alpha b\alpha a) = \sum_{i+j+l=n} f_i(a)\alpha d_j(b)\alpha d_l(c) + f_i(c)\alpha d_l(b)\alpha d_q(a)$
v) $f_n(a\alpha b\beta c+c\alpha b\beta a) = \sum_{i+j+l=n} f_i(a) \alpha d_j(b) \beta d_l(c) + f_i(c) \alpha d_j(b) \beta d_l(a)$

i)
$$f_n((a+b) \alpha(a+b)) = \sum_{i+j=n} f_i(a+b) \alpha d_j(a+b)$$

= $\sum_{i+j=n} f_i(a) \alpha d_j(a) + d_i(a) \alpha d_j(b) + f_i(b) \alpha d_j(a) + f_i(b) \alpha d_j(b) \dots (1)$

On the other hand:

 $f_n((a+b) \alpha(a+b)) = f_n(a\alpha a+a\alpha b+b\alpha a+b\alpha b)$ $= f_n(a\alpha a+b\alpha b) + f_n(a\alpha b+b\alpha a)$

$$= \sum_{i+j=n} f_i(a) \alpha d_j(a) + f_i(b) \alpha d_j(b) + f_n(a\alpha b + b\alpha a) \qquad \dots (2)$$

By comparing (1) and (2) we get:

$$f_n(a\alpha b+b\alpha a) = \sum_{i+j=n} f_i(a) \alpha d_j(b) + f_i(b)\alpha d_j(a)$$

ii) By replacing a β b+b β a for b in (i) we have:

f_n(aα(aβb+bβa**)+** (aβb+bβa**)** αa)

 $= \sum_{i+j=n} f_i(a)\alpha d_j(a\beta b+b\beta a) + f_i(a\beta b+b\beta a) \alpha d_j(a)$

$$= \sum_{i+j=n} f_i(a) \alpha \left(\sum_{p+h=l} d_p(a) \beta d_h(b) + d_p(b) \beta d_h(a) \right) + \sum_{i+j=n} \left(\sum_{r+t=i} f_r(a) \beta d_t(b) + d_r(b) \beta d_t(a) \right) \alpha d_j(a)$$

$$= \sum_{i+j+h=n} f_i(a) \alpha d_j(a) \beta d_h(b) + d_i(a) \alpha d_j(b) \beta d_h(a) + \sum_{r+t+l=n} f_r(a) \beta d_t(b) \alpha d_l(a) + d_r(b) \beta d_t(a) \alpha d_l(a) \dots (1)$$

On the other hand:

 $f_n(a\alpha(a\beta b+b\beta a)+(a\beta b+b\beta a) \alpha a)$

= $f_n(a\alpha a\beta b+a\alpha b\beta a+a\beta b\alpha a+b\beta a\alpha a)$

$$= \sum_{i+r+t=n} f_i(a)\alpha d_r(a)\beta d_t(b) + f_i(b)\beta d_r(a)\alpha d_t(a) + f_n(a\alpha b\beta a + a\beta b\alpha a) \qquad \dots (2)$$

By comparing (1) and (2) we get:

$$f_n(a\alpha b\beta a + a\beta b\alpha a) = \sum_{i+r+t=n} f_i(a)\alpha d_r(b) \beta d_t(a) + f_i(a) \beta d_r(b) \alpha d_t(a)$$

iii) By replacing α for β in (ii) we have:

$$f_n(a\alpha b\alpha a + a\alpha b\alpha a) = 2 f_n(a\alpha b\alpha a) = 2 \sum_{i+r+t=n} f_i(a) \alpha d_r(b) \alpha d_t(a)$$

Since X is a 2-torsion free, then:

$$f_n(a\alpha b\alpha a) = \sum_{i+r+t=n} f_i(a) \alpha d_r(b) \alpha d_t(a)$$

iv) By replacing a+c for a in (iii) we get:

$$f_{n}((a+c)\alpha b\alpha(a+c)) = \sum_{i+r+t=n} f_{i}(a+c) \alpha d_{r}(b)\alpha d_{t}(a+c) = \sum_{i+r+t=n} f_{i}(a)\alpha d_{r}(b)\alpha d_{t}(a) + f_{i}(a)\alpha d_{r}(b)\alpha d_{t}(c)$$

$$+ f_{i}(c)\alpha d_{r}(b)\alpha d_{t}(a) + f_{i}(c) \alpha d_{r}(b)\alpha d_{t}(c) \qquad \dots (1)$$

On the other hand:

 $f_n((a+c)\alpha b\alpha(a+c)) = f_n(a\alpha b\alpha a+a\alpha b\alpha c+c\alpha b\alpha a+c\alpha b\alpha c)$

$$= \sum_{i+r+t=n} f_i(a)\alpha d_r(b)\alpha d_t(a) + f_i(c)\alpha d_r(b)\alpha d_t(c) + f_n(a\alpha b\alpha c + c\alpha b\alpha a) \qquad \dots (2)$$

By comparing (1) and (2) we get:

 $f_n(a\alpha b\alpha c + c\alpha b\alpha a) = \sum_{i+r+t=n} f_i(a)\alpha d_r(b) \alpha d_t(c) + f_i(c)\alpha d_r(b)\alpha d_t(a)$

v) By replacing a+c for a in Definition 1.1 (iii) we get:

$$f_n((a+c)\alpha b\beta(a+c)) = \sum_{i+r+t=n} f_i(a+c)\alpha d_r(b)\beta d_t(a+c)$$

$$= \sum_{i+r+t=n} f_i(a)\alpha d_r(b)\beta d_t(a) + f_i(a)\alpha)d_r(b)\beta d_t(c) + f_i(c)\alpha d_r(b)\beta d_t(a) + f_i(c)\alpha d_r(b)\beta d_t(c) \qquad \dots (1)$$

On the other hand:

 $f_n((a+c)\alpha b\beta(a+c)) = f_n(a\alpha b\beta a+a\alpha b\beta c+c\alpha b\beta a+c\alpha b\beta c)$

$$= \sum_{i+r+t=n} f_i(a)\alpha d_r(b)\beta d_t(a) + f_i(c)\alpha d_r(b)\beta d_t(c) + f_n(a\alpha b\beta c + c\alpha b\beta a) \qquad \dots (2)$$

By comparing (1) and (2) we get:

$$f_n(a\alpha b\beta c+c\alpha b\beta a) = \sum_{i+r+t=n} f_i(a)\alpha d_r(b)\beta d_t(c)+f_i(c)\alpha d_r(b)\beta d_t(a)$$

Definition 2.5

Let $F=(f_i)_{i\in N}$ be a Jordan generalized higher derivation of a Γ -ring M into a Γ M-module X associated with $D=(d_i)_{i\in N}$ of M into X. For every $n\in N$, for each $a,b\in M$ and for each $\alpha\in\Gamma$, we define $\psi_n(a,b)_\alpha$ by:

$$\delta_n(a,b)_\alpha = f_n(a\alpha b) - \sum_{i+r=n} f_i(a)\alpha d_r(b)$$

In the following lemma, we give the properties of $\delta_n(a,b)_{\alpha}$.

Lemma 2.6

Let $F=(f_i)_{i\in N}$ be a Jordan generalized higher derivation of a Γ -ring M into a Γ M-module X. Then for all $a,b\in M$, $\alpha,\beta\in\Gamma$ and $n\in N$:

i) $\delta_n(a,b)_{\alpha} = -\delta_n(b,a)_{\alpha}$ ii) $\delta_n(a+b,c)_{\alpha} = \delta_n(a,c)_{\alpha} + \delta_n(b,c)_{\alpha}$ iii) $\delta_n(a,b+c)_{\alpha} = \delta_n(a,b)_{\alpha} + \delta_n(a,c)_{\alpha}$ iv) $\delta_n(a,b)_{\alpha+\beta} = \delta_n(a,b)_{\alpha} + \delta_n(a,b)_{\beta}$ proof

i) By Lemma 3.4(i) and since f_n is additive mapping for each $n\!\in\!N$ then:

$$f_{n}(a\alpha b+b\alpha a) = \sum_{i+r=n}^{n} f_{i}(a)\alpha d_{r}(b)+f_{i}(b)\alpha d_{r}(a)$$

$$f_{n}(a\alpha b) + f_{n}(b\alpha a) = \sum_{i+r=n}^{n} f_{i}(a) \alpha d_{r}(b) + \sum_{i+r=n}^{n} f_{i}(b)\alpha d_{r}(a)$$

$$f_{n}(a\alpha b) - \sum_{i+r=n}^{n} f_{i}(a)\alpha d_{r}(b) = -f_{n}(b\alpha a) + \sum_{i+r=n}^{n} f_{i}(b)\alpha d_{r}(a) \delta_{n}(a,b)_{\alpha} = -\delta_{n}(b,a)_{\alpha}$$

$$ii) \delta_{n}(a+b,c)_{\alpha} = f_{n}((a+b)\alpha c) - \sum_{i+r=n}^{n} f_{i}(a+b)\alpha d_{r}(c)$$

$$= f_{n}(a\alpha c+b\alpha c) - \sum_{i+r=n}^{n} f_{i}(a)\alpha d_{r}(c) + f_{i}(b)\alpha d_{r}(c)$$

$$= f_{n}(a\alpha c) - \sum_{i+r=n} f_{i}(a)\alpha d_{r}(c) + f_{n}(b\alpha c) - \sum_{i+r=n} f_{i}(b)\alpha d_{r}(c) = \delta_{n}(a,c)_{\alpha} + \delta_{n}(b,c)_{\alpha}$$

$$= f_{n}(a\alpha b+c)_{\alpha} = f_{n}(a\alpha(b+c)) - \sum_{i+r=n} f_{i}(a)\alpha d_{r}(b+c) = f_{n}(a\alpha b+a\alpha c) - \sum_{i+r=n} f_{i}(a)\alpha d_{r}(b) + f_{i}(a)\alpha d_{r}(c)$$

$$= f_{n}(a\alpha b) - \sum_{i+r=n} f_{i}(a)\alpha d_{r}(b) + f_{n}(a\alpha c) - \sum_{i+r=n} f_{i}(a)\alpha d_{r}(c)$$

$$= \delta_{n}(a,b)_{\alpha} + \delta_{n}(a,c)_{\alpha}$$

$$iv) \delta_{n}(a,b)_{\alpha+\beta} = f_{n}(a(\alpha+\beta)b) - \sum_{i+r=n} f_{i}(a)(\alpha+\beta)d_{r}(b)$$

$$= f_{n}(a\alpha b+a\beta b) - \sum_{i+r=n} f_{i}(a)\alpha d_{r}(b) + f_{i}(a)\beta d_{r}(b) = f_{n}(a\alpha b) - \sum_{i+r=n} f_{i}(a)\alpha d_{r}(b) + f_{n}(a\beta b) - \sum_{i+j+r=n} f_{i}(a)\beta d_{r}(b)$$

We present the following remark.

Remark 2.7

Note that $F=(f_i)_{i\in N}$ is a higher generalized derivation of a Γ -ring M into a Γ M-module X if and only if $\delta_n(a,b)_\alpha = 0$ for all $a,b\in M$, $\alpha,\beta\in\Gamma$ and $n\in N$.

3. Main Results

We prove some lemmas which make us able to give the next results.

Lemma 3.1.

Let $F=(f_i)_{i\in N}$ be a Jordan generalized higher derivation of a Γ -ring M into a Γ M-module X. Assume that $n \in N$, $a,b,m \in M$, and $\alpha,\beta \in \Gamma$, if $\delta_t(a,b)_{\alpha}=0$ for every t<n, then:

i) $\delta_n(a,b)_{\alpha} \beta m \beta[a,b]_{\alpha} + [a,b]_{\alpha} \beta m \beta \psi_n(a,b)_{\alpha} = 0$

ii) $\delta_n(a,b)_\alpha \alpha m \alpha[a,b]_\alpha + [a,b]_\alpha \alpha m \alpha \psi(a,b)_\alpha = 0$

iii) $\delta_n(a,b)_\beta \alpha m \alpha[a,b]_\beta + [a,b]_\beta \alpha m \alpha \psi_n(a,b)_\beta = 0$

Where $\psi_n(a,b)_{\alpha} = d_n(a\alpha b) - \sum_{i+r=n} d_i(a)\alpha d_r(b)$

Proof

i) Since maa, aab, baa \in M and aamβa, bamβb \in M, it follows that $a\alpha b\beta m\beta b\alpha a + b\alpha a\beta m\beta a\alpha b = a\alpha(b\beta m\beta b)\alpha a + b\alpha(a\beta m\beta a)\alpha b$

Since f_n is additive mappings for each $n\!\in\!N$ and by lemma 3.4 (v), we obtain:

 f_n (aαbβmβbαa+bαaβmβaαb)

$$= \sum_{s+t=n}^{s} f_{s}(a\alpha b\beta m\beta b\alpha a) + f_{t}(b\alpha a\beta m\beta a\alpha b)$$
$$= \sum_{i+r+t+q+l=n}^{s} f_{i}(a)\alpha d_{r}(b)\beta d_{t}(m)\beta d_{q}(b)\alpha d_{l}(a) + f_{i}(b)\alpha d_{r}(a)\beta d_{t}(m)\beta d_{q}(a)\alpha d_{l}(b)$$

and since: $f_n(a\alpha b\beta m\beta b\alpha a+b\alpha a\beta m\beta a\alpha b)$

 $= f_n((a\alpha b)\beta m\beta(b\alpha a)+(b\alpha a)\beta m\beta(a\alpha b))$

 $= \sum_{i+r+s=n} f_i(a\alpha b)\beta d_r(m)\beta d_t(b\alpha a) + f_i(b\alpha a)\beta d_r(m)\beta d_t(a\alpha b)$

By the inductive assumption, we can substitute $d_r(u\alpha v)$ for:

$$\sum_{i+l=r} f_i(u) \alpha d_l(v)$$

when r<n, for u=a,b and v=b,a, thus an easy computation gives:

$$\begin{split} & \sum_{i \text{barrylat}} f_i(u) ad_i(v)\beta d_i(v) ad_i(u) \sum_{i \text{constant}} f_i(uav)\beta d_i(vau) & \sum_{i \text{constant}} f_i(uav)\beta d_i(v)\beta d_i(v) d_i(u) & \sum_{i \text{constant}} f_i(uav)\beta d_i(v) d_i(u) & \sum_{i \text{constant}} f_i(uav)\beta d_i(u) & \sum_{i \text{constant}} f_i(u) & \sum_{i \text{constant}$$

by Lemma 1.1, we have: $\delta_n(a,b)_{\beta}\alpha m\alpha[a,b]_{\beta} = [a,b]_{\beta} \alpha m\alpha \psi_n(a,b)_{\beta}=0.$ **Theorem 3.3** Let D=(d_i)_{i\in N} be a Jordan higher derivation of a Γ -ring M into a 2-torsion free prime Γ M-module X . Then for all $a,b,m\in M, \alpha,\beta\in\Gamma$ and $n\in N$, we have: i) $\delta_n(a,b)_{\alpha} \beta m\beta [c,d]_{\alpha} = 0$

ii) $\delta_n(a,b)_\alpha \alpha m \alpha [c,d]_\alpha = 0$ iii) $\delta_n(a,b)_\alpha \alpha m \alpha [c,d]_\beta = 0$

Proof

i) By replacing a+c for a in Lemma 3.2(i), we get: $\delta_n(a+c,b)_\alpha \beta m\beta[a+c,b]_\alpha = 0$ $\delta_n(a,b)_\alpha \beta m\beta[a,b]_\alpha + \delta_n(a,b)_\alpha \beta m\beta[c,b]_\alpha + \delta_n(c,b)_\alpha \beta m\beta[a,b]_\alpha$ + $\delta_n(c,b)_\alpha \beta m \beta [c,b]_\alpha = 0$ By Lemma 3.2 (i), we get: $\delta_n(a,b)_\alpha \beta m\beta[a,b]_\alpha = \delta_n(c,b)_\alpha \beta m\beta[c,b]_\alpha = 0$ Hence, $\delta_n(a,b)_{\alpha} \beta m \beta[c,b]_{\alpha} + \delta_n(c,b)_{\alpha} \beta m \beta[a,b]_{\alpha} = 0$ Therefore, we get: $\delta_n(a,b)_\alpha \beta m\beta[c,b]_\alpha \beta m\beta \psi_n(a,b)_\alpha \beta m\beta[c,b]_\alpha$ = $-\delta_n(a,b)_\alpha \beta m\beta[c,b]_\alpha\beta m\beta\psi_n(c,b)_\alpha\beta m\beta[a,b]_\alpha=0$ Hence, by the primness of X, we have: $\delta_n(a,b)_{\alpha}\beta m\beta[c,b]_{\alpha}=0$... (1) Similarly, by replacing b+d for b in this equality, we get: $\delta_n(a,b)_\alpha \beta m\beta[a,d]_\alpha=0$... (2) Thus: $\delta_n(a,b)_{\alpha} \beta m \beta [a+c, b+d]_{\alpha}=0$ $\delta_n(a,b)_{\alpha}\beta m\beta[a,b]_{\alpha}+\psi_n(a,b)_{\alpha}\beta m\beta[a,d]_{\alpha}+\delta_n(a,b)_{\alpha}\beta m\beta[c,b]_{\alpha}$ $+\psi_{n}(a,b)_{\alpha}\beta m\beta[c,d]_{\alpha}=0$ By (1), (2) and Lemma 3.2 (i), we get: $\delta_{n}(a,b)_{\alpha}\beta m\beta[c,d]_{\alpha}=0$ ii) By replacing a+c for a in Lemma 3.2 (ii), we get: $\delta_n(a+c,b)_\alpha \alpha m \alpha [a+c,b]_\alpha = 0$ $\delta_n(a,b)_\alpha \alpha m \alpha [a,b]_\alpha + \delta_n(a,b)_\alpha \alpha m \alpha [c,b]_\alpha + \delta_n(c,b)_\alpha \alpha m \alpha [a,b]_\alpha$ + $\delta_n(c,b)_\alpha \alpha m \alpha [c,b]_\alpha = 0$ By Lemma 3.2 (ii), we get: $\delta_n(a,b)_\alpha \alpha m \alpha [a,b]_\alpha = \delta_n(c,b)_\alpha \alpha m \alpha [c,b]_\alpha = 0$ hence $\psi_n(a,b)_{\alpha} \alpha m \alpha[c,b]_{\alpha} + \psi_n(c,b)_{\alpha} \alpha m \alpha[a,b]_{\alpha} = 0.$ Therefore, we get: $\delta_n(a,b)_\alpha \alpha m \alpha[c,b]_\alpha \alpha m \alpha \psi_n(a,b)_\alpha \alpha m \alpha[c,b]_\alpha$ = - $\delta_n(a,b)_\alpha \alpha m \alpha[c,b]_\alpha \alpha m \alpha \psi_n(c,b)_\alpha \alpha m \alpha[a,b]_\alpha = 0$ By primness of X, we have: $\delta_n(a,b)_\alpha \alpha m \alpha [c,b]_\alpha = 0$...(1) Similarly, by replacing b+d for b in this equality, we get: ...(2) $\delta_n(a,b)_\alpha \alpha m \alpha [a,d]_\alpha = 0$ Thus: $\delta_n(a,b)_\alpha \alpha m \alpha [a+c, b+d]_\alpha=0$ $\delta_n(a,b)_{\alpha} \alpha m\alpha[a,b]_{\alpha} + \delta_n(a,b)_{\alpha} \alpha m\alpha[a,d]_{\alpha} + \delta_n(a,b)_{\alpha} \alpha m\alpha[c,b]_{\alpha} + \delta_n(a,b)_{\alpha} \alpha m\alpha[c,d]_{\alpha} = 0$ By (1), (2) and lemma 3.2(ii), we get: $\delta_n(a,b)_{\alpha} \alpha m \alpha [c,d]_{\alpha} = 0$ iii) Finally, by replacing α + β for α in (ii), we get: $\delta_n(a,b)_{\alpha+\beta} \alpha m \alpha[c,d]_{\alpha+\beta} = 0$ $\delta_{n}(a,b)_{\alpha} \alpha m \alpha[c,d]_{\alpha} + \delta_{n}(a,b)_{\alpha} \alpha m \alpha[c,d]_{\beta} + \delta_{n}(a,b)_{\beta} \alpha m \alpha[c,d]_{\alpha}$

+ $\delta_n(a,b)_\beta \alpha m \alpha [c,d]_\beta = 0$

By (i) and (ii), we get: $\delta_n(a,b)_{\alpha}\alpha m\alpha[c,d]_{\beta}+ \delta_n(a,b)_{\beta}\alpha m\alpha[c,d]_{\alpha}=0$ Therefore, we have: $\delta_n(a,b)_{\alpha}\alpha m\alpha[c,d]_{\beta}\alpha m\alpha \psi_n(a,b)_{\alpha}\alpha m\alpha[c,d]_{\beta}$ = - $\delta_n(a,b)_{\alpha}\alpha m\alpha[c,d]_{\underline{\beta}}\alpha m\alpha \psi_n(a,b)_{\underline{\beta}}\alpha m\alpha[c,d]_{\alpha}=0$ Hence, by the primness of X, we have: $\delta_n(a,b)_{\alpha}\alpha m\alpha[c,d]_{\underline{\beta}}=0$

Theorem 3.4

Every Jordan generalized higher derivation of a Γ -ring M into a 2-torsion free prime Γ M-module X is a higher derivation of M into X.

Proof

Let $F=(f_i)_{i\in N}$ be a Jordan higher derivation of a Γ -ring M into a 2-torsion free prime Γ M-module X. Since X is a prime, we get from Theorem 3.3 (i) that either $\delta_n(a,b)_{\alpha}=0$ or $[c, d]_{\alpha}=0$ for all $a,b,c,d\in M$, $\alpha\in\Gamma$, and $n\in N$.

If $[c,d]_{\alpha}\neq 0$ for all $c,d\in M$ and $\alpha\in\Gamma$. Then $\delta_n(a,b)_{\alpha}=0$ for all $a,b\in M$, $\alpha\in\Gamma$ and $n\in N$. Hence, by Remark 2.7 we get that F is a generalized higher derivation of M into X.

But, if $[c,d]_{\alpha}=0$ for all $c,d\in M$ and $\alpha\in\Gamma$, then M is commutative and, therefore, we have from lemma 2.4(i):

$$f_n(2a\alpha b) = 2\sum_{i+j+l=n} f_i(a)k_j(\alpha)d_l(b)$$

Since X is a 2-torsion free, we obtain that F is a generalized higher derivation of M into X.

Proposition 3.5

Every Jordan generalized higher derivation of a Γ -ring M into a 2-torsion free Γ M-module X, such that $a\alpha b\beta c=a\beta b\alpha c$, for all $a,b,c\in M$ and $\alpha,\beta\in\Gamma$, is a Jordan generalized triple higher derivation of M into X.

Proof

Let $F=(f_i)_{i\in\mathbb{N}}$ be a Jordan generalized higher derivation of M into X. By replacing b by $a\beta b+b\beta a$ in Lemma 2.4 (i), we get: $f_n(a\alpha(a\beta b+b\beta a)+(a\beta b+b\beta a)\alpha a)$

$$= \sum_{i+l=n} f_i(a)\alpha d_i(a\beta b+b\beta a) + f_i(a\beta b+b\beta a)\alpha d_i(a)$$

$$= \sum_{i+l=n} f_i(a)\alpha \left(\sum_{r+s+t=l} d_r(a)\beta d_t(b) + d_r(b)\beta d_t(a)\right)$$

$$+ \left(\sum_{p+h=i} f_p(a)\beta d_h(b) + d_p(b)\beta d_h(a)\right)\alpha d_i(a)$$

$$= \sum_{i+l=n} \sum_{r+t=l} f_i(a)\alpha d_r(a)\beta d_t(b) + d_i(a)\alpha d_r(b)\beta d_t(a)$$

$$+ \sum_{i+l=n} \sum_{p+h=i} f_p(a)\beta d_h(b)\alpha d_i(a) + d_p(b)\beta d_h(a)\alpha d_i(a)$$

$$= \sum_{i+r+t=n} f_i(a)\alpha d_r(a)\beta d_t(b) + d_i(a)\alpha d_r(b)\beta d_t(a) + f_i(a)\beta d_r(b)\alpha d_t(a) + d_i(b)\beta d_r(a)\alpha d_t(a)$$
...(1)

i+r+t=n

On the other hand:

 $f_n(a\alpha(a\beta b+b\beta a)+(a\beta b+b\beta a)\alpha a) = f_n(a\alpha a\beta b+a\alpha b\beta a+a\beta b\alpha a+b\beta a\alpha a)$

$$= \sum f_i(a)\alpha d_r(a)\beta d_t(b) + f_i(b)\beta d_r(a)\alpha d_t(a) + f_n(a\alpha b\beta a + a\beta b\alpha a) \qquad \dots (2)$$

By comparing (1) and (2), and since $a\alpha b\beta c=a\beta b\alpha c$ for all $a,b,c\in M$ and $\alpha,\beta\in\Gamma$, we get: $2f_n(a\alpha b\beta a)$

=
$$2\sum_{i+r+t=n} f_i(a)\alpha d_r(b)\beta d_t(a)$$

Since X is a 2-torsion free, we have: $f_n(a\alpha b\beta a)$

$$= \sum_{i+r+t=n} f_i(a)\alpha d_r(b)\beta d_t(a)$$

Refrences

- **1.** Barnes, W. **1966**. "On the Γ-ring of Nobusawa", *Pacific Journal of Math.* **18**(3): 411-422.
- 2. Ozturk, M. Sapanci, M. Syturk, M. and Kim, K. 2000. "Symmetric bi-derivation on prime gamma rings", *Sci. Math.* 3(2): 273-281.
- **3.** Paul, A. C. and Halder, A. K. **2009**. "Jordan left derivations of two torsion free ΓM-modules" *Journal of Physical Sciences*, **13**: 13-19.
- 4. Salih, S. M. 2014. "Jordan derivation of ΓM-modules", Magistra, 88(Th. XXVI Juni): 11-16.
- **5.** Salih, S. M. 2016 "Jordan generalized derivation of ΓM-modules", *Magistra*, **98**(Th. XXIX): 39-45.
- 6. Chakraborty, S. and Paul, A. C. 2008. "On Jordan K-derivations of 2-torsion free prime Γ_N -rings" *Punjab university J. of Math.*, 40: 97-101.