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Abstract 

     Missing data is one of the problems that may occur in regression models. 

This problem is usually handled by deletion mechanism available in 

statistical software. This method reduces statistical inference values because 

deletion affects sample size. In this paper, Expectation Maximization 

algorithm (EM), Multicycle-Expectation-Conditional Maximization 

algorithm (MC-ECM), Expectation-Conditional Maximization Either 

(ECME), and Recurrent Neural Networks (RNN) are used to estimate 

multiple regression models when explanatory variables have some missing 

values. Experimental dataset were generated using Visual Basic programming 

language with missing values of explanatory variables according to a missing 

mechanism at random general pattern and some ratios of missing values 

(10%, 20%, and 30%) with error variance values of 0.5, 1. 5, and 2, which 

were included in sample sizes of 25, 50, 100, and 500 and evaluated using 

Mean Squared Error (MSE). Simulation results show that RNN outperforms 

the other methods, followed by EM at small sample sizes. 
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في المتغيرات التوضيحية المفقودةمقارنة بين طرائق تقدير مختلفة للتعامل مع البيانات   
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متهسط تربيع  المقياس استخدامتم تقييمها لغرض  .(511و  011و  51و  05)ولحجهم عينات 
 EM خهارزمية الأخرى تتبعها الظرائقعمى  RNN  اعهرت تفهق نتائج المحاكاة . (MSE) الخظأ

 .رغيرةالعينة ال لأحجام

1. Introduction 
     In applied statistics, studying data with missing values is an important topic because analysis 

of this data gives inaccurate and unreliable results and most specialist programmers rely on 

deleting these values when analyzing them [1]. Many researchers studied the estimating model 

in case of an incomplete data problem [2]. Liu and Rubin (1995) used the EM algorithm and its 

extensions of ECM and ECME to obtain more efficient estimates of maximum likelihood (ML) 

and in models analyzing factors that may arise in the contexts of educational tests [3]. Bori 

(2013) used EM algorithm by estimating the mean and the covariance matrix to obtain 

consistent estimates for the model parameters under study using SAS [4]. Harshanand (2013) 

studied the rainfall data that suffers missing values using neural networks (NN) and concluded 

that this method gives strong results, reflecting the uncertainty from missing values [5]. Wellin 

et al. (2018) used NNs to handle missing data by replacing neurons in the hidden layers through 

their expected values, which showed that this method achieves a cost reduction [6]. The 

proportions of the missing data are not fixed, so the mechanisms and patterns of missing data 

differ depending on the probability and position of the missing value in the data. In this paper, 

different sample sizes were generated, containing missing ratios, using Visual Basic for 

Applications (VBA) according to general missing pattern and missing at random mechanism. 

Several algorithms (EM, ECME, MC-ECM, and RNN) were compared. Simulation results 

showed that the use of RNN generated best results. The remaining sections of the paper are 

organized as follows: section 2 displays missing values in multiple linear regression, section 3 

explains the methods adopted in this paper, section 4 presents simulation results with discussion, 

and finally the conclusions are drawn in section 5. 

2. Missing Values in Multiple Linear Regression 

     Missing data may occur for intentional or unintentional reasons [1]. To overcome this 

problem, researchers presented a number of methods, including the list wise deletion method, 

multiple compensation method, full information maximum likelihood method, and multiple 

imputation then deletion (MID) method. The best estimate was achieved from the replication 

EM algorithm [4], which was later developed into upgraded versions such as ECM, MC-ECM, 

and ECME algorithms. Recently, researchers focused on RNN [4, 7]; before a  dealing with 

missing value, it is important to take a look at missing patterns and mechanisms [1]. Missing 

patterns depend on a number of variables that include missing values (single missing, bivariate 

missing, monotone missing, general missing, and symmetric pattern). Missing values may be in 

one or more variables, which can be either independent or dependent, or both. In addition, the 

percentage of missing values may sometimes reach 50% or higher [7]. There are many missing 

data mechanisms to clarify in this research; it is assumed that a matrix R represents data matrix 

which includes a dependent variable Y and an independent variable X [4, 8]. That is:  

R={X Y} 

R={
                               

                                  
 

where: 

obs: If observation is not missing, 

miss: If observation is missing. 

     Suppose that some elements of R data matrix are missing [7], then matrix M represents the 

matrix of variables that represent, variables indicating missing of all its values in the variables 

data matrix R. M={
                          

                              
 

  = (          ) can classify missing mechanisms as missing at random (MAR), missing 

completely at random (MCAR), and missing not at random (MNAR)) [9, 1, 10] 



Salman                                               Iraqi Journal of Science, 2020, Vol. 61, No. 12, pp: 3327-

3336 

 

2238 

Assume that multiple linear regression at normal error is given by: 

 =   +  ……… (1) 

 : Vector dependent variable with dimensions (n * 1). 

 : Vector coefficients with dimension (P * 1). 

 : Independent variable matrix with dimensions (n * P). 

When missing value exists, depending on whether the value exists or not, then the regression 

equation can be divided into two parts [7]: 
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                                                                         ........(2) 

Then we use least squares method to compute regression coefficients of y on x by using 

complete cases only: 

 ̂=           (   )                                                                                                               …... (3) 

where x and y are complete cases [1, 11]. 

3- METHODS 

3. 1 EM, MC-ECM, and ECME Algorithms 
     Because many algorithms cannot deal with missing values directly, data were converted to 

complete, either by compensation or deletion [7]. Among the estimation methods spread in 

statistical programs, EM algorithm is a complete method that depends on finding maximum 

likelihood estimation to complete data only. This method involves easy mathematical 

calculation and stable convergence and consists of the two steps of expectation (E-step) 

followed by maximum likelihood estimation (M-step) [8]. The steps of the algorithm are listed 

as follows: 

i- Estimated value then complete Group in place missing value (estimation using uncritical 

means regression analysis and estimation using Monte Carlo Markov series…). 

ii- Estimation of coefficients. 

iii- Re-estimation of missing values after assuming that the extracted parameters are correct. 

Let   = ( , ∑) and let    be a current estimate parameter   for E-step (finding expected 

likelihood). If   is         let Q ( |     ∫                                .          ..….(4) 

iv- Re-estimation of the parameter, then iterating continues for a while converging parameter 

[7]. 

  To     and   to                                                                                                       ……….(5) 

 Jtt   )()1( ˆˆ        ...........(6) 

Jtt   )()1( ˆˆ
                                                                                        ………...(7) 

     where    is a very small number but bigger than zero. Let   ~N (  β, ∑) i = (1, 2..., n), 

where       defined as (L*p) matrix for the observation, (β       vector as (p*1) of unknown 

regression coefficients, and (∑) is the variance-covariance matrix which has the dimensions 

(L*L) model (7) [4]. 

     In linear regression, assume that (∑) is unrestricted where ∑ is known as ∑=   conditional 

maximum likelihood estimation of ß that could be obtained simply by least square estimation, as 

follows: 

 
   

=     
  

                  
  {   

  
   (            }                                                  ........(8) 

Similarly, if  = 
   then we can find the conditional maximum likelihood estimation of ∑ from 

the residual 

    = 
 

 
         

    
             

                                                                       ………..(9) 

Note that, for conditional maximization, the log-likelihood function is increased for each (8) and 

(9).  

That is, the values of   and   for the frequency (t+1) are less than (t), as shown below. 

L ( 
                                                                                                                      (10) 
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L ( 
                         ……(11) 

This leads to ECM algorithm in two steps, as those in the EM [10]. E–step is maintained 

whereas M–Step is replaced in several CM-steps (as in 11 and 12) to maximize CM-steps to find 

the expected complete-data [2]. CM-step is equal to  =2θ and is a conditional function in each 

S=2 when maximizing Q (θ|  )  Whereas θ
 
   and     , by a sequence of S conditional 

maximization steps over θ each maximizes θ function, which is defined as: 

Q (θ       ) = ∫             |       
     )      …                                                       ……(12) 

     ) (s=12… S) Modifies previous value [7]. MC-ECM is performed by inserting an E-step 

before each CM-step rather than before the set of CM-steps (i.e. using the estimated parameters 

for each iteration based on the next step and so on, until we have least possible difference 

between previous and subsequent parameters) [12]. The extension of each EM and ECM (which 

called ECME) is achieved by replacing sequence steps ECM with CM-steps, which leads to 

maximizing the corresponding constrained L function [9]. For convenience and it more 

generalizes then ECM call CMQ-step a step of maximizing a constrained Q function and by 

CML-step, step maximizing a constrained Q functions (i.e. either expected complete data log-

likelihood or an observed data log-likelihood) [12]. ECME is characterized by a faster 

convergence of both of the two algorithms. This algorithm is simple to implement and works 

very well for the current problem. Implementation of this algorithm does not only require 

maximizing the Q function in relation to   and ∑, but also maximizing the observed data log-

likelihood for fixed   and ∑, respectively, and estimating the parameters β [1]. 

3. 2 Recurrent Neural Networks 

     Neural networks are an attempt to build a machine that will mimic brain activities and be 

able to usually learn by examples [13], as shown in Figure-1. 

 
Figure 1-Shape of a neurons [12]. 

 

     The aim of this approach is to enhance the processing in terms of speed, accuracy, and 

effectiveness in order to gives values approximating the real values [11]. For an estimate, 

parameters of multiple linear regression models for incomplete data-repeated neural networks 

were used. This method is generally composed of three layers; a first input layer, a second 

hidden layer which includes mathematical steps where data is processed in memory, and a third 

output layer. In the second layer, the missing values are compensated to achieve complete data 

usage by different estimation methods [14]. This is dependent on probability functions to 
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compensate and adjust different weights between hidden nodes by deriving errors to model for 

each parameter Controlled preference adjusted weights by use errors in determining it [8]. The 

number of hidden nodes depends on the type of the problem to be studied and the amount of 

data which are relied on to improve network efficiency [15, 16]. After initial weights are 

determined randomly, they are divided into four sections: 

i) Feed-forward computation. 

ii) Back propagation to the output layer if the condition is met. 

iii) Back propagation to the hidden layer if the condition is not met. 

iv) Weights update. 

     The process is called real-time recurrent learning (RTRL), when the parameters are updated 

after a sequence of forward and backward passes is completed [11], such that:  

RNN: X         F(X)       Y. 

     The idea behind continuously updating weights during neural network training, after each 

repetition, is to be able to obtain each time new weights which are better than the previous 

weight sets. The process continues until the goal is reached, which is to obtain weights that 

reduce errors, which can be written as in the following relation: 

  =  
 
 

     Weights used are based on the partial derivative parameters in linear regression formula or 

error square formula, which is recalculated continuously. For each row of complete data, 

changing all weights should be attempted simultaneously in which missing values are estimated 

in case that error box is larger than the less value [17, 18]: 

   
   

   
 

 

   
     ̂  

        ̂  
         ̂   

   
                                                            ……..(13) 

     If neurons know xi is input and output it produces has Yj  given Aims to for output unit the 

perception learning algorithm updates weights, according to the following equation. 

       =       + C (   - ̂  )     …                                                                                    …….(14) 

     where C is a constant, called learning rate, which works on the product of activations. 

Specifically, weights update depends on a mistake Move it [19]. Weights are updated only if a 

value obtained is not correct, otherwise we move to the other row and so on while getting lower 

weights, which results in a min error  
  

 
   

 
    [5]. 

4- Simulation Results and Discussion 

     In this research work, we use sample sizes of n=25, 50, 100, and 500 parameters 

( 
 
  

 
  

 
  

 
               of regression coefficient are imposed (1, 0. 25, 1. 2, 0. 5) and e   

(0,   
 ) ;   

 =0. 5, 1. 5, 2, which were generated using VBA program. Three independent 

variables were analyzed using Monte Carlo method according to the uniform distribution. The 

dependent variable was calculated as in Equation (15). 

                                   i=1 2 3… n.                                         .......... (15) 

Let missing ratios (10%, 20%, and 30%), Missing value in exploratory variables according 

missing mechanism (MAR) and general pattern then applied (EM, MC-ECM, and ECME) 

algorithms and RNN with a frequency (500) iterations [7] Finally, calculate Mean Square error 

MSE for comparison then take average for all iterations and for all duplicates MMSE, as shown 

in Tables 1-3. 

4. 1 Comparison of estimation methods when error = 0. 5 

     From the results shown in Table-1 and Figure- 2, it was found that, when the error variance is 

0. 5, the algorithm ECME in a sample size of n=50 and 100  and missing ratios of 30% and 

10%, respectively, had the lower value among the other methods. Likewise, at the sample size 

of n=100 and missing ratio of 30%, the MC-ECM algorithm was the best according to the 

results obtained from the simulation program the rest sample to missing ratios, RNN recorded 

the lower minimum mean square error values as compared to EM, MC-ECM, and ECME 

algorithms. That is, from the above, the RNN method is the best among the methods used in the 

research. 
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Table 1-Minimum mean squared errors for each method in 500 iterations classified according to 

sample size and ratio of missing value  for simulation experiments when   
  = 0. 5. 

RNN ECME MC-ECM EM Missing rates Sample size 

6. 70E-02 1. 68E-01 4. 71E-02 10% 

25 6. 73E-02 1. 87E-01 4. 70E-02 20% 

3. 72E-02 1. 02E-01 2. 40E-02 30% 

1. 07E-03 1. 07E-03 1. 19E-01 10% 

50 9. 67E-04 9. 49E-04 9. 12E-02 20% 

9. 27E-04 6. 63E-04 7. 73E-02 30% 

2. 57E-04 5. 28E-04 5. 21E-02 10% 

100 4. 69E-04 4. 72E-04 5. 30E-02 20% 

3. 04E-02 1. 75E-06 2. 34E-04 30% 

4. 32E-03 5. 41E-03 5. 29E-02 10% 

500 4. 34E-03 4. 35E-03 5. 30E-02 20% 

4. 37E-02 4. 38E-03 5. 31E-02 30% 

 

 
Figure 2-Minimum mean squared errors for all sample sizes and ratios of missing values when 

error = 0.5. 

 

4. 2 Comparison of estimation methods when error = 1. 5 and 2 

     From the results shown by Tables- 2 and 3 and Figures- 3 and 4, it is evident that RNN is 

superior in large and medium sample sizes (n= 50, 100, and 500) when error variance  values are 

equals to 1.5 and 2 and for all missing ratios (10%, 20%, and 30%). The best results were recorded 

using this algorithm, except for the error variance value of 1.5, sample size of n = 100, and missing 

ratio of 10%. The ECME algorithm recorded the lower mean square error value for small sample 

sizes (n=25). The EM algorithm had the best value for all missing ratios From the above. Overall, 

the results suggest that the RNN algorithm is superior to the other algorithms, followed by the EM 

algorithm. 
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Table 2-Minimum mean squared errors for each method in 500 iterations classified based on 

sample size and ratio of missing values for simulation experiments when   
  = 1.5.  

RNN ECME MC-ECM EM Missing rates Sample size 

2. 35E-03 4. 80E-02 1. 67E-01 10% 

25 2. 47E-03 4. 84E-02 1. 92E-01 20% 

2. 64E-03 5. 18E-02 2. 08E-01 30% 

*6. 54E-04 1. 07E-03 1. 07E-03 1. 19E-01 10% 

50 *6. 49E-04 9. 69E-04 9. 51E-04 9. 92E-02 20% 

*6. 55E-04 9. 51E-04 9. 22E-04 8. 04E-02 30% 

7. 90E-04 5. 28E-04 1. 04E-03 10% 

100 *5. 95E-07 1. 65E-06 2. 08E-06 9. 75E-06 20% 

*2. 77E-04 4. 69E-04 4. 72E-04 1. 88E-03 30% 

*1. 53E-05 4. 32E-03 5. 41E-03 5. 29E-02 10% 

500 *1. 76E-05 4. 34E-03 4. 35E-03 5. 30E-02 20% 

*1. 90E-05 4. 37E-03 4. 38E-03 5. 31E-02 30% 

 

 
 

Figure 3-Minimum mean squared errors for each sample size and ratio of missing value when 

error= 1.5. 
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Table 3-Minimum mean squared errors for each method in 500 iterations classified based on 

sample size and ratio of missing value for simulation experiments when   
  = 2. 

RNN ECME MC-ECM EM Missing rate Sample size 

2. 39E-03 4. 38E-02 1. 68E-01 *2. 64E-04 10% 

25 2. 47E-03 4. 41E-02 1. 87E-01 *3. 38E-04 20% 

1. 32E-03 2. 36E-02 1. 02E-01 *1. 90E-04 30% 

*5. 03E-04 1. 07E-03 1. 07E-03 1. 19E-01 10% 

50 *5. 07E-04 9. 69E-04 9. 51E-04 9. 92E-02 20% 

*4. 94E-04 9. 47E-04 9. 20E-04 8. 04E-02 30% 

*2. 15E-04 5. 27E-04 5. 28E-04 8. 38E-04 10% 

100 *2. 15E-04 5. 26E-04 5. 28E-04 8. 38E-04 20% 

*6. 19E-07 1. 65E-06 2. 08E-06 9. 07E-06 30% 

*1. 53E-05 2. 81E-03 2. 81E-03 2. 69E-04 10% 

500 *1. 76E-05 2. 83E-03 2. 84E-03 4. 23E-04 20% 

*1. 90E-05 2. 85E-03 2. 85E-03 4. 70E-03 30% 

 

 
Figure 4-Minimum mean squared errors for each sample size and ratio of missing value when error 

= 2. * The minimum mean squared error for each percentage is missing. 

 

5- Conclusions 

     Based on Tables-(1-3) and Figure-5, using MMSE for the regression models is superior to other 

algorithms when there is missing values in explanatory variables in large sample sizes (N=100, 

500) and for all error variance and missing ratios. RNN achieved the best results in simulation, 

except for sample size of 100, ratio of missing values of 10%, and error variance of 0. 5 and 1. 5. 

ECME algorithm was the best besides MC-ECME algorithm when e=0. 5 and the ratio of missing 

values is 30% for medium sample size (n = 50). When the error variance is small (0. 5), and for all 

ratios of missing values, RNN showed lower efficiency than that of MSE. For the remaining values 

of error variance and for a ratio of missing values of 30%, ECME algorithm was superior for small 

sample size (n=25). EM algorithm outperformed the other algorithms for all ratios of missing 

values and error variance values of 1.5 and 2,. For small error variance (0. 5), RNN outperformed 
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the other algorithms. We conclude that recurrent neural networks gave the best results in 

simulation, followed by EM algorithm for a small sample size. 

 
Figure 5-Frequency of the number of times each method shown according to the variance of error. 
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