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Abstract 

     This paper presents a new numerical method for the solution of ordinary 

differential equations (ODE). The linear second-order equations considered herein 

are solved using operational matrices of Wang-Ball Polynomials. By the 

improvement of the operational matrix, the singularity of the ODE is removed, 

hence ensuring that a solution is obtained. In order to show the employability of the 

method, several problems were considered. The results indicate that the method is 

suitable to obtain accurate solutions. 
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Introduction 

     This study considers singular ordinary differential equations of the form 

( ) ( ) ( ) ( ) ( ) ( ), 0 1 and 0q t u t u t p t u t r t t
t


                                                  (1) 

with either of the initial conditions (ICs) 

                                                        2(0) , (1)y y                                                           (2)                                                         

and either of  the boundary conditions (BCs) 

                                                           1(0) , (1)u u                                                          (3)                                                  

     where   ,  ( )p t q t and  r t  are analytic in (0,1)t    and 1 2 1 2, , ,     and   are finite 

constants. It is observed that problem (1) has singularity at the initial point   0.t   Hence, the main 

difficulty arises in the singularity of the equations at   0.t   Generally, singular features exhibited by 

differential equations of the form (1) at this point incurs difficulty when considering its numerical 

solution. The solution of singular ordinary differential equations has been explored by various studies.  

Specifically, the  solution  of singular  initial  value problems  was considered [1] using the  residual-

power  series method  (RPSM)  to obtain  efficient analytical numerical  solutions  for a class of 

nonlinear  systems  of initial value  problems  with  finitely  many  singularities.  Likewise, a new 

algorithm was proposed to  solve singular  initial  value  problems  of Emden Fowler type equations 

[2], while another work [3] presented a numerical  method  where the operational matrix  with the Tau 

method  is utilized to transform the differential  equation  into a system of algebraic  equations.  

Another study [4] derived  solutions  with iterative methods,  including Daftardar-Jafari Method  

(DJM), Adomian  Decomposition  Method  (ADM),  and  Differential  Transform Method (DTM). 
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Solutions  of singular  boundary value problems,  on the  other  hand,  are evident in various studies, 

such as an earlier work [5] which solved the problem of non-linear  singular boundary  values  by 

introducing the Variational Iteration Method  (VIM).  Also, the collocation and Galerkin  approach 

was presented [6] and the solution of the singular Dirichlet type boundary value  problem was 

explored  using the  SincGalerkin  method [7]. Likewise, singular boundary value problems were 

deeply elaborated on producing kernel space [8, 9]. A method known as the parametric spline was 

proposed [10]. Numerous works have been tested in various regions; for example, mass exchange,  

fractional Maxwell fluid [11,12], and the Oldroyd-B fluid model [13]. 

     Our method is different from the above described methods, since it employs Wang-Ball operational 

matrix  of differentiation  to  obtain  the  solution  of singular  initial and boundary value problems.  

Wang-Ball polynomial is restricted to the interval t ∈ [0, 1] which is pertinent in a generalized form, 

such as that of the Bezier curves [14, 15]. Many constructive properties are known to be associated 

with Wang- Ball polynomials, such as the recursive relations, positivity, symmetry, continuity, and the 

unity partition of set over intervals.  Polynomials in their operational matrix form have been utilised to 

solve differential equations.  A previous work [16] solved the Korteweg-de Vries (KdV) differential 

equation using the modified Bernstein polynomials, while a novel method was presented to solve high 

order linear differential equations with initial and boundary condition imposed [17]. Similar attempts 

have been made by several other studies [18-22].  These separate works covered Bernstein 

polynomial, Bernstein operational matrix of integration, and a combination of Ritz Galerkin method 

with Neumann and integral condition, all of which being dedicated for the solution of differential 

equations. 

     This  article  considers  the  solution  of singular  initial  and  boundary value problems using 

Wang-Ball  operational matrix  for differentiation.  The  proposed  algorithm  involves  a  

transformation using  an  unknown  coefficient of algebraic equations  into  the  singular  ODEs.   

MATLAB,  Maple,  and  Mathematic  software were utilized  to obtain  the  required  solutions  when 

adopting the  method to numerical  examples.   The subsequent sections of this article give more 

details on the method and its implementation. In Section 2, Wang-Ball Polynomial basic properties  

are reviewed and  developed  for operational matrix  derivative, while Section 3 details  the  

implementation of the  proposed  method  for solving the  singular  initial  and  boundary value 

problems. Section 4 displays examples of numerical applications of the proposed algorithm, with the 

conclusion and discussion of results given in Section 5. 

Glance on Ball polynomial 

     The Ball polynomial was introduced by A. A. Ball in his well-known aircraft design system 

CONSURF [23].  It is described as a cubic polynomial and defined mathematically as: 

                                         

                              
2 2 2 2(1 ) ,2 (1 ) ,2 (1 ), , 0 1.t t t t t t t    

                                             (4) 

     In further research, several studies discussed Ball polynomial’s high generalization and its 

properties. For instance, two different Ball polynomials of arbitrary degree called Said-Ball and 

Wang-Ball, were reported in the 1980s [24], while another generalization of Ball polynomial called 

DP-Ball was reported. 

Wang-Ball Polynomial Representation 

     Wang-Ball polynomial  ( )m

iW t  of degree m   can be defined by [24]: 
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32(1 ) (2 ) ,0
2

1 1
12 2(1 ) (2 ) ,

2
( )

1 1
12 2(2(1 )) ,

2

32(2(1 ) ) ,
2

mi it t i

m m
m

t t i
mW t

i m m
m

t t i

mm i m it t t i m

   


 


 
 

 
  




     


                       (5)                                     

when m is odd, and 

                                

2

2

2

(1 ) (2 ) ,0 1
2

( ) (2 (1 )) ,
2

3
(2(1 )) ,

2

i i

m

m

i

m i m i

m
t t i

m
W t t t i

m
t t i m



  


   




  



  



                                     (6) 

                                  

when m is even. 

Definition of Wang-Ball Monomial Form 

     A Wang-Ball curve of degree m denoted by  ( )mA t  is given together with  1m   control points, 

denoted by 0{ }m

i iw  . The degree m Wang-Ball ( )m

iW t  is given in the form of power basis 

                                                     ,

0 0

( ) , 0 1
m m

m l

i k l

k l

W t w t t
 

                                            (7)                                                                 

where 

 

                       

( )

( )

( )

( )

2
( 1) 2 , for 0 1,

( 1) 2 , for ,

( 1) 2 , for ,
2

( 1) 2 ,

2
  

 

for 1 .
2

2

2

l k k

l k k

kl

l k n k

l n k n k

k
k

l k

n k
k

l k
w

n k m
k

l k

n k m
k n

l n k

m

m





 

  

 
  

   
   

  

 
 
 

 
 
 

 
 




  
   

  
 

         


  


 
        

                    (8) 

 

     where x    represents GI x  and  x    represents LI x , where GI   and  LI  are the 

greatest integer and least integer, respectively.   The Wang-Ball monomial matrix is 
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00 01 0

10 11 1

0 1 ( 1) ( 1)

m

m

m m mm m m

w w w

w w w

w w w
  

 
 
 
 
 
 
  

A                                   (9) 

where klw  is given as in (8). 

The Wang-Ball basis function satisfies the following properties: 

i. The Wang-Ball  basis function  is non-negative, that is, 

                   ( ) 0, 0,1, , .m

iW t i m                                                                      (10) 

ii.  The partition of unity,  that is, 

                                                         
0

( ) 1.
m

m

i

i

W t


                                                                            (11) 

In general, we approximate any function  ( )u t   with the first ( 1)m   Wang-Ball polynomials as: 

                                   
0

( ) ( ) ( ) ( )
m

m T T

i i m

i

u t c W t C t C H t


      A                                               (12) 

     where  
2

0 1[ , , , ], ( ) [1 ]T m T

m mC c c c H t t t t        and A is the monomial matrix 

form given in (9).  The  1m   by 1m   operational matrix of derivative of the Wang-Ball 

polynomials set ( )t  is given by: 

(1)( )
( )

d t
t

dt


 D  

            ( )m

d
H t

dt
 A  

             ( )m

d
H t

dt
 A  

1

0

1

2

m

t

mt 

 
 
 
 
 
 
  

A 2

0 0 0 0 0 1

1 0 0 0 0

0 2 0 0 0

0 0 0

 

0 m

t

t

m t

   
   
   
   
   
   
      

A

 
( )mH t A  

          
1 ( )mH t A A A  

      
1 ( )t  A A  

  
(1) ( )t D  

where 

0 0 0 0 0

1 0 0 0 0

.0 2 0 0 0

0 0 0 0m

 
 
 
  
 
 
    

Hence 

                                                   
(1)( ) ( )Tu t C t   D                                                                 (13) 
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we can generalize Equation (13) as 

 

 
1 1

(1) (1) ( )

1 1
( ) ( ) ( ) ( ) ( ),  1,2,( )

n n n
n n

n n n

d d d d
t t t t t n

dx dx dx dx

 

 

 
              

 
D D D   

 

Applications of the Operational Matrix of Derivative 
     In this section, we present the derivation of the method for solving differential equation of the form 

(1) by Wang-Ball Polynomials, as follows  

                  
(2) (1)( ) ( ) ( ) ( )T T T TC t C t C t R t

t


          D D      (14)                                      

where 
0 1[ , , , ].T

mR r r r We can write the residual ( )n t for Equation (14) as 

                           
(2) (1)( ) ( ) ( ) ( ) ( ).T T T Tt C t C t C t R t

t


            D D                     (15) 

     We first collocate (15) at ( 1)m  points. For suitable points, we use 

2 1
,   1,2, , 1.

2
i

i
t i m

m


     

    These equations generate ( 1)m   nonlinear equations which can be solved using Newton's iteration 

method. Consequently, ( )u t can be calculated. 

Numerical Examples 

Problem 1 

   Consider the second order singular boundary value problem given in [20] 

                                                           
2 31

( ) ( ) ( ) 4 9 ,u t u t u t t t t
t

                                      (16)                             

with (BCs) 

                                                         
(0) 0, (1) 0.u u 

    (17)                                                              

and the exact solution 
2 3( ) .u t t t   

To solve (16), we use the proposed method with 3m  , hence obtaining the approximate solution as 

                    

3 3 3 3

3 0 1 2 3 0 1 2 3

3 3 3 3

0 0 1 1 2 2 3 3

( ) ( ) ( ) [ , , , ][ ( ), ( ), ( ), ( )]

( ) ( ) ( ) ( ),

T Tu t u t C t c c c c W t W t W t W t

c W t cW t c W t c W t

       

      
          (18) 

We apply (13) to obtain, 

                          
(1) (2)

2 1 1 0 2 2 2 2

2 2 2 0 8 2 2 4
, .

0 2 2 2 4 2 2 8

0 1 1 2 2 2 2 2

     
   

    
     
      
   
   

D D                           (19) 

Therefore, by collocating Eq. (15), choosing the suitable collocation points 
3 1

,
4 4

t  yields 

                                        

0 1 2 3

0 1 2 3

0

3

67 25 501 219 501
0,

64 128 128 64 256

55 103 115 65 115
0,

64 128 128 64 256

0,

0.

c c c c

c c c c

c

c


       


         

 

  

                                         (20) 
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     The last two rows come from the BCs. Thus, solving (20) gives 0 1 2 3

1
0, 0, , 0.

2
c c c c        

Hence 

 

2

2

2 3

3 0 1 2 3 2

2

( 1)

2( 1)
( ) , , , .

2( 1)

t

t
u t c c c c t t

t t

t

t

 
 

      
  
 
 

 

which is an approximate solution using the proposed method and the same as the given exact solution. 

Problem 2 

Consider the first order ode [22] 

                                                
22'( ) ( ) ( ) ,tu t tu t u t e                                                           (21) 

with the (ICs) 

                                                      (0) 1.u                                                                                (22) 

with the exact solution  

                                                 

2

2( ) .
t

u t e                                                                                  (23) 

Here we see that ( ) 0.q t   The numerical results of the newly proposed method in comparison to [22] 

are provided in Table-1. 

 

Table 1- Comparison of solutions of Problem 2 using the proposed method and the method described 

previously [22]. 

t Error PM 

 

Error  Adomian Decomposition Method [22] 

 0.00 0 0 
0.01 8.28E-12 1.750000 E-7 
0.02 2.222E-11 6.400000 E-7 
0.03 3.229E-11 1.314000 E-6 
0.04 3.538E-11 2.123000 E-6 
0.05 3.210E-11 2.999000 E-6 
0.06 2.504E-11 3.883000 E-6 
0.07 1.724E-11 4.720000 E-6 
0.08 1.163E-11 5.463000 E-6 
0.09 1.033E-11 6.069000 E-6 
0.1 1.468E-11 6.501000 E-6 

Problem 3  

   Consider the differential equation from [3] 

                         
2

( ) ( ) ( ) 0, (0) 1, '(0) 0.u t u t u t u u
t

                                               (24) 

     The exact solution is given by
( )

( )
sin t

u t
t

 . We solve the above equation when 7m   and

8m  . Figure-1 displays the absolute error which shows that the proposed method obtained highly 

accurate solutions even in large computational intervals. 
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Figure 1- Absolute Error Plot of the Proposed Method with 7m  and 8m   for Problem 3 

 

Problem 4 

Consider the following ordinary differential equation [22] 

                          
2 22 3 2 ( ) 2 (3 )''( ) '( ) ( ) (2 6 ) 0,t tu t tu t t u t t e t e                                                (25) 

Subject to IC  

                                                    (0) 1,     '(0) 0.u u                                                            (26) 

with the exact solution 
2

( ) .tu t e  We apply the above method when 12m  . Table-2 shows the 

absolute error for Problem 4. 

 

Table 2-Comparison of solutions of Problem 4 using the proposed method and that described earlier 

[22]. 

t Adomian Decomposition Method Ref[22] PM m=12 

0 0 0 
0.01 2.000000E-9 8.12030E-10 
0.02 2.900000E-8 2.72633E-9 
0.03 2.900000 E-8 5.17165E-9 
0.04 4.450000 E-7 7.79530E-9 
0.05 1.074000 E-6 1.039860E-8 
0.06 2.207000 E-6 1.288758E-8 
0.07 4.057000 E-6 1.523544E-8 
0.08 6.872000 E-6 1.745542E-8 
0.09 1.093000 E-5 1.958109E-8 
0.1 1.654900 E-5 2.165294E-8 

Problem 5 

  Consider the singular Dirichlet type boundary value problem on the interval [0, 1] given in [7] 

                                  
31 1

( ) ( ) ( ) 0,
( 1)

u t u t u t t
t t t

    


                                               (25) 



Kherd et al.                                                  Iraqi Journal of Science, 2021, Vol. 62, No. 3, pp: 941-949 
 

948 

with (BCs)    0 1 0.u u  The exact solution of this problem is 





2 2 3

3 4 4 5 5

1
( ) 14ln( 1) 14ln( 1) 1 6 12 ln(2) 2

144

          4 ln(2) 2 ln(2) 9 18 ln(2)) / ( 1 2 ln(2) .

u t t t t tx t t t

t t t t t

        

     
 

Table 3- Comparison of solutions of Equation (26) using the proposed method with 12m    and the 

method reported previously [7]. 

t 

 

Error P M 

 

Error Sinc-Galerkin method [7] 

 0.2 7.466000000000000E-12 1.88415721000000e-10 
0.4 2.385900000000000E-11 7.13501861405898e-10 
0.6 2.385900000000000E-11 8.20803253396388e-10 
0.8 4.034590000000000E-10 5.53448662985227e-10 

 

Conclusions 

     This article has considered the numerical solution of first and second order DEs. The introduced 

method is the Wang-Ball operational matrix which was derived as a generalization of the conventional 

Ball polynomial. For each of the numerical problems considered, the new approach reduces the DEs 

into a set of linear and non-linear algebraic equations with respect to the property of the DE itself. This 

reduction renders the DEs to be in a form that is easier to solve, while still obtaining accurate results. 

Aside from being able to recover the exact solution of certain DEs, the Wang-Ball operational matrix 

confers a more exact and robust numerical solution than that provided by the classical method. It can 

be clearly noticed that the proposed method performs well even on a few number of terms of the 

Wang-Ball polynomials, also showing impressive results as compared to the methods reported by the 

existing literature. Hence, the proposed method in this article can be adequately adopted to solve any 

real life scenario model in the form of either first or second order DEs. 
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