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Abstract 
     Epilepsy is one of the most common diseases of the nervous system around the 

world, affecting all age groups and causing seizures leading to loss of control for a 

period of time. This study presents a seizure detection algorithm that uses Discrete 

Cosine Transformation (DCT) type II to transform the signal into frequency-domain 

and extracts energy features from 16 sub-bands. Also, an automatic channel 

selection method is proposed to select the best subset among 23 channels based on 

the maximum variance. Data are segmented into frames of  one Second length 

without overlapping between successive frames. K-Nearest Neighbour (KNN) 

model is used to detect those frames either to ictal (seizure) or interictal (non-

seizure) based on Euclidean distance. The experimental results are tested on 21 

patients included in the CHB-MIT dataset. The average F1-score was found to be 

93.12, whereas the False-Positive Rate (FPR) average was determined to be 0.07. 
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لتخطيط اومصنف الجار القريب في إشارات  DCT-IIالكشف عن نهبة الصرع بإستخدام تحهيل 
 الطهيلة الكهربائي للدماغ

 
2فرحان عقيل عبدالكريم, 1براهيم شهابإعمار *, 1محمهد علي جمعة  

العراق, بغداد, جامعة بغداد, كمية العمهم, قدم الحاسهب1  
  كربلاء, كربلاء, العراققدم الحاسهب, كمية العمهم, جامعة 2

 الخلاصة
أنحاء العالم، حيث يريب جسيع الفئات العسرية  يعد الررع أحد أكثر أمراض الجهاز العربي شيهعاً في     

ويدبب نهبات تؤدي إلى فقدان الديطرة لفترة من الزمن. تقدم الدراسة طريقة لمكذف عن الشهبات بإستخدام 
( من الشهع الثاني لتحهيل الإشارة إلى السجال الترددي واستخراج خرائص DCTتحهيل جيب التسام السشفرل )

 23، يقترح طريقة اختيار تمقائية لمقشاة لتحديد أفزل مجسهعة فرعية بين كذلكنطاقًا فرعيًا.  11الطاقة من 
ل بين السقاطع دون تداخواحده نية ثاتقديم البيانات إلى مقاطع طهلها قشاة بشاءً عمى اعمى قيسة لمتباين. يتم 

 interictal)نهبة( أو  ictal( لمكذف عن تمك السقاطع إما KNNالستتالية. يتم استخدام مرشف الجار القريب )
مريزاً السدرجة في مجسهعة  21)غير نهبة( عمى أساس السدافة الإقميدية. يتم اختبار الشتائج التجريبية عمى 

، بيشسا تم تحديد معدل معدل الخطأ  23.12عشد  F1-Score. تم العثهر عمى متهسط CHB-MITالبيانات 
 .0...( عمى FPRالسهجب )
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1 Introduction 

     Epilepsy is one of the widespread disorders and non-communicable disease that affects the human's 

nerve system [1]. Epileptic seizures cause abnormal behaviours in the electricity of the brain, which 

produce symptoms such as losing consciousness, tension or convulsion of the whole-body. Patients of 

epilepsy cannot be aware of the seizure due to differentiation in the nature of human beings, which 

may increase the physical injury. Moreover, people with epilepsy suffer from social stigma and 

vocational obstacles. Another load for patients is the condition of continuous seizure activity without a 

recovery of consciousness between seizures, which is a life-threatening emergency condition [2]. The 

ability to detect (localize) epileptic seizures would have a deep impact of saving the lives of epilepsy 

patients [3]. 

     The aim of this paper is to design an algorithm to detect epileptic seizures in epileptic patients 

using long-term EEG records. The main benefit of the proposed algorithm is using the brain signals 

recorded by an EEG machine. The proposed algorithm will make it easier for doctors or experts to 

detect the disease in a fast and accurate way, as it is very difficult to be detected visually by doctors. 

For example, when a patient lies in the hospital for days (sometimes weeks) while the EEG machine 

recording the signals; it will be very difficult to check all these signals (long-term EEG) manually. 

Therefore, an algorithm is proposed to facilitate the method to check these signals automatically while 

also addressing other problems in the same domain. 

The algorithm proposed in this paper is explained by three main stages, as shown in Figure- 1. First, in 

the pre-processing step,  the data were initially loaded, then the most appropriate channels were 

selected, and signals were epoched into frames to process each of them separately. Second, the 

features were extracted by using the energy of DCT sub-bands and the best features were selected to 

be prepared for the classification step. Finally, the KNN model was trained using training set features 

and the experimental results were evaluated. These steps will be demonstrated in more detail in the 

methods section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-General diagram of the proposed method 
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2 Related Work 

     The earliest seizure detection methods were proposed by Gotman in 1976. They rely on the 

decomposition of EEG records into elementary half-waves. Three features were obtained from epochs 

of 2 s: the average amplitude, the average duration of these primary waves, and the variation (ratio of 

the standard deviation to the mean) of their length as a measure of rhythmicity. Gotman proposed 

some detection criteria by defining a set of thresholds to classify seizures [4].  

     Aarabi, in 2007, presented an algorithm to detect seizures in newborn infants using EEG records. 

This method is composed of feature extraction in several ways which included time-domain, 

frequency-domain, autoregressive coefficients, and wavelets. Also, EEG classification and pattern 

recognition were achieved using back-propagation neural network. The average sensitivity of the 

method was 74% [5]. 

     Tito, in 2009, showed a nonlinear approach to classify EEG seizure segments by offering nonlinear 

decision functions with support vector machine (SVM). As a result, the accuracy average was 91.84% 

[6].  

     An automatic seizure detection method was proposed by Yuan in 2012 by using nonlinear features 

for EEG records to construct the features vector, then feeding them into a single-layer neural network 

that was trained by extreme learning machine (ELM) algorithm. Finally, the output of the neural 

network was passed through a post-processing step to make the decision either ictal or interictal. The 

average sensitivity was approximately 91% [7].  

     A novel method was used in 2014 by Yuan to detect seizures automatically by using intracranial 

EEG. The records were segmented into 4-s window size and decomposed into five levels using 

wavelet transform. Feature vector was generated using diffusion distances. A total of 193.75 h were 

classified using Bayesian linear discriminant analysis (BLDA). The average sensitivity was 

approximately 94% [8]. 

     Wang, in 2017, used one-channel EEG record to detect seizure. He showed that it can be 

transformed into visibility graphs (VGS), including visibility graph (VG), horizontal VG (HVG), and 

difference VG (DVG). Graphs were used to distinguish various EEG seizure patterns.  A total of 615 h 

EEG recordings were analysed [9]. 

     A most recent study was proposed by Yan in 2019 to detect seizure using EEG recordings based on 

image processing techniques. The entire EEG data base was converted into spectrograms. Seizure and 

non-seizure segments on spectrograms were sequentially sampled as images across a detection 

window (26380 images). Four Convolutional Neural Networks (CNNs) were trained on these images. 

The resulting detection performance was suitable for potential clinical use [10]. 

3 Materials 

     The EEG dataset used in this paper was obtained from Children's Hospital Boston (CHB-MIT) 

scalp EEG dataset [11], which is public and available at https:// physionet.org/ physiobank/ dataset/ 

chbmit/. The dataset contains 24 children (males and females) who have epilepsy; each has between 9-

42 continuous EDF (European Data Format) files that contain original raw data of the brain signals. 

The signals were sampled at 256 samples per second with 16-bit resolution. Most of the dataset files 

include 23 channels (in some cases 24 or 26 channels). In this study, we selected 21 out of the 24 

patients, eliminating the patients 6, 12 and 16 because there are some issues to read channels data from 

the EEG records of those patients. The records were based on electrodes placed according to the 

International 10-20 system. The dataset contains annotation files for all the 24 cases. For each case, 

the annotation file includes the number of channels, sample rate, number of seizures, seizure start time, 

and seizure end time. For more information about the dataset, see Table-1. 

4 Methods 

4.1. Channel Selection 

     The gathered EEG signals are usually of multi-channel recordings. Reducing the number of 

channels is required because the setup process with a massive number of channels is time-wasting and 

makes subject inconvenience. Also, it leads to computational complexity. The selection of channels in 

this study was achieved by calculating the variance of all seizure periods for all channels and then 

selecting the subset of channels with the highest variance value [12]. 

   
 

 
∑       
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where   is the samples of signal,   is the mean of signal and   is the signal length [12]. 

 

4.2. Data Segmentation 

     Segmentation means the subdivision of the EEG data into many frames (epochs). In the analysis, 

the epoching of dataset into segments using specific window-time is taken into account in very 

necessary pre-processing steps before the feature extraction process. The EEG signals are segmented 

into different sizes according to the final goal. The window size may be in the range from 0.1s to 60s 

[13]. 

The EEG signals were segmented into 1s frame length with no overlap between successive frames. 

The latest study by the International Federation of Clinical Neurophysiology (IFCN) [14] proposed 

that 5s is the smallest seizure duration when the background EEG is normal, while it is 10s when the 

background EEG is abnormal.  

4.3. Feature Extraction and Selection 

     In most modern-day signal processing techniques, frequency-domain transformation and feature 

extraction have become essential aspects of signal processing. In simple terms, a time-domain signal 

explains how the real-world signal changes with time [15]. In contrast, a frequency-domain signal 

shows the rate of variation in signal values and its spectral synthesis. 

     DCT-II was applied to our dataset recordings to convert signals into frequency-domain. The 

implementation of DCT-II is simple and performed with low complexity steps that lead to fast 

transformation, where conversation time takes a few milliseconds only. Lee, in 1984, presented a 

quick algorithm of DCT-II that has a straightforward recursive structure where the transform splits the 

signal into even and odd parts [16]. 

     ∑                
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Table 1-Description of the CHB-MIT EEG dataset 

  Age   
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  27  

  12  
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where   is the sample of signal,   is the converted signal, and   is the signal length [16]. 

The process of configuring the vector features was conducted by passing each frame (Ictal or Interictal) 

to DCT-II, where the output is divided into 16 sub-bands and the energy is calculated for each band. 

This process is repeated for each selected channel in the subset. The final feature vector had 

dimensions of [F×16×N], where F is the number of frames and N is the number of selected channels. 

where   is the samples of signal and   is the signal length [17]. 

Covariance matrix is based on the correlation of each feature with all other features [18]. For example, 

if the number of features equals ten, the matrix dimensions will be [10×10]. Therefore, the feature that 

has a high correlation (more than 0.9) with the other features must be eliminated in order to increase 

the classifier accuracy. Finally, the feature selection step was performed by using recursive feature 

elimination method. This method excludes worst-performing features on an appropriate model one 

after the other until the best subset of features satisfies [17]. 

4.4. Classification 

     The most crucial stage in neuroscience applications is the process of classifying brain activity (e.g., 

EEG signal) into a specific pattern, which can later trusted for decision-making. In machine learning, 

there are two essential terms that depend on the type of problem and which goal must be achieved; 

First, Linear models and, second, Non-linear models. 

In this study, the KNN model was used. It is a non-linear classifier that is used to classify an unknown 

point based on the distance between this point and   of its neighbours [19]. Given an unknown feature 

vector   and a distance measure, then: 

 Out of the   training features, the   nearest neighbors are identified, regardless of class label. 

  is determined to be odd for two-class problems (in this study   ). 

 Out of these   points, the number of vectors,   , that belong to class 

                           . 

   is put to the class    with the maximum number    of points. 

5 Results 

     CHB-MIT dataset was tested using the DCT-II features by transforming the input signal into the 

frequency domain. The features used in this stage are the energies of sub-bands for the power 

spectrum using 16 sub-bands. The KNN classifier classifies each frame either to ictal or interictal in 

order to finally make the decision. This experimental test seeks to find out how strong this algorithm is 

with DCT-II features. In this experimental result, five out of 23 channels were used on CHB-MIT 

dataset. The results in Table-2 show F1-score average of 93.12% and FPR average of 0.07. These 

results were obtained using ten-fold cross-validation to ensure that all data were evaluated. 

     Confusion matrix, also identified as an error matrix, was used for model evaluation. It is a 

particular table layout that provides visualization of the performance of a classification model, 

typically a supervised learning. Each record of the matrix describes the cases in a predicted class while 

each attribute describes the cases in an actual class (or vice versa). The main terminology of confusion 

matrix are: True Positive (TP) is defined by the count of frames that are correctly classified as ictal, 

True Negative (TN) is defined by the count of frames that are correctly classified as interictal, False 

Positive (FP) is determined by the count of frames that are incorrectly classified as ictal and False 

Negative (FN) are defined by the count of frames are incorrectly classified as interictal. 
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                       (9) 

                    (10) 

Where    can be             . If     then the F-Score is called the harmonic mean [18]. 

 

Table 2-Results for 21 patients on CHB-MIT dataset using five channels 

Patient Accuracy Sensitivity Specificity F-Score FPR FNR Error 

chb01 93.86 94.24 93.12 93.69 0.07 0.06 0.06 

chb02 99.41 99.38 99.33 99.42 0.01 0.01 0.01 

chb03 99.12 100.0 98.30 99.09 0.02 0.00 0.01 

chb04 97.38 97.06 97.33 97.34 0.03 0.03 0.03 

chb05 92.25 94.45 90.20 91.97 0.10 0.06 0.08 

chb07 94.89 95.93 93.74 94.10 0.06 0.04 0.05 

chb08 84.32 88.52 80.86 83.25 0.19 0.11 0.16 

chb09 94.73 96.59 92.56 94.74 0.07 0.03 0.05 

chb10 96.74 99.56 94.26 96.63 0.06 0.00 0.03 

chb11 98.32 98.29 98.39 98.33 0.02 0.02 0.02 

chb13 87.73 87.81 87.40 87.70 0.03 0.02 0.02 

chb14 86.67 90.36 83.97 85.75 0.16 0.10 0.13 

chb15 96.76 97.99 95.52 96.69 0.04 0.02 0.03 

chb17 95.52 94.53 96.30 95.48 0.04 0.05 0.04 

chb18 93.65 95.97 91.48 93.14 0.09 0.04 0.06 

chb19 96.81 97.41 96.34 96.64 0.04 0.03 0.03 

chb20 86.38 91.17 82.76 85.18 0.17 0.09 0.14 

chb21 85.64 82.06 88.07 84.63 0.12 0.18 0.14 

chb22 95.75 98.97 92.65 95.60 0.07 0.01 0.04 

chb23 95.83 96.65 95.20 95.46 0.05 0.03 0.04 

chb24 90.98 93.24 88.66 90.67 0.11 0.07 0.09 

Average 93.64 94.77 92.21 93.12 0.07 0.05 0.06 

 

     To compare our results with those from other publications in the same field (seizure detection), five 

studies were used. Our method proved to be able to detect seizures with a very acceptable accuracy 

with as few channels as possible compared to the methods shown in Table-3. The methods used in this 

comparison employed all the channels, and this technique leads to increased complexity, cost, and 

processing time. Besides, increasing the number of electrodes results in patient discomfort. 

 

Table 3-A comparison with other published works 

Authors Feature Classifiers Dataset Metrics (%) 

Yoo et al [20] Energy/DFT SVM CHB-MIT Accuracy 84.40% 

Dalton et al [21] Signature 
Template 

matching 
Private 

Specificity 

85.00% 

Daou and Labeau 

[22] 
SPIHT codes Threshold Bonn Accuracy 90.00% 

Bajaj and Pachori 

[23] 
IMF/EMD Threshold Freiburg 

Specificity 

89.31% 

Otaiby et al [24] Histograms Threshold CHB-MIT 
Specificity 

91.12% 

Our method 
Energy/DCT-

II 
KNN CHB-MIT 

Accuracy 

93.64% 
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6 Conclusions 

     The present study used KNN and DCT-II to detect epileptic seizures in raw EEG recordings using 

five channels by framing the EEG signals into a 1s long frame, extracting the features using DCT-II 

and then classifying those features using KNN. A good result was found in relation to the CHB-MIT 

dataset, and the proposed method can also be used to evaluate very long-term EEG data. As the CHB-

MIT dataset only includes children, future studies should focus on the EEG data of adults with 

epilepsy and try to predict seizures using the same method in this research to accomplish a low 

complexity method to forecast seizures in epileptic patients. 
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