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Abstract 

     Let R be associative; ring; with an identity and let D be unitary left R- module; . 

In this work we present  semiannihilator; supplement  submodule as a generalization 

of R-a- supplement  submodule, Let U and V be submodules of an R-module D if 

D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the 

concept of  semiannihilator -supplemented ;modules and semiannihilator weak; 

supplemented modules, and we give some basic properties of  this conseptes. 

  
Keywords- sa- Small Submodule, sa-Hollow And sa -Lifting Modules;, sa -

supplemented  Modules 
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 الخلاصه

يدعى شبه  Dمن Nي. الطقاس الجزئايدر مقاس محايد Dحلقه تجطيعيه ذات عظصر محايد و R لتكن     
 Uو K.لتكنD=K+Kعظدما D اسالطقمقاس جزئى من  Kحيث   Rصغير فيKتالف  تالف صغيرفي حاله
كذلك    D=U+K  اذا  Dالطقاس  في  Uللطقاس الجزئي شبه تالف مكطل K.نقهل ان  D مقاسات جزئيه من

. الغرض الاساسي من البحث هه تطهير   Rصغير في  Yشبه تالف ن يكه   D=U+Yو Y>Kعظدما و 
.الفه الطكطله الضعيفهات شبه التالخهاص الاساسيه للطقاسات شبه التالفه الطكطله والطقاس

Introduction  

"   Throughout this paper; all rings are associative; ring with identity and modules are unitary left 

modules, D is named a "hollow module" if every proper submodule; is small; in D, where a 

submodule B of R-module D is named small in D (N << M) if B +K ≠ D for each proper submodule K 

of  D . A proper submodule; B of R-module D is named an essential; in D, if for every non-zero 

submodule K of M then N∩K ≠0 [1]. The concept of "small submodule" has been generalized by 

some researchers, for this see [2,3].  the authors; in [4] introduced; the concept of R-annihilator; small 

submodules, that is; a submodule  B of an R-module D is called R-annihilator small, if whenever 

B+K=D, where K a submodule of D; ,implies that ann(K)=0, where ann(K) ={r R: r.K=0}. In [5] 

sahira introduce the concept of semiannihilator; small submodules, in case ann(K) << R where K is a 

submodule; of D whenever; B+ K =D. Clear that every :R-annihilator small submodule is 

semiannihilator; small, but the convers is not true [5] . Recall that a submodule V of M is called a 

supplement of U in M. If V is a minimal element in the set of submodules L of M with U+L=M. Let 
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M be an R-module, M is called a supplemented module if every submodule of M has a supplement in 

M. Let U, V be submodules of an R-module M. If M=U+V and U∩V≪ M, then V is called a weak 

supplement of U in M. Let M be an R-module if every submodule of M has a weak supplement in M, 

then M is called a weakly supplemented module[6]. In this work we present  semiannihilator;- 

supplement  submodule , Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ 

V and D=U+Y, then annY≪R;. We also introduce the the concept of  semiannihilator supplemented 

;modules and semiannihilator weak; supplemented modules, and we give some basic properties of  this 

conseptes. 

    In section two we introduce the notion of semiannihilator lifting modules and discus some 

characteristics ; of this  kind; of  modules.. In part three; we introduce the concept of semiannihilator 

supplement submodule  and basic properties. We show that;. If D and D′ be R-modules and let  f: 

D→D′  be  an  epimorphism,  if  D′ is semiannihilator supplemented module, then D is semiannihilator 

supplemented; module. In part four , the concept of  semiannihilator weak supplement; submodules" 

with some examples and basic properties was introduced .The below lemma award  the characteristics 

of  semiannihilator; small  submodules. 

Lemma[5]: 

1- Let D be an R-module with submodules A,𝑁.such that A⊆𝑁. If N ≪ sa D then A ≪sa D. 

2- Let  D  be  an R-module with submodules A,𝑁.such that A⊆𝑁, if A ≪sa 𝑁  then  A ≪sa D. 

3-Let D1 ,D2 be an R- modules . If N1≪sa D1and N2 ≪sa D1thus N1⨁N2 ≪sa D1 ⨁D2. 

4- let D and S be an R- modules and   f : D→S  be  an epimorphism .  If  H ≪sa S, then f 
−1

(H) ≪sa D.  

1. Semiannihilator lifting modules. 

     An R-module Dis called lifting; if for any submodule N of D there exist submodule K of N such 

that D=K⨁ K′ with K′≤ M and N∩ K′≪ K. In this part we introduce the notion of  semiannihilator 

lifting  modules as generalization of R-Annihilator  Lifting modules and discus some properties of this 

kind of modules.  

Definition 1.1 : An R1-module D is named  semiannihilator lifting; (sa- lifting ) if  for any  submodule  

B of D ,  there  exist  submodules  K , K ′ of  D  such that   D= K ⨁ K ′ with K ⊆ B and B⋂ K ′ ≪sa K  

The below  theorem given a characterization of  following  semiannihilator lifting; modules.  

Theorem 1.  For an  R-module;   D  the statement are   equivalent :  

1)  M  is  sa- lifting; 

2)  Every  submodule   N of  D,  N  can be written  as  N= A⨁ B where  A is direct summand of  D 

and B ≪sa D.  

3) For  every  submodule; N  of   D, there  exist  a direct summand; K of  D  s.t  K ≤  N  and  N/K≪ sa 

D/ K.  

Proof : See proof of lemma2 in [7].  

     A nontrivial R-module D is called semiannihilator –hollow;(sa-hollow) if every proper submodule 

of D is sa-small in M [5]. 

Examples 1.2 : 

1- Z  as  Z- module  is  sa- lifting; module  but it is not lifting. 

2- Z6 and  Z4  as  Z- module  are not  sa- lifting   module. 

Not :Every sa-  hollow is sa-lifting  

Proof: - For a submodule B of D  if B ≠ D,  B≪sa D, B = (0) ⨁B the result go after,  directly by 

theorem 1  

Proposition 1. 3 :  Let D be  indecomposable; module then D is sa-  hollow module  if and only if D is 

sa-  lifting. 

 Proof: Let D be sa-hollow then D is sa- lifting ,Conversely suppose that D is sa-lifting and A a proper 

submodule of D, by Theorem.1,We have A= N⨁K where N is a direct summand in D and K≪sa D, 

but D is indecomposable . Then either N = (0) or N=D then D=N⊆ A which attend that A=D which is 

contradiction,  if N= (0), so A=K ≪sa D,   and D is sa- hollow.     

Proposition 1. 4 :Let; D=H1⨁H2 be duo module .If  H1 and H2 are ;sa-lifting; modules, then; D is sa –

lifting module. 

Proof: Let H1 and H2 be sa-lifting modules, and N submodule of  D ,then N= (N∩ H1 ) ⨁ (N∩ H2) .For 

each i∈ {1,2},there exists a direct summand; Ki of Hi ,such that Hi= Ki⨁Li with Di ⊆ N∩ Hi and N∩ 
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Li ≪sa Li then , D= (K1⨁ L1) ⨁ (K1⨁ L2) = (K1⨁ K2) ⨁ (L1 ⨁ L2) ,we have (K1⨁ K2) ⊆N ,and 

N∩(L1⨁ L2) ≪sa (L1⨁ L2) thus D is sa- lifting; module. 

Corollary 1.5: Let D= H1⨁ H2 be a module such that R;= ann(H1);+ann(H2).If H1 and H2 are sa-

lifting; modules ,then D is sa-lifting; module. 

Proposition 1.6 : Let; D be a "multiplication" R –module,  if  D  ;sa-lifting; module , then  R is ;sa-

lifting ring; . 

Proof: Assume; that D is sa-lifting; module;. Where I is an ideal in  R. ; D is "multiplication Then N = 

ID; is a submodule; of D, thus there exist submodules K; and K' in M with ;K ⊆ N, D = K⨁ K' and (N 

∩ K') ) ≪sa D . D is  a multiplication ;R- module, so there are ideals J and J' of R such that K = JD and 

K' = J'D. Since  K ⊆ N then  J ⊆ I. We have ;D =K ⨁K' = JD ⨁J'D = (J ⨁J')D implies that R = J⨁ J 

'.Now N ∩ K' = (ID ∩ J'D) ≪sa D and since; (J∩J')D ⊆ ID ∩J'D; it follows that (J∩J')D ≪sa D [5] 

and according to [3] we get; [(J∩J')D:D] ≪sa R. But;[(J∩J')D:D] = I ∩ J', then (I∩J') ≪sa R and R is 

sa-lifting; ring . 

2. Semiannihilator supplemente submodule. 

    In this section we present  the definition of  semiannihilator (sa-supplement) supplement class. 

Then, some basic properties of this class are presented. In addition, several examples are given to 

illustrate the results. 

Definition 2.1: Let V and U be submodules of an R-module D. We say that V is "semiannihilator 

supplement" (sa-supplement) of  U  in  D if D=U+V and whenever Y≤ V and D=U+Y, then annY ≪ R. 

     Let D be an R-module. We say that D is semiannihilator supplemented(((sa-supplemented) module 

if every proper submodule of D has sa-supplement. Let R be a commutative ring and let I be an ideal 

of R. We say that R is sa-supplemented; ring of R is sa-supplemented as an R-module. 

The bellow proposition gives a charactrization of sa-supplement submodule 

Proposition 2.2: For submodules U and V of an R-module D. Then V is sa-supplment of U if and 

only if D=U+V and U∩V ≪saV.  

Proof: Let V be sa-supplement; of U. To show that U∩V  sa- small in V, let V= (U∩V) +Y. Now D= 

U+ V = U+ (U∩V) +Y= U+Y. But Y≤V, therefore annY ≪R1 and U∩V ≪saV.  

Conversely,  Let  D=U+V and U∩V ≪sa V . We want to show that V  sa-supplement of U. Let Y≤V 

such that D=U+Y. By (Modular law);, V= (U∩V )+Y. But U∩V ≪sa V , therefore annY ≪ R. Then V 

is sa-supplement; of D.  

Examples and Remarks 2.3  

1- sa-supplement;; submodule not supplement submodule to see; that consider; Z as Z-module. For 

every proper submodule nZ of  Z , Z= nZ+Z and nZ ∩ Z = nZ≪saZ. Then Z is sa-supplement; of nZ. 

Thus every proper submodule of Z has sa-supplement. But it is known that every non trivial 

submodule of Z has no supplement in Z. Where Z is indecomposable; and {0} is the only small; 

submodule of Z.  

2- A supplement;; submodule; need not be sa-supplement submodule. For example, Let Z4 as Z- 

module. Z4 is a supplement; of {0 ,2 }. And Z4 is not sa-supplement;;of {0 ,2 },where {0 ,2 }∩ Z4={0 

,2}is not sa-small in Z4, since Z4={0 ,2 } + Z4 and ann Z4={n ∈ Z ; n. Z4 = 0}=4Z not small in Z.  

3- Let D be an R-module. Then every sa-small; submodule of D has sa-supplement; in D. That is if , N 

be sa-small submodule of D. Then D =N+D and N∩D =N is sa-small submodule of D. Thus D is sa-

supplement of N in D.  

4-Let U and V be two submodules in an R-module D such that V  sa-supplement in U. If D= W+V, 

where W  a submodule in U, then V  sa-supplement in W.  

Proof: Since V is sa-supplment of U, then D=U+V and U∩V ≪sa V. Since W≤ U. Then W∩V ≪sa V, 

by prop. (2.4) in [5]. Thus V is sa- supplement of W in D.  

    Let D be an R1-module its known that every direct summand of D has a supplment in D. But this is 

not true for sa-supplement; as the below examples shows : 

Example2.4: Let Z6 as Z-module. and U={0 ,2 ,4 } ,V={0 ,3 }, Z6= U⨁V. U and V are supplement; of 

each others. But each of U and V has no sa-supplement in Z6, where ann Z6={n∈Z ; n. Z6=0}=6Z not 

small in Z.. Hence Z6 has no sa-small submodule [5]. Thus every submodule of Z6 has no sa-

supplement in Z6. 
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Proposition2.5 : For a finitely generated  D in R-module and For submodules U and V in D such that 

V  sa-supplment of U in D. Thus there exists a finitly generated sa-supplement W in U s.t  W≤ V.  

Proof: Let M=Rx1+ Rx2+ . . . +Rxn, where xi∈D, ∀i=1,2,…,n. Since D=U+V, then xi = ui+ vi, where 

ui∈U, vi∈V, ∀i=1,2,…,n. Now let W=Rv1+Rv2+ . . . +Rvn. Clearly that D=U+W. Since V  sa-

supplment of U and W≤V, then annW ≪ R. is clear that W is sa-supplement of U.  

Proposition 2.6: Let D and N be R1-modules  and let f: D→N an epimorphism,; if N is sa-

supplemented module, then D is sa-supplmented; module.  

Proof: For a submodule K of D, then f(K) submodule in N. Since N is sa-supplemented; module. Then 

there exists a submodul L in N s.t  N= f(K)+L and f(K)∩L is sa-small in L. M=f
-1

(N)=f
-1

(f(K)+L)=   f
-

1
(f(K))+f

-1
(L)=K+ker f+f

-1
(L)=K+f

-1
(L).Claim that K∩f

-1
(L) is sa-small submodule of f

-1
(L). Since 

f(K) ∩L≪sa L, then by prop (2-7) in [3] ,  f
-1

(f(K) ∩L)≪sa f
-1

(L) .But f
-1

(f(K) ∩L)=f
-1

(f(K)) ∩f
-

1
(L)=(K+Kerf) ∩ f

-1
(L) =kerf+(K∩f

-1
(L)), by( Modular Law) . ker f +(K∩f

-1
(L)) ≪sa f

-1
(L). By Prop 

(2-4)in[5], K∩ f
-1

 (L) ≪sa f 
-1

(L).So f
-1

(L) is sa-supplment of K in D. Then M is sa- supplemented 

module.  

Proposition 2.7: Let D be a finitely generated; faithful multiplication; modul over a commutative ring 

R and let I be an ideal of R. if ID has sa-supplment in D, so I has sa-supplment in R.  

Proof: For an ideal I in R1 such that ID has sa-supplement in D. Then there exists a submodul N in D 

s.t  D=ID+N and ID∩N ≪saN. D  a multiplication modul, thus N=JD, for some ideal J of D. Now 

D=R1 D=ID+JD=(I+J)D. But D is finitely generated; faithful multiplication modul and hence 

R=I+J[8]. ID∩N=ID∩JD=(I∩J)D ≪sa JD. To show that I∩J≪saJ. Let J=(I∩J)+L, where L  an ideal 

of R. Then JD=((I∩J)+L)D=(I∩J)D+LD. Therefore ann (LD)≪R. ann L≤ ann LD. Thus ann L≪R and 

I∩J≪sa J. Then J is sa- supplement of I.  

3. Semiannihilator weakly supplmented modules;. 

     In this part, we introduce; the definition of semiannihilator; weakly supplmented modules. And we 

introduce some basic characterization; of this modules:.  

 Definition 3.1:  For submodules U and V of an R-module D. We say that V  semiannihilator -weak 

supplment (sa-weak supplement) of U in D if D=U+V and U∩V ≪sa D.  

 We say that D is semiannihilator weakly (sa-weakly) supplemented module if every submodule of D 

has sa-weak supplment in D. 

Remarks and examples; 3.4: 

1. semiannihilator weak supplement submodule not be weak supplement submodule. For example, 

consider Z as Z module. Cleary that Z=2Z+3Z and 2Z∩3Z=6Z≪sa Z . Thus 3Z is sa-weak supplement 

of 2Z. But {0} is the only small submodule of Z and hence 3Z is not weak supplement of 2Z.  

2. Every sa-supplemented module is sa-weakly supplemented module. To show that, let D be an sa-

supplemented module and let U be a proper submodule of D , then there exists a submodule V of D, 

such that D=U+V and U∩V ≪saV. By prop (2-3) in [8] , U∩V ≪sa D. Hence V  sa-weak supplement 

of U. Clearly that D=D+0 and D∩{0}=0≪sa D. So {0}is sa-weak supplement of D . Thus D is sa-

weak-supplemented module.  

3. sa-weak supplement submodule need not be sa-supplement; submodule. For example, let D be a 

faithful R-module. Then D=D+0 and D∩{0}=0≪saD. Thus {0} is sa-weak supplement of D. Now 

D∩{0}=0 is not sa-small in 0, when 0=0+0 ann0=R not small in R.  

4. Let  X and Y be submodules of  R1-module D if X is sa-weak supplement of Y, then Y is sa-weak 

supplement of X, where D=X+Y and X∩Y ≪sa D. 

Proposition 3.5:-For N , K and L submodules in an R-module D  such that  L≤ N. If K is sa-weak 

supplement of N and D=L+K, there K is sa-weak supplment of L in D. 

Proof: Since K  sa-weak supplement in N, then D=N+K and N∩K ≪sa D. Now D=L+K and L∩K≤ 

N∩K ≪sa D. Hence L∩K ≪sa D by prop (2-4) in [5]. Thus K is sa-weak supplement  in L is D.  

Proposition 3.6: For submodules N and L of a "finitely generated R-module" D. if L  sa-weak 

supplment of N, then L contains a finitly; generated sa-weak supplment of N.  

Proof:- Let D =Rx1+Rx2+. . . +Rxn, xi ∈ D, for some xi ∈ D, ∀ i=1,2,…,n.  

Since M=N+L, then xi=ai+bi , where ai ∈ N, bi ∈ K, ∀ i=1,2,…, n. Now let  

L'=Rb1 +Rb2+ . . . +Rbn , D=N+K′. Clearly that K′ ≤ K. But N∩ L′=N∩L ≪sa D, therefore N∩ L'≪sa 

D, by prop (2-4) in [5].Thus L′ is a finitely generated; sa-weak supplement of N. 
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