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Abstract

The aim of this paper is to introduce the concept of Dedekind semimodules and
study the related concepts, such as the class of D; semimodules, and Dedekind
multiplication semimodules . And thus study the concept of the embedding of a
semimodule in another semimodule.
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Introduction

In ring theory, an ideal I of a commutative ring with identity R is said to be invertible if I'l = R
where I'={x € Rg:xI € R} and Rgis the total quotient ring of R. The concept of an invertible
submodule was introduced by Naoum and Al-Alwan [1] as a generalization of the concept of an
invertible ideal.

A semiring is a non-empty set R together with two binary operations addition(+) and multiplication
(+) such that (R, +) is a commutative monoid with identity element 0; (R, -) is a monoid with identity
element 1 #0;r0 =0r=0for allre R;a(b+c) =ab+ac and (b+ c)a= ba+ ca for every
a,b,c € R. We say that R is a commutative semiring if the monoid (R, -) is commutative. Let (M, +)
be an additive abelian monoid with additive identity Oy. Then M is called an R-semimodule if there
exists a scalar multiplication RXM — M denoted by (r,m) + rm, such that (rr’')m =
r(r'm);r(m+m’)=rm+rm’; (r+r' ) m=rm+r'm; Im=m and rOy = 0y = Om for all
r,r' € Rand allm,m’ € M.

Throughout this paper R will denote a commutative semiring with identity, M is unitary ( left)
R-semimodule. This paper consists four sections. Section 1 is devoted to introducing the concept of
invertible subsemimodules of semimodule as a generalization of the concept of an invertible ideal in
semiring. We will also find out some properties of this invertible subsemimodules. A non-zero
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semimodule M is a Dedekind semimodule if each non-zero subsemimodule of M is invertible.

Section 2 argues multiplication semimodules. We show that every multiplicatively cancellative
multiplication semimodule is finitely generated.

Section 3 discusses Dedekind multiplication semimodules. We show that if M is a faithful
multiplication R-semimodule, then M is a Dedekind semimodule iff R is a Dedekind semiring.

Let A and B be R-semimodules, and H = Homg(A, B). Here's a question that shows : when does
H contain a monomorphism?. If H contains a monomorphism we say that Ais embeds in B.

It was proved by Low and Smith [2] that if A is a torsionless multiplication R-module then A
embeds in R iff 3 € A* = Homg(A, R) such that ann(R) =ann(A™).

Indeed if A is not a multiplication semimodule then this condition is not sufficient see Remark 3.2.

Here the importance of the invertible subsemimodules in obtaining the sufficient condition for the
existence of a monomorphism.

In the last section we establish that if A is any semimodule, with Ngey ker B = (0) and Ty < Tg,
and if there is a cyclic invertible subsemimodule Rf in H, then f is a monomorphism.

1. Invertible Subsemimodules and Invertible Ideals

In this section we introduce the concept of invertible subsemimodule of asemimodule as a kind of
generalization of the concept of invertible ideal in semiring.

Remark (1.1): LetR be a commutative semiring with identity 1. Aset S € R is said to be
a multiplicatively closed set of R provided that If a,b € S, then ab € S. The localization of R at S (Rg)
is defined in the following way:-

First define the equivalence relation ~on Rx Shby (a,b) ~ (c,d), if sad = sbc for some s € S.
Then put Rs the set of all equivalence classes of R x S and define addition and multiplication on Rg
respectively by [a,b] + [c,d] = [ad + bc,bd] and [a,b] - [c,d] = [ac, bd], where [a,b] also denoted
by a/b, we mean the equivalence class of (a,b). Itis, then, easy to see that Rs with the mentioned
operations of addition and multiplication on Rs in above is a semiring [3, 4].

Definition (1.2): In Remark 1.1, if S is the set of all not zero-divisors of R. Then, the total quotient
semiring Q(R) of the semiring R is defined as the localization of R at S. Note that Q(R) is also an

R-semimodule. If R is a semidomain one can define the semifield of fractions F(R) of Ras the
localization of R at R — {0} [5, 6].

Definition (1.3): Let M be an R-semimodule. In Remark 1.1, if Sis the set of all not zero-divisors of
R,and T = Ty = {s € S|sm = 0 for some m € M implies m = 0}. The total quotient semiring Q+(R)
of the semiring R is defined as the localization of R at T. Note that Q+(R) is also an R-semimodule.

Consider R =Nand M = Q*/N. Then T ={1} and so Q1 (R) ={%:n € N}.

Similar to that in modules see [1], we give the following remark.

Remark (1.4): Let M be an R-semimodule and let N be a non-zero subsemimodule of M. Suppose
that N’ = {x € Qr(R)| xN € M}. Then N’ is an R-subsemimodule of Q(R), R € N, and N'N € M.
Definition (1.5): Let M be an R-semimodule. A subtractive subsemimodule (or k-subsemimodule) N
isa subsemimodule of M such that ifx,x +y € N, then y € N. A prime subsemimodule of M is a
proper subsemimodule P of M in which x € Por rM < P whenever rx € P, [5]. We define k-ideals
and prime ideals of a semiring R in a analogous manner [5].

Remark (1.6): Let Mbe an R-semimodule, we say that M is a torsion-free semimodule
whenever reRand meM with rm =0 implies that either m=0 or r=0. If Nis a
subsemimodule of M, then [N:M]={r€eR:rM € N} and ann(M) =[0:M]={r e R:rM = 0}
are k-ideals of R, [5].

Proposition (1.7): Let M be a non-zero R-semimodule, and let T be the set defined as in Definition 1.3,
then T has the following properties:

1) TNann(M) is the empty set.

2) T is a multiplicative subset of Sand 1 € T.

3) If M is torsion-free then T = S.

Proof: For (1) from the definition of T we have TNann(M) = @. For (2) first observethat1 € T.
Let s4,s;, € T,and s;s,m =0 for some m € M, then since s;,s, € T, then s,m = 0 and hence
m = 0, therefore s;s, € T. Thus T isa multiplicative subset of S. For (3) from definition of T, then
T < S. Now, assume that M is torsion-free. Let s€S and sm = 0 for some m € M, since M is
torsion-free then m = 0, and hence s € T. Thus S < T. This completes the proof.
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Definition (1.8): [4] AsubsetI of the total quotient semiring Q(R) of R is called fractional ideal
of a semiring R, if the following hold:
1. Tisan R-subsemimodule of Q(R), thatis, ifa,b € Tandr € R,thena+b €landra €l
2. There exists a not zero-divisor element d € R such that dI € R.
LetI, J be two fractional ideals of a semiring R. Then
I[] ={a;b; +asb, +--+a,b,:a;€Lb; €], Vi1 <i<nn€N}.

By Frac(R), we mean the set of all nonzero fractional ideals of a semiring R. It is easy to check that
Frac(R) equipped with the above multiplication of fractional ideals is an abelian monoid [4]. It is clear
that each ideal I of R is fractional ideal of a semiring R since (1) and (2) holds ford = 1, 11 € R.
Definition (1.9): [4] Let Ibe a fractional ideal of a semiring R, then I is called invertible if there
exists a fractional ideal ] of R such that IJ = R. Note that ] is unique and will be denoted that by 171
The set of all invertible fractional ideals of R is an abelian group.

Example(1.10): Let N be the set of all non-negative integers. Clearly Q7 its semifield of fractions.

Let n be a positive integer. The set [ = %N = {% :m € N} is a fractional ideal of N. It is clear I as an

N-subsemimodule of Q* is generated by % and nl € N. While ]=<2—1n >, where n runs over all

positive integers. Since there is no positive integer d such that dj < N, J is not a fractional ideal of N.

Let R be a semidomain, F(R) its semifield of fractions, A and B R-subsemimodules of F(R). Then
the residual quotient of A by B is defined as [A : B] = {x € F(R) : xB € A}, see [6].
Proposition(1.11): Let Rbe a semidomain, A and B some fractional ideals of R. Then the
following statements hold:
(1) [AB : A]A = AB.
(2) [R : A] is a fractional ideal of R.
(3) If Aisinvertible, then A™1 = [R : A].
(4) If Ais an invertible ideal of R, then A is finitely generated.
Proof: (1): Suppose that t € AB, then t = };{L; a;b;, where a; € A, b; € B, Vi. Now b;A < AB,
S0 b; € [AB: A], Vi. Therefore t € [AB : A]A, and AB < [AB : A]A. By similar way we prove that
[AB: A]A € AB.Thus [AB : A]JA = AB.
(2): Riis fractional and A an R-semimodule, 1 is a common denominator of R. Choose a non-zero tin
AN R. Clearly, for any x € [R : A], then xt € R. Therefore, tis a common denominator of [R: A] and
hence [R : A] is fractional.
(3): In the formula, [AB : A]JA = AB, put AB = R.
(4) Let A be an invertible ideal of R. So, there is a fractional ideal B of R such that AB = R. This
implies that 1 = {1, x;y;, for some x4,%,, -, x, € Aand y;,y,,*,Vn € B. Clearly, the set {x;}iL;
generates A in R.

Now we can give our definition of invertible subsemimodule, as in modules theory [1].
Definition (1.12): Let M be a non-zero R-semimodule and N be a subsemimodule of M. If N'N = M,
then we say that N is an invertible subsemimodule of M. Note that if N is invertible then N # 0. It is
clear that M is invertible in M.
The following proposition is useful for testing the invertibility of subsemimodules.

Proposition (1.13): Let M be a non-zero R-semimodule.
1) A non-zero subsemimodule N of M is invertible of M iff Vm € M, 3 :—: EN, neEN1<i<k

such thatm = ¥, fin;.
2) If Nisinvertible subsemimodule in M, then vm € M, 3t € T such that tm € N.
Proof: The proof of (1) is an immediate consequence of the Definition 1.12. For (2) Since N'N = M,
then vmeM, 3 1€ N’, n; EN,1 <i<Kk, such that m = Z%‘zlgni, where r; €R, t; € T. Put
t=1tt, ...ty and qi = Tj Hj:ti t]' ,1<i<Kk, then tm = Z%(zl qih; € N.

As a special case of Proposition 1.13 we obtain.
Corollary (1.14): A non-zero cyclic subsemimodule Rn of M is invertible in M iff vm € M,3t€ T,
r € R such that tm = rn, r depends on m.
Proposition (1.15): If N is a non-zero invertible subsemimodule of R-semimodule M. Then

M = Y pen P(N), where the sum is taken over all € H = Hom(N, M).
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Proof: Since N'N = M. Hence each element of N’ can be thought of as an R-homomorphism in
Hom(N,M). In fact, Vme€M, m=YK, qn;, ; EN, n;EN,1<i<k. ie m=3K, bg; (ny),
where if g € N', then ¢y (n) = gn, Vn € N. This completes the proof. =
Definition(1.16): A non-zero R-semimodule M is called a Dedekind semimodule(or D semimodule),
if each non-zero subsemimodule of M is invertible in M, and M is called a D4 semimodule if each
non-zero cyclic subsemimodule of M is invertible in M. It is clear that every D semimodule is
D, semimodule.
Example (1.17): Here some examples to explain invertible subsemimodules and D semimodules:-
1) Let R=17Zg as a semiring, and let I=R2=1{0,2,4,6}.S0 T=T; ={1,3,5,7}. LetH = R4.
H = {xeQR)|xHCI}. It is easy to check that Q(R) =R, and hence H' = R. Then H'H =
H # 1. Thus His notinvertible in 1.
2) Let N be the semiring of non-negative integer numbers and 0 # a € N. Let [ = aN, since the
set S of all not zero-divisors of N is N — {0}, hence

T=T ={seN-{0} sa#0}=N-—{0}.
Therefore, (aN)' =1' ={x€ Q" | x(aN) €S N} = iN, where Qt is the semifield of non-
negative rational numbers. Then it is clear that I’ = 171, Since I is an invertible ideal in N, we have
[7'1=1'l =N, and I is an invertible as subsemimodule. Now let H = 4N as a subsemimodule of the
N-semimodule 2N. Then H = {x € Q*| x(4N) € 2N}.
One can check that H’ :gN, therefore H'H = (%N)(ALN) = 2N, i.e, 4N is an invertible
subsemimodule in 2N.
3) Consider Q* as an N-semimodule. Suppose that N be a non-zero subsemimodule of Q*. Since Q*
is torsion-free, then T = S = N — {0}, and Q(R) = Q(R) = Q*. Thus
N’ = Ge Q*] CN S Q*}. It is clear that N’ = Q*, and we obtain Q*N = Q*, hence Q% is a
Dedekind N-semimodule.
4) Consider Z, as a Z-semimodule, where n is any positive integer >1, which is not prime number.
Let N be a non-zero proper subsemimodule of Z,,. Now
T={meZ|gcd(m,n) =1} Qr(Z) ={L € Q|r,meZ, gcd(m,n) = 1}. Hence it is clear that,
N' ={x€Qr(Z)| xN € Z,} = Qr(Z). Therefore N'N = Qr(Z)N =N # Z,. Hence N is not an
invertible subsemimodule in Z,. While, if n is a prime number, then Z,, is simple semimodule; Z,, has
no non-zero proper subsemimodule, hence is a D semimodule. Thus Z,, is a D semimodule iff nis a
prime number.
5) Let p be a prime number, and let Np) be the set of rationals of the form m/n, with m and n are
in N and n isnot divisible by p. Then N, isa subsemigroup of Q*. Npo = Q*/N(p) isan
N-semimodule. It is known that each proper non-zero subsemigroup of N is cyclic of the form
Npn. Note that since each element of f(Npn), where f € Hom(Nyn, N) is of order less than or
equalto p". Thus Npeo # Yy f( Npn), where f € Hom( Npn, N0 ). Hence by Proposition 1.15, we
have N, has no proper invertible subsemimodule.
Lemma (1.18):  Let M; and M, be torsion-free R-semimodules and f be an R-epimorphism from
M; to M,. If Nis an invertible subsemimodule of M, then f(N) is an invertible subsemimodule of
M,.
Proof: Suppose N is invertible subsemimodule in M;. Then N'N = M;, N' = {x € Q+(R)| xN S M,}.
If x € N"then xN € M, and so xf(N) = f(xN) € M,.
So N’ € (F(N))' = {x € Qr(R)|xf(N) S M,}.
Take m € M,. Let m' € M; besuchthat f(m') =m.
Then m' =x;n, + -+ x;n, forsome k € N, x; € N'andn; € N.
Then m = f(m") =x.f(ny) + -+ + x.f (ny), and therefore M, = N'f(N) < (f(N))'f(N) € M,.
Thus f(N) is an invertible subsemimodule in M,. m
Corollary (1.19): Every homomorphic image of a Dedekind semimodule is again Dedekind. m
Remark (1.20): If N is anon-zero proper direct summand of an R-semimodule M, then N is not
invertible subsemimodule in M.
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Proof: Let N be invertible subsemimodule in M; thus N'N = M, where N’ = {x € Q;(R)| xN € M},
and T ={s €S|sm =0 forsome m € M implies m = 0}. Since N is a direct summand of M, i.e.
there isa subsemimodule K of M such that M = N®K. If 0 # k € K, since N is invertible in M, then
by Proposition 1.13,3 ¢t € T with tk € N, but tk € K, hence tk € NNK = (0), and since t € T, then
k = 0, which is a contradiction, then N is not invertible in M.

Corollary (1.21): It easy checked that if M = N@K, and N is an invertible subsemimodule in M,
then M = N.

Proposition (1.22): Let R be a semiring and I be a non-zero ideal of R, then I is an invertible ideal
in R if and only if I is an invertible R-subsemimodule ingR.

Proof: LetSbe the set of all not zero-divisors of R. ThenT =T; = {s € S| sa = 0 for some
a€limpliesa=0}. Sothat T=S. Thus Q(R) is the total quotient semiring Q(R). Hence
I'=1"1.ie. I'I' =171, and so I is an invertible ideal in R if and only if I is invertible R -
subsemimodule in gR.

A semiring R is semidomain if ab = ac implies b = c for all b,c € R and all non-zero a € R [6].
We say that a semidomain R is said to be a Dedekind semidomain if every non-zero ideal of R is
invertible in R [6]. According to the equivalent conditions explained on page 143 in Narkiewicz’ book
[7], a Dedekind domain is a domain in which non-zero fractional ideals form a group under
multiplication. Inspired by this, we give the following definition: We define a semidomain R to be
a Dedekind semidomain if every non-zero fractional ideal of R is invertible. Hence R is a Dedekind
semidomain if and only if Frac(R) is an abelian group.

Corollary (1.23): Let R be a semiring. Then

1) R is Dedekind R-semimodule if and only if R is a Dedekind semidomain.

2) R is D, semimodule if and only if R is a semidomain, i.e. each non-zero principal ideal of
R is invertible as a subsemimodule in R if and only if it is generated by not a zero-divisor.

The following remark shows that D; semimodule may not be D semimodule.

Remark (1.24): Let R be a semidomain, and R, the polynomial semiring R[x, y] in two independent
variables x and y. Then R, is a semidomain. By Corollary 1.21, R, is a D; semimodule. But if we
take the ideal I generated by x and y, it is clear that I is not invertible subsemimodule of R;. Thus R,
isnota D R; —semimodule.

Next, we defined the notion of "essential” subsemimodule. In Golan book’s [8], it was
proposed the following definitions. An R-monomorphism f: M — M’ of R-semimodules is essential
if for any R-homomorphism g: M' — M'", gof is a monomorphism implies that g is a
monomorphism.

A subsemimodule N of an R-semimodule M is essential (or large ) in M if the inclusion mapping
iy:N — M is an essential R -monomorphism. Note that f:M — M’ is an essential R-
homomorphism if and only if f (M) is a large subsemimodule of M’ [8].

Another way for defining the notion of "essential™ is proposed in [9] as follows. A subsemimodule
N of M is said to be semi-essential in M , writtenas N < M, if for every subsemimodule H of M :
NNnH=0= H=0.Amonomorphism f: M — M’ of R-semimodules is said to be semi-essential if:
f(M) <5 M.

In [9], we have the following characterization of semi-essential subsemimodules.

Lemma (1.25): A subsemimodule N of an R-semimodule M is a semi-essential if and only if for
each 0 # m € M, there exists r € R such that 0 = rm € N.

Lemma (1.26): Every invertible subsemimodule of M is a semi-essential subsemimodule of M.
Proof: Let N be invertible subsemimodule of M. Let 0 = m € M. By Proposition 1.13,3 ¢t € T such
that 0 # tm € N and hence N is essential

Proposition (1.27): Let M be a D; semimodule. Then ann(Rm)=ann(M), for each 0 = m € M.
Proof: It is clear that ann(M) < ann(Rm), so itis enough to show that ann(Rm) Sann(M). Let
r eann(Rm), then rm = 0. Let a € M. Since M isa D; semimodule; then Rm is invertible in M,
and hence by Corollary 1.14, 3t € T,s € R such that ta = sm. Thus tra = rsm = 0. Hence ra = 0,
and ann(Rm) <ann(M). This completes the proof.

From now on, we will put Endg (M), for the semiring of endomorphisms of R-semimodule M.
Lemma (1.28): Let M bea non-zero R-semimodule and f € Endz(M). If kerf contains an
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invertible subsemimodule of M then f = 0. Therefore if M is a D; semimodule then every non-zero
element of Endgz (M) is a monomorphism.

Proof: Let N < Kkerf is invertible in M. Then by Proposition 1.13, vm € M,3t € T,and n € N such
thattm =n.S0 0 = f(n) = tf(m); butt € T hence f(m) =0and f = 0.

Now assume that M is a D; semimodule and 0 # f € Endr(M). Let 0 # k € kerf, then Rk
invertible in M and subset of kerf from above; we have f = 0, which is a contradiction, then
kerf = 0, and f is a monomorphism.

For any R-semimodule M, there exists an obvious semiring monomorphism:

@ : R/ann(M) — Endg(M). Hence one may think of as a subsemiring of Endg(M). So we have:
Corollary (1.29): If M isa D, semimodule, then R/ann(M) is a semidomain and thus ann(M) is
a prime ideal.

As a special case, we record the following.

Corollary (1.30): If a semiring R is a D; R-semimodule. Then R is a semidomain.
2. Multiplication Semimodules

In this section we study multiplication semimodules. We begin with following definition:

Definition (2.1): Let R be a semiring and M an R -semimodule. Then M is said to be
multiplication semimodule if for all subsemimodule N of M there exists an ideal I of R such that
N = IM. In this case it is easy to show that N = [N : M]M. For instance, all cyclic R-semimodule
are multiplication R-semimodule [10, Example 2].

Note that, if I is an ideal of R, then the set IM consisting of all finite sums of elements r;m; with
1; € R and m; € M is a subsemimodule of M.
Example(2.2): Let R be a multiplicatively idempotent semiring. Then all ideals of R are multiplication
R-semimodule [11].

An element r of a semiring R is multiplicatively-cancellable (abbreviated as MC),
if rx = rwy implies x = y for all x, y € R. Each non-zero element in a semidomain is an MC element.
Theorem (2.3): Let R be a semiring. An ideal I of R is invertible if and only if it is a multiplication
R-semimodule which contains an MC element of R, see [11].

Proposition(2.4): Let R be a semiring. An R-semimodule M is multiplication semimodule if and
only if for each m in M there exists an ideal I of R such that Rm = IM.

Proof: The necessity is clear. For the sufficiency, assume that for each m € M there exists an ideal I
of R such that Rm = IM. Let N be a subsemimodule of M. For each m € N there exists an ideal I,,,
such that Rm = I, M. Let] = Y ey - Hence N = Y ncn Rm = Yonen ImM = IM. Therefore M is a
multiplication semimodule. =

Theorem (2.5): Let M be a multiplication semimodule over a semiring R. If N is a finitely generated
subsemimodule of M, then there exists a finitely generated ideal I of R such that N = IM.

Proof: Suppose that N =< x4, x,, -+, x, >. Since M is a multiplication, we have N = [N : M|M. So,
there exists a;; € [N : M]and y; ; € M suchthat x; = a;,y;1 + -+ a;,y;r fori=12,---,nand
Jj=12,-,r.Let] beanideal of R generated by {a;,,-+,a,,}. Itis easytosee that ] € [N : M]
and IM < [N : M]M. On the other hand, since forevery i,x; € IM, we must have N < IM. Hence
NCSIMC[N:M]M < N.Thus N =IM and I is finitely generated. m

The following shows that every homomorphic image of a multiplication semimodule is again
multiplication [11].

Theorem(2.6): Let M and N R-semimodules and f: M — N a surjective R-homomorphism. If M is a
multiplication R-semimodule, then N is a multiplication R-semimodule.

A semiring R is called yoked if for all a, b € R, there exists an element t € Rsuchthat a +t =b
orb+t=al8,p.49]. Asemiringisentireif ab = 0 impliesthata =0o0r b = 0 [8, p. 4].

An R-semimodule M is called multiplicatively cancellative ( or simply MC ) if for any r,r’ € R and
0#meM, rm=r'm implies r =r" [11]. For example every ideal of a semidomain R isan MC
R-semimodule.

Note that if M is an MC R-semimodule, then M is a faithful semimodule. Let rM = {0} for some
r€R.If0#m €M, thenrm = Om = 0. Hence r = 0. Thus M is faithful.

An element m of an R-semimodule M is called cancellable if m + m' = m + m" implies that m’
=m'". The semimodule M is cancellative if and only if every element of M is cancellable [8, P. 172].
Lemma (2.7):[11] Let R be a yoked entire semiring and M a cancellative faithful
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Multiplication R-semimodule. Then M is an MC semimodule.
Theorem(2.8):[11] Let R be a yoked semidomain and M a cancellative torsion-free R -
semimodule. Then M is an MC semimodule.
Lemma(2.9):[11] Let M be an R-semimodule and 6(M) = Y,,em[Rm : M]. If M isa multiplication
R-semimodule, then M = 6(M)M .
Theorem (2.10): [11] Let R be a semiringand M is an MC multiplication R-semimodule. Then M is
finitely generated.

By Lemma 2.7, we have the following result.
Corollary (2.11): Let R be an entire yoked semiring and M a cancellative  faithful
multiplication R-semimodule. Then M is finitely generated.
The next theorems give a characterization of MC multiplication semimodules, for the proof see[11].
Theorem(2.12): If M is an MC multiplication R-semimodule. Then M is a projective R-semimodule.
Theorem (2.13): Let R be asemidomain. If M is an MC multiplication R-semimodule, then M
is a torsion-free semimodule.
Theorem (2.14): Let R be asemidomain. If M is an MC multiplication R-semimodule, then M
is isomorphic to an invertible ideal in R.
3. Dedekind Multiplication Semimodules
From Remark 2.3 we can say that a semiring R is a Dedekind semidomain iff each non-zero
ideal in R is a multiplication ideal which contains a not zero-divisor. In this section we study
Dedekind multiplication semimodules. We begin with the following.
Lemma (3.1): Let M be a torsion-free R-semimodule. If N is an invertible subsemimodule of M and
I is an invertible ideal in R, then IN is an invertible subsemimodule of M.
Proof: Suppose H=IN. But N'N = M,I"*] =R, and hence I"*N'H = (I"*I)N'N = M. From
Proposition 1.7, we have Ty, = S and from Proposition 1.22, we have Q+(R) = Q(R). Hence easy to
see that I"'N’ € H'. By above we have I"1N’ = H’, and H is invertible.
Lemma (3.2): Let M be a non-zero R-semimodule and I is invertible ideal in R. Then IM is an
invertible subsemimodule of M.
Proof: Suppose K = IM. But I"I = R, and hence I"'K = (I"1)IM = (I"*I)M = RM = M. From
Proposition 1.22, we have Qr(R) = Q(R), thus it follows that /"1 € K'. Hence M = 1K € K'K <
M,so K'K = M, and K is invertible.
A subsemimodule N of an R-semimodule M is called invariant subsemimodule if f(N) S N,
Vf € Hom(M, M), [3, 12].
Definition (3.3): A semimodule M is said to be duo if each subsemimodule of M is invariant, [12].

In [12], we have the following characterization of duo subsemimodules.
Theorem(3.4): Let R be a yoked semidomain, and M a torsion-free R-semimodule. Then M is duo if
and only if for each R-endomorphism f of M, there exists r in R such that f(m) = rm forallm € M.
Remark(3.5): It is clear that any multiplication semimodule is duo. Hence by Theorem 3.4, if M is a
multiplication torsion-free semimodule over a yoked semidomain R, then for each f € Endi (M),
dr € R, such that f(m) = rm forallm € M.
Corollary (3.6): If M is a torsion-free multiplication semimodule over a yoked semidomain R, then
there exists an epimorphism of semirings from R onto Endz (M).
Proof: By Remark 3.5, Vf € Endg(M), 3r € R, such that f = f, and f,.(m) = rm for allm € M.
Hence ¢: R — Endgr (M), defined by ¢(r) = f,.. It is easily check, that ¢ is an epimorphism of
semirings.
Theorem(3.7): If M is a torsion-free multiplication semimodule over a yoked semidomain R, then

Endgz (M) = R/ann(M)

Proof: By Corollary 3.6, ker¢p ={r e R|¢p(r) =0} ={r eR|f, =0} ={r e Rlrm =0Vm € M}
=ann(M). But Endir (M) = R/ker¢, then Endzr (M) = R /ann(M).

By Lemma 2.7, Theorem 2.13, and Theorem 3.7 we have.

Theorem(3.8): If M a cancellative faithful multiplication semimodule over a yoked semidomain
R.Then Endg(M) = R.

The following lemma shows the importance of the faithful multiplication semimodules.

Lemma(3.9): Let M bea finitely generated cancellative faithful multiplication semimodule over
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a yoked semidomain R. If N = IM is an invertible subsemimodule of M for some ideal I of R, then I
is an invertible ideal in R..

Proof: Since N # 0, then I # 0. By assumption N'N = M, hence M = N'N = N'IM. It is clear that
N'I is an R-subsemimodule of R. Also, it is easy to see that every element of N'I can be considered as
an R-endomorphism of M. Now, since M is a faithful multiplication semimodule, then by Theorem 3.8,
Endg(M) = R. Therefore N'I is an ideal in R. As in modules see [13], it follows that N'I = R. Hence
N' €171, soR=N'I €I7'] € R whichimplies I"1] = R.

Theorem (3.10): Let M be a cancellative faithful multiplication R -semimodule over a yoked
Dedekind semidomain R. Then M is a finitely generated Dedekind R-semimodule.

Proof: Since M is a faithful multiplication semimodule, and R is a semidomain. By Corollary 2.11,
we have M is a finitely generated. Now, let N be a non-zero subsemimodule of M. Hence there exists a
non-zero ideal I in R such that N = IM. Since R is a Dedekind semidomain, thus I is invertible in R,
and by Lemma 3.2, N is invertible.

The following theorem is a converse of above theorem:

Theorem (3.11): Let M be a cancellative faithful multiplication semimodule over a yoked
semidomain R. If M is a Dedekind semimodule, then R is a Dedekind semidomain.

Proof: By assumption, R is a semidomain. By Corollary 2.11, we get M is a finitely generated.
Assume that I is any non-zero ideal of R. Then IM is a non-zero subsemimodule of M, hence IM is
invertible. From Lemma 3.9, I is an invertible ideal.

A semidomain R is said to be a Pritfer semidomain if every non-zero finitely generated ideal of R
is invertible in R [6]. Note that R is a Dedekind semidomain if and only if R is a Noetherian (each of
its ideals is finitely generated) Priifer semidomain.

Let D be a Dedekind domain (D is a ring). By Theorem 3.7 in [4], the semiring of ideals Id(D) of D
(the set of all ideals of D) is a Priifer semidomain. By Theorem 3.7 in [4], 1d(D) is subtractive (each of
its ideals is subtractive). If 1d(D) is also Noetherian, then 1d(D) is a Dedekind semidomain. Note that
the semiring Id(D) is proper semiring, i.e., it is not a ring. If D is a Dedekind semidomain then the
above argument remains true. Note that, each Noetherian Priifer semidomain is Dedekind.

For a more specific example, we assert that (Id(Z),+,-) is a principal ideal semidomain (each of its
ideals is principal) [6]. Hence, Id(Z) is evidently a Dedekind semidomain. Note that the semiring
(1d(Z),+,-) is isomorphic to the semiring (N, gcd, ).

Definition (3.12): A semimodule M is said to be a Priifer semimodule if every non-zero finitely
generated subsemimodule of M is invertible in M.

The proof of the following theorem is basically the same as the proof of the last results.

Theorem (3.13): Let M be a cancellative faithful multiplication semimodule over a yoked semiring R.
Then M is a Priifer semimodule if and only if R is a Priifer semidomain.

If M is a D; semimodule, we have the following remark which is special case of above theorem.
Remark (3.14): Let M be a cancellative faithful multiplication semimodule over a yoked semiring R.
Then M is a D; semimodule if and only if R is a semidomain.

Proof:(=) By Corollary 1.29, we get R is a semidomain, so each non-zero principal ideal is invertible.

(&) Assume that R is a semidomain. Let now Rm be a non-zero cyclic subsemimodule of M,
Rm = IM, for some ideal I of R. In this case we can take I = [Rm: M], and hence Rm = [Rm: M|M.
By Corollary 2.11, we get M is finitely generated, and thus [Rm: M] is a multiplication ideal in R
[13]. But R is a semidomain; thus by Theorem 2.3, [Rm: M] is an invertible ideal in R. Then by
Lemma 3.2, Rm is an invertible subsemimodule of M.

Proposition (3.15): If M is a faithful multiplication Dedekind R -semimodule. Then M* =
Hompg (M, R) is also a faithful multiplication Dedekind R-semimodule.
Proof: Similarly in the proof of Theorem 3.10, M is a f.g. faithful multiplication semimodule. So as in
the modules see Corollary (2) of [2], we obtain that M™* is a f.g. faithful multiplication R-semimodule.
By assumption and using Theorem 3.11, we get R is a Dedekind semidomain. Now M* is a f.g.
faithful multiplication R-semimodule over the Dedekind semidomain R, then by Theorem 3.10, M* is
a Dedekind R-semimodule.
4. Embedding of Semimodules

In this section we study "embeddability proplem™ , thus we look for necessary and (or) sufficient
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conditions under which an R-semimodule A is isomorphic to a subsemimodule of the R-semimodule
B. Now, put H = Homg (4, B), H is an R-semimodule. We start by the following.

Proposition (4.1): Let A and B be R-semimodules. If there exists a monomorphism f € H, then
ann(Rf) =ann(H).

Proof: It is clear that ann(H) < ann(Rf), so it is enough to show that ann(Rf) < ann(H). Let
r €ann (Rf), then 0 =rf(A) = f(r4). But f is a monomorphism, therefore r4A = (0), and
r €ann(A). But it is easily seen that ann(4) < ann(H), thus ann(Rf) =ann(H).

Remark (4.2): The converse of Proposition 4.1 is not true in general.

Proof: Let A be a projective R-semimodule with a non-commutative endomorphisms semiring, E(A)
(for example A can be any free semimodule of rank >1, such as A = Z&®Z as Z-semimodule). Put
B =A®R . Then B* = A"®R* = A"®R, where B* = Hom(B,R) and A* = Hom(4,R) . If 8
represents a generator of a semiring R in the last direct sum, hence it is clear that ann(Rf) =
ann(B*) = 0. Whereas B* does not contain any monomorphism. To prove this, let f € B* such that
kerf = 0. Thus f(B) is a projective ideal of R (since B is projective). And thus by [14], f(B), so also
B is a multiplication ideal. By [15], Endg(B) is commutative. By [16, lemma 2.1], we have Endg(A)
is commutative, which is a contradiction.

Now, let us observe that if there exists a monomorphism f: A — B, for any R-semimodules,
Aand B, then it is clear that Nygey ker g = (0).

The following theorem gives a sufficient condition for the existence of a monomorphism in
H = Hom(A, B), in the case A is a multiplication R-semimodule.

Theorem(4.3): Let A be a multiplication R -semimodule and B any R -semimodule such that
Ngkerg =(0),Yg € H=Hom(A,B). Then for any f € H, then f is a monomorphism iff
ann(Rf) =ann(H).

Proof: (=) If f is a monomorphism then by Proposition 4.1, we have ann(Rf) =ann(H).

(&) Put N = kerf. There is an ideal I in R such that N = [A. So (0) = f(N) = f(IA) = If(4),
which implies I € ann(Rf). Then IH = (0), hence I € kerg,V g € H, and thus [A = (0). Therefore
N = (0) and f is a monomorphism.

As a special case of Theorem 4.3, we give the following , comparison with [2, Lemma(1.1)]. We
say that an R-semimodule A is called torsionless if N, ker g = (0),V g € A"

Corollary (4.4): Let A be atorsionless multiplication R-semimodule. Then A is embeddable in R iff
3B € A such that ann(RB) =ann(4™).

More generally, we have:

Corollary (4.5): Let A be a torsionless multiplication R-semimodule. Then A is embeddable in R™ iff
3 a f.g. subsemimodule N of A*, which is generated by a set {8;, B2, ..., Bn}, Where §; € A", 1 <i<n
and ann(N) =ann(4%).

Proof: (=) Assume that A embeds in R", i.e. 38: A — R™ which is a monomorphism. Vi,1 <i<n
define B§;: A — R as follows B; = p; o B, where p; Vi,1 < i < nis the natural projection of R™ onto
the ith component. Note, since Hom(A4,R™) is isomorphic to the direct sum of n copies of A* =
Hom(A,R). Therefore ann(Hom(A,R™)) =ann(A*) and since £ is a monomorphism hence, by
Proposition 4.1 ann(B) =ann(4*). Now, ann(B) = Nj, ann(B;) =ann(N). Thus ann(N) =ann(4").

(<) Assume that 3 a f.g. subsemimodule N of A*, which is generated by a set {£, 2, ..., Bn}, and
ann (N) =ann (4*) . Now let us define an R -homomorphism B:A — R™ as follows B(x) =
(B1(x), B2 (%), ..., Bn(x)),Vx € A. Now since ann(Hom(4,R™)) =ann(4*), and by assumption
ann(4*) =ann(N) = N, ann(B;) =ann(B). Therefore by using Theorem 4.3, we obtain S isa
monomorphism in Hom(A, R™).

From our main results in this section, is that if 35 € A such that (Rp) is invertible in A*, and A is
torsionless, then 8 is a monomorphism, and hence A embeds in R, this means A is isomorphic to an
ideal of R. But now, let us recall that for any R-semimodule B,

Tz = {s € S| if sb = 0 for some b € B, then b = 0}. Hence, for an R-semimodule H = Hom(4, B),
Ty ={s € S| if sp = 0 forsome € H, then g = 0}.

Theorem(4.6): Let A and B be any two R-semimodules, with Ngey ker = (0), and Ty S Tg. If
there exists a cyclic invertible subsemimodule (Rf) in H, then f is a monomorphism, and hence A
embeds in B. Moreover, if Y.scy B(A) = B, then f(A) is invertible subsemimodule in B.
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Proof: By Corollary 1.14 VS € H,3t € Ty, s € R such that tf = sf. Put N = kerf and let x € N,
then sf(x) = tf(x) = 0, which implies x = 0. Thus f is a monomorphism. Next, by assumption,
Vb € B,3f1, fo, ., fmn € Hand ay,a,, ..., ay € Asuch that b = 312, fi(a;). Since (Rf) is invertible
in H, so by Corollary 1.14 Vi,1 <i <m,3s; € R, t; € Ty such that f; = %f Hence b = Zﬁlj—if(ai),

and by Proposition 1.13, we obtain that f(A4) is invertible in B.
The following two corollaries are special case of Theorem 4.6.

Corollary(4.7): Let A be a torsionless R -semimodule. If A* contains a cyclic invertible

subsemimodule, then A is isomorphic to an ideal of R. Further if trace(4) = R, then A is isomorphic

to an invertible ideal, and thus is a faithful multiplication semimodule.

Proof: Since T = S, where S is the set of all non-zero devisor in R, and hence Ty € Tg. Leta € A”

such that (Ra) is invertible in A*. Thus by Theorem 4.6, a is a monomorphism. Since trace(4) =

YpeaP(A) = R, again by Theorem 4.6, a(A4) is an invertible subsemimodule of R. Hence by

Proposition 1.20, a(A) is an invertible ideal in R. By Remark 2.3, we obtain a(4), and hence A is a

faithful multiplication semimodule

Corollary (4.8): Let A be a torsionless R-semimodule. If A* contains a f.g. invertible subsemimodule

N, and N can be generated by n elements. Then A embeds in R™.

Proof: Let {8;,8,,...,Bn} be a set of generators of N. Define §:A — R™, as follows, B(x) =

(ﬂl(x),ﬁz(x), ...,ﬁn(x)),Vx € A. Now our aim is to show that g is a monomorphism. Since N is

invertible in A*, then by Proposition 1.13, we have Va € A", 3t e T, S Sand Ir; ER,1<i<n

such that ta = Y7, ;8;. Now, let y € kerf = N, kerp;. Thus ta(y) = XL, riB;i (y) =0, but

t€ S,thena(y) = 0Va € A", i.ey € Ngkera = (0). Thus kerp = (0), and A embeds in R".

Theorem (4.9): Let M be a Dedekind semimodule and let m be a non-zero element of M. Then M is

isomorphic to the R-subsemimodule (Rm)  of Q(R).

Proof: Since M is a Dedekind semimodule, then Vm; € M, 3z € (Rm) ' such that m; = zm.

Define a homomorphism f: (Rm) " — M with f(z) = zm for each z € (Rm) ’. It is clear that f is an

R-isomorphism.
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