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Abstract

The primary aim of this paper is to present two various standpoints to define
generalized membership relations, and state the implication between them, in order
to categorize the digraphs and assist for their gauge exactness and roughness. In
addition, we define several kinds of fuzzy digraphs.
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1. Introduction
The rough set theory is a major mathematical tool for approximation reasoning for decision support
that was presented by Pawlak in 1982 [1].
The indescribability of objects is taken into account in this theory.
The fuzzy set theory appeared for the first time by Zadeh in 1965 [2]. There have been many fuzzy
mathematics that were created and developed. The definition of the membership grade normally
depends on concepts such as fuzzy equality, fuzzy set and fuzzy subset.
The rough set and fuzzy set theories are the two major artifacts utilized in the information systems to
manage incomplete and confusing information. The two theories are connected, but they are also
distinct [3 - 5]. We built some results in previous articles [6-15].
2. Preliminaries
We present the basic concepts that are useful throughout our paper in this section.
Definition 2.1. [3]. Let D = (V(D), E(D)) be a finite digraph. The J-degree of #, where » € V (D), for
allJ e {0, I, n, U, <O>, <I>, <n>, <U>}is defined by
@ O0-D# ={u € V(D); (xu) € E(D)},
(b) I-=D()={u € V(D); (w,¥) € E(D)},
(c) N=D(x» =0-D(F) nI—-D(®),
(d u=Dx =0-D(F) UI—-D(®),
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(e) <0 > —D(i’) = anI—D(r) 0 - D(i"),
(f) <I> —D(i“) =Nye 0-D(¥) I— D(F)’
(9 <N>-D(¥) =<0>-D(F) Nn<I>-D(),
(hy <U>-D() = <0>-D(F) U<I>-D().
Definition 2.2 [3] Let D = (V(D), E(D)) be a finite digraph and 6,: V(D) — P(V(D)) be a mapping
which assigns for all » € V(D) its J-degree in P(V(D)). The pair (D, 6,) is namable as a J-degree space
(concisely J-DS).
Theorem 2.3 [3] If (D,6)) is a J-DS, then the a family 7, = {V(Q) € V (D), for each # € V(Q),
J=D(@) cV(Q)}
forall J € {O, I, n, U, <O>, <I>, <nN>, <U>} is a topology on D.
Definition 2.4 [3] Let (D, 6;) be a J-DS. The subgraph @ < D is called a J-open graph if V(Q) € 7.
While the J-open graph supplement is named a J-closed graph. The family of every J-closed graph of
aJ-DSis definable by I; ={V(K) € V(D), [V(K)]° € 7;}.
Definition 2.5 [3] Let (D, 6;) be a J-DSand @ < D. The J-lower approximation of @ and the J-upper
approximation of Q are defined consecutively by

L(Q)=u{Vy(M) €t V(M) € V(Q)} = J-interior of Q.

U;(Q) = n{V(M) €I;:V(Q) € V(M)} = J-closure of Q.
Proposition 2.6 [3]. If (D, 8;) isaJ-DSand M, Q € D. Then

(LY L;(v(@) = [U;(V(QNI* (UD) U;(V (@) = [L;(V(QNI°
(L2) L;(V(D)) =V (D), L;(B) =D (U2) U;(V(D)) =V(D), U;(9) =D
(L3) If V(M) < V(Q) then, (U) If V(M) < V(Q) then,
L,vm) < L;(V(Q) Uy(v(M)) < U;(V(Q))
(LHL,vM) nV(Q) = L) U,(vM) nV(Q) <
L;(v(M)) nL;(V(Q)) U;(V(M)) nU;(V(Q))

(LS) L;(V(M) uV(Q)) = (US) (VM) vV (Q)) =
L,v(M) v L;(V(Q)) Uy(Vv(M) v U;(V(Q))

(L6) L;(V(Q) V(@ (Us) V(@) < U;(V(Q)

(L7) L](L] V@) = L] V(@) (U7 U] (Uj )= U](V(Q))

3. J- Rough Membership Relations, J-rough Membership Functions and Fuzzy Diagraphs.

In this section, we offer new types of rough membership relations, rough membership function and
fuzzy digraphs. Also, we provide some properties about these concepts. In addition, we provide some
solutions to adjust the rough digraphs approximations and accuracy.

Definition 3.1 Let (D, 6;) bea J-DSand Q S D. We can say that

(a) #isaJ-surely belongs to @, (denoted by » €; V(Q), ifr € L;(V(Q)).

(b) #isaJ-possibly belongs to Q, (denoted by # €, V(Q), if ¥ € U;(V(Q)).

These two membership relations are called "J-strong” and "J-weak" membership relations,
respectively, for all J € {O, I, <O>, <I>, U, N, <U>, <n>}.

Lemma 3.2 Let (D, 6;) beaJ-DSand @ < D. Then the next statements are generally satisfied

(@ Ifr €, V(Q) thenr € V(Q).

(b) If+ € V(Q), thenr € V(Q).

Proof (a) Sincer €; V(Q),sor € L;(V(Q)),butL,;(V(Q)) € V(Q), therefore » € V(Q).

(b) Since # € V(Q) < U;(V(Q)), therefore # €; V(Q).

Remark 3.3 In general, the converse of lemma 3.2 above is not valid, as demonstrated by the next
example.

Example 3.4 Let (D, 6,) be a J-DS, where D = (V(D), E(D)), V(D) = {1, #2, #3, ¥4} and E(D) = {(¥1,

#1), (F2, #2), (#3, #3), (3, #2), (¥3, #4), (P4, 1) }.
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A

Figure 1- The digraph given in Example 3.4.

Then we get
10 ={V(D), @, {1}, {+2}, {F1, #2}, {r1, #a}, {F1. 72, 743} T = {V(D), @, {¥2, #3, #a}, {F1, #3, ¥4}, {F3, #4},
{2 #3}, {#3}}

We satisfy the above remark in case of ] = 0.

Suppose that @ € D suchthat Q = (V(Q),E(Q)), V(Q) = {1, 2 #3}, and E(Q) = {(#1, #1), (*2,
#2), (73, #3), (¥3, ¥2)}. Then we get

Lo(V(Q)) = {ru #:}, Up(V(Q)) = V(D), we have #; € V(Q) but #; is not a O-surely belong to Q
since #3& Lo (V(Q)), also #4 €, V(Q) since #4 € Up(V(Q)) but #4 & V(Q).

Proposition 3.5 Let (D, 6;) be a J-DS and Q,K < D. Then we can prove the following through the
use of the J-approximation properties in [3].

(@) LetQ < K,if# €; V(Q), then# €; V(K),andif# € V(Q),thenr €; V(K).

(b) # € (V(Q) u V(K))ifandonlyifs € V(Q)or# € V(K)),

) € (V@Qn V(K))ifandonlyif+ € V(Q)andr € V(K),

(@ If » g V(Q)or# g V(K), thenrg; (V(Q)U V(K)).

() Ifrg; V(Q)and# g V(K), then#€g; (V(Q) n V(K)).

(f) # € [V(Q)]¢ifandonly if non# €; V(Q),

(@ # € [V(@]¢ifandonlyifnon# €; V(Q).

Proof (a) Let # €; V(Q), then by definition » € L;(V(Q)), since Q S K then by Proposition (2.6)
L;(V(Q)) & L;(V(K)) which implies that # € L;(V(K)) so, ¥ €; V (K).

(b) Let ¥ €, (V(Q) U V(K)), if and only if » € U;(V(Q) U V(K)) and # € U;(V(Q)), or # €
U,(V(K)) ifand only if » €, V(Q) or# €; V(K).

(c) Let# € (V(Q) n V(K)), then# € U;(V(Q) n V(K)) € U;(V(Q)) n Uy(V(K)) if and only if #
€, V(Q)and ¥ €; V(K).

(d If »€ V(Q) or#g; V(K) then € L;(V(Q)) or # € L;(V(K)), so # € L;(V(Q) UV(K)),
therefore ¥ €, (V(Q) U V(K)).

() If ¥ €, V(Q) and # €; V(K), then» € L;(V(Q)) and # € L;(V(K)), so # € L;(V(Q) n V(K)),
therefore # €, (V(Q) n V(K)).

(f) Let # €; [V(Q)]€ if and only if » € L;(V(Q)®) = [U;(V(Q))]° if and only if » & U;(V(Q)) if and
only if nonr €; V(Q).

(9) Let ¥ €; [V(Q)]° if and only if € U;(V(Q)°) =[L;(V(Q))]° if and only if » & L;(V(Q)) if and
only if non#€; V(Q).

Remark 3.6 We will redefine the J-approximation in [3] by depending on €; and €, as subordinates,
forany Q. KD L,(V(Q)={reD;r €, V(Q}. U;(V(Q) ={r€D;* € V(Q)}

The next proposition is very important and provides the relation between various kinds of J-rough
membership relations €; and €;. Accordingly, we will explain the importance of utilization of the
various types of membership relationships.

Proposition 3.7 Let (D, 6;) be J-DSand Q < D. Then

(@ Ifre,V(Q)impliestor €, V(Q) impliestor €, V(Q)
(b) Ifre,V(Q)impliestor g, V(Q) impliestor €, V(Q)

(c) f#€,V(Q)impliestor €, V(Q) impliestor €, V(Q)
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(d) If# €, V(Q)impliesto# €; V(Q) impliestor €, V(Q)
() If¥ Ecns V(Q) impliestor E-ps V(Q) impliesto# E.ys V(Q)
(f) If¥ Ecns V(Q) impliesto# €45 V(Q) impliesto# E-ys V(Q)
(@) Ifr E.ys V(Q) impliestor €.os V(Q) impliestor E.ns V(Q)
(h) Ifr E.ys V(Q) impliestor E.;s V(Q) impliesto# €E.4s V(Q)
Proof. (a) Let » €, V(Q), so # € L, (V(Q)), then # € L, (V(Q)). Also, if ¥ €9 V(Q), s0 # €
Ly (V(Q)), then# € L, (V(Q)).
We can prove (b), (c), (d), (e), (f), (g) and (h) by the similar manner.
Remark 3.8 The converse of the precedent proposition is not true generally, as shown in the next
example.
Example 3.9 Let (D, 6;) be a J-DS, where D = (V(D), E(D)), V(D) = {1, #2, #3, #4}, and E(D) = {(#1,
?’1), (Fl, "'2)1 (FZa Fg), (FZa F4), (1’3, 1’1), (r4a rl)}'

1 g 2

¥3

Figure 2- The digraph given in Example 3.9.

O-D(¥1) = {r1, 2}, O-D(¥2) = {3, 74}, O-D(3) = {r1}, O-D(¥s) = {r1}.

I-D(#1) = {F1, #3, ¥4}, 1-D(¥2) = {#1}, 1-D(¥3) = {#2}, 1-D(¥4) = {#2}.

T<}?}> = {V(D)! ®1 {rl}a {I“l, rZ}! {FS’ FA}’ {rl’ ¥3, f"4}}, F<0> = {V(D)v (Z)’ {FZ}! {rl’ F’z}, {ri’n 1’4}, {FZa ¥3,
T4<}1}% ={V(D), @, {x1}, {2}, {r1. w2}, {¥1, #3, 7a}}, T = {V(D), B, {2}, {rs, #a}, {F1, #3, 74}, {F20 73,
Fagg.

Tens = {V(D), @, {ri}, {ro}, {F1. 2}, {Fs, #a}, {1 730 4} {72, 73, 723} Tens = {V(D), @, {#1}, {2}, {r1,
#o}, {#3, #a}, {F1, #3, 2}, {F2, #3, F43}.

T<u> = {V(D)v Q), {Fl}’ {1"1, FZ}’ {Flr ¥3, F4}}1 F<U> = {V(D)’ (Z)v {FZ}! {I"3, F’4}, {I"z, 3, F4}}'

Suppose that @ < D, where @ = (V(Q),E(Q)), V(Q) = {r2 73, #a}, E(Q) = {(r2 #3), (r2, #4)}.
Thus we get

PARN

2 > ® ¥3

¥4
L<0>(V(Q)) = {#3, #4}, L<1>(V(Q)) = {r2}, L<n>(V(Q)) = {#y, #3, ¥4}, L<u>(V(Q)) = 0.
S0, ¥3€<p> V(Q) and #; E<;> V(Q) but ¥, €oy> V(Q) and #;3 €~y> V(Q), also #; E<n> V(Q) and
¥3E€n V(Q), butw, €, V(Q) and #3 €, V(Q). By similar way, we can illustrate the other cases.
Definition 3.10 Let (D, ;) be a J-DS and Q@ < D. Then for all J € {O, I, <O>, <I>, n, U, <N>,
<u>}and Q € D. The J-rough membership functions of J-DS are defined as follows:
For subgraph Q, the J-rough membership functions on D are Qé:D—> [0,1],
T — [U=D@}nV(Q)|

2o =" g=om
Where |{J — D(#)}| # 0 and |A| denote the cardinality of A.

The J-rough membership function represents a conditional probability that Q includes # given that
E(D) and it can be interpreted as a degree that » belongs to Q in consideration of the information
presented by E(D) about #. Furthermore, in the situation of infinite digraph, the precedent membership
function Qé can be used for spaces, which have locally finite minimal degrees for every vertex.
Remark 3.11 To define the J-approximations of a digraph @, the J-rough membership functions can
be utilized as explicated below
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L;(V(@) ={r€ D; 2y(») = 1}

U;(V(Q) ={r € D; 2}(x) >0}
The following implications indicate the essential properties of the J-rough membership functions
referred to above.
Proposition 3.12. Let (D, ;) be a J-DS and @, K € D. Then

@ 2 =1ifandonlyif €, (V(Q)),

(b) ) =0ifandonlyifr € V(D) —V(Q),

(€ 0 < 0, <1ifandonlyifr € B(Q),

(d) n{,_Q(r)z 1 -0/ (r)forallr €D,

(e) UK(r) > max {!2 ), 27, k@) }forall# €D,

(f) QnK(r) <mm{gf (), 21} forall » € D.

Proof. (a) Let 2},(*) = 1 if and only if » € V(Q), ] —D(¥) SV (Q) if and only if € L,(V(Q))
then# €; V(Q).

(b) Let .Qé(r) =0 ifand only if J—D(¥) € [V(Q)]° if and only if # € L; [V(Q)]° then # €,
4]

(c) Let 0 < 02)(¥) <1, implies to 2} (*) > 0and 2)(¥) <1, so by Remark (3. 11) # € U;(V(Q)
and » ¢ L;(V(Q)), therefore » € U;(V(Q)) — L;(V(Q)), which means # € B;(V(Q). Conversely,
€ B(V(Q)), so ¥ € Uy(V(Q) and # & L;(V(Q)), therefore 02)(+) >0 and 2)() # 1,50 0 <
L) <1

() 2}, _ o) = UROOVDIV@I_ J-DOI_ Y-DOV@I_ i

: /=D A /=D
(e) Since [V(Q) U V(K)| = |V(Q)] then [{J — D(r)} nveE) v V(K)I > |] - D(r) N V(Q)|, so
QU #® = Q] (#), and by the same way we get QQU ) = (r) therefore QQU x(#) =max

ﬂﬂ@)n(@}

(f) Since [V(Q) n V(K)| < |[V(Q)], then [{J =D(#)} n V(Q) n V(K)I < | —D() n V(Q)I, so
0L k@ < 02}, and by the same way we get 2}, (*) < Q4(¥), therefore Q) _, () <min

{ﬂ’ (), 24 (r)}

Remark 3.13 The J- rough membership functions can be divided by the digraph D depending on the

J-positive, J-negative and J-boundary areas of Q S D, consecutively, as in the following

P0S;(Q) ={r € D; 2}(*) = 1}, NEG;(Q) ={r € D; 2(») = 0},
Bj={r €D; 0 < 2}() <1},
Lemma3.14 Let (D, 6;) beaJ-DSand Q S D. Then for each # € D
(a) If2y() = 1impliesto 29 () = 1 impliesto QG(¥) = 1,
(b) If QQ(r) = 1 implies to QQ(r) = 1 implies to QQ(r) =1,
(c) If05Y> (@) = 1impliesto Q5% (¥) = 1 impliesto 5" () = 1,
(d) IfQ(») = 1impliesto !23’>(r) = 1 implies to 25" (¥) = 1.
Proof. (a). If 2g(¥) =1, then ¥ €, (V(Q)), so ¥ €5 (V(Q)), thus 25(») = 1. Also, if 2§ (+) = 1,
thenr €y (V(Q)),s0#€q (V(Q)), thus 25 (¥) = 1.
Similarly, we can proof (b), (c) and (d).
Lemma 3.15 Let (D, 6;) beaJ-DSand Q < D. Then foreach» € D
(a) If 2y() = 0impliesto 29 () = 0 implies to 25 (¥) = 0,
(b) 1f Qg () = 0 implies to 24 (¥) = 0 implies to 20 (+) = 0,
(c) If05Y> (@) = 0implies to 5%~ (+) = 0 implies to 25"~ () = 0,
(d) If25%>() = 0impliesto 25" (¥) = 0 implies to 25> (¥) = 0.
Proof. (a) If 2g(*) =0, then U—D() NV(Q) = @, s0 0 —D(¥) NV(Q) = @, thus 2 (¥) = 0.
Also, If 29 (¥) = 0, then0 —D(¥) NV(Q) = @,50 N —=D(¥) NV(Q) = @, thus 25 (¥) = 0.
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Similarly, we can proof (b), (c) and (d).

Remark 3.16

(@) We can prove that % Is more accurate than the other types depending on the above implication
and by utilizing Proposition 3.7, this means that

(1) Ifr eV(Q) theny(*) < 029() < g andif» € V(Q) then R (+) < 025() < 025().
(2) Ifre V(Q)then2g(x) < 09() < 2g(») andifr & V(Q) then 25(x) < 05() < Qg ().
() If ¥ €eV(Q) then 25Y7() < 05%() < 25" () and if » €V(Q) then 25%() <
257 < 05" @).

(4) If » g V(Q) then 25" () < 05%() < 25°7 () and if + & V(Q) then 25" () <
.ng(r) < .qu>(r).

(b) Generally, the converse of the above lemma is not true.

We will illustrate Remark 3.16 in the following example.
Example 3.17 According to Example 3.9, consider the subgraph Q < D, where Q = (V(Q), E(Q)),

V(Q) ={r2 #3 71}, E(Q) = {(¥2, ¥3), (r2, ¥4)}.

Then we get:

[2<0> F = 0 [2<0> [2<0> — I [2<0> = ].
.Q<I>r — 0, _(2<1> = 1, .(231>r3 2’ .(231>r _ é
.Q<n> = (), .Q<n>r2 = 1 .(2<n>r3 = I .(2<n>r4 = [
_qu> -0, _Q<u> _ 1 _Q<u> F= 2 .(2<U>r — é

Definition 3.19 Let (D, 9]) be J-DS and Q < D. Then for each # € D. Then the J-fuzzy digraph in D
is a digraph of order pairs:
Q)= {(~ 2(®); » € D}

Example 3. 20 According to Example 3.9, consider the sub digraph @ < D. Then we get
~ 1
Q<0> = {(I“l, 0) (I“z, _) (I“g, 1) (F4, 1)}
Q<I> - {(I“l, 0) (I“z, 1) (F3! ) (F4, )}
Q<ﬂ> - {(I"l, 0)1 (1’2, ;I-)i (f"3,21) (1’4,21)}
Q<U> = {(I"l, 0)! (FZ, 3)1 (F31 })’ (f"4, })}
Conclusions

By using the J-rough membership functions, we defined the J-lower and J-upper approximations.
Depending on these functions, the digraph D could be divided into three areas; J-positive, J-negative

and J-boundary areas. Also by using J-rough membership functions, we introduced many kinds of
fuzzy digraphs.
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