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Abstract  
     The aim of this paper is to introduce the concept of Dedekind semimodules and 

study the related concepts, such as the class of    semimodules, and Dedekind 

multiplication semimodules .  And thus study the concept of the embedding of a 

semimodule in another semimodule.   
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الجدائيةالديديكاندية شبه المقاسات   
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ذي قار, العراق ,ذي قار جامعةالرياضيات, كلية التربية للعلهم الصرفة, قسم 1  
الرياضيات, كلية التربية للعلهم الصرفة, جامعة بابل, بابل, العراققسم 2  

 الخلاصة
ودراسة المفاهيم المرتبطة به مثل  الديديكاندية الغرض من هذا البحث هه تقديم مفههم شبه المقاسات     

. وبالتالي دراسة مفههم الجدائية , و شبه المقاسات الديديكاندية  صنف شبه المقاسات الديديكاندية من النمط 
 الانغمار لشبه المقاس في شبه مقاس أخر. 

Introduction 

      In ring theory, an ideal   of a commutative ring with identity   is  said  to  be  invertible  if       

where                        and     is  the  total quotient ring of  . The concept of  an  invertible 

submodule  was  introduced  by  Naoum  and  Al-Alwan [1] as a generalization  of  the concept  of an 

invertible ideal.  

     A semiring is a non-empty set   together with two binary operations addition(+) and multiplication 

( ) such that       is a commutative monoid with identity element  ;       is  a monoid with identity 

element    ;         for all    ;                 and                for every 

       . We say that   is a commutative semiring if the monoid       is commutative. Let       

be an additive abelian monoid with additive identity   . Then   is called an  -semimodule if there  

exists  a  scalar  multiplication          denoted  by            , such that           
        ;                ;                 ;      and             for all  

       and all       .                    

     Throughout  this  paper    will  denote  a  commutative  semiring with identity,   is  unitary  ( left)  

 -semimodule. This paper consists four sections. Section 1 is  devoted  to  introducing  the  concept of 

invertible subsemimodules of  semimodule  as a generalization of  the concept of  an invertible ideal in 

semiring. We   will  also  find out  some  properties  of   this  invertible  subsemimodules. A   non-zero  
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semimodule     is  a   Dedekind   semimodule  if  each  non-zero  subsemimodule  of     is  invertible.  

      Section 2  argues  multiplication  semimodules. We  show that every  multiplicatively  cancellative 

multiplication semimodule is finitely generated.     

      Section 3  discusses   Dedekind   multiplication   semimodules. We  show  that  if     is  a  faithful 

multiplication   -semimodule, then     is  a  Dedekind   semimodule  iff     is  a  Dedekind  semiring. 

      Let   and   be   -semimodules, and             . Here's a question that  shows : when does 

  contain a  monomorphism?. If  H contains a monomorphism  we  say  that    is  embeds  in   . 

      It was proved  by  Low and Smith [2]  that  if    is a torsionless multiplication  -module then   

embeds in   iff                  such that ann     ann    . 

      Indeed  if   is not a multiplication semimodule then this condition  is not sufficient see Remark 3.2. 

      Here the importance of  the  invertible subsemimodules in obtaining the sufficient condition for the 

existence of a monomorphism. 

      In the last section we establish that if   is any semimodule, with ⋂             and      , 

and if there is a cyclic invertible subsemimodule    in  , then   is a monomorphism. 

1. Invertible Subsemimodules and Invertible Ideals 
In this section  we introduce  the concept  of  invertible  subsemimodule  of  a semimodule as a kind of 

generalization of the concept of invertible ideal in semiring.           

Remark (1.1):    Let    be  a  commutative   semiring  with   identity 1. A set          is  said  to  be 

a multiplicatively  closed  set of    provided that If      , then     . The localization of   at   (RS) 

is defined in the following way:- 

      First define the equivalence relation   on      by             , if          for some    . 

Then put  RS  the set of  all equivalence classes of     and define addition  and  multiplication on  RS 

respectively by                        and                    , where       also denoted 

by    , we mean  the equivalence class of       . It is, then, easy to see  that  RS  with  the  mentioned 

operations of addition and multiplication on RS in above is a semiring [3, 4]. 

Definition (1.2):   In  Remark 1.1, if    is the set of all not  zero-divisors of  . Then, the total  quotient 

semiring        of  the semiring    is defined as  the localization of    at   . Note that      is  also an 

 -semimodule. If    is a semidomain  one  can  define  the  semifield  of  fractions   ( )  of     as  the 

localization of   at       [5, 6]. 

Definition (1.3):  Let   be an  -semimodule. In Remark 1.1, if   is  the set of all not zero-divisors of 

 , and          |     for some     implies     . The total quotient semiring       

of  the  semiring    is defined as  the localization of   at  . Note that       is  also an  -semimodule. 

      Consider     and      ⁄ . Then   {1} and so       {  
 
    }.       

      Similar to that in modules see [1], we give the following remark. 

Remark (1.4):   Let   be  an  -semimodule  and let    be  a non-zero subsemimodule of  .  Suppose 

that             |        Then    is an  -subsemimodule of      ,     , and      . 

Definition (1.5):  Let   be an  -semimodule. A subtractive subsemimodule (or  -subsemimodule)   

is a  subsemimodule of   such  that  if        , then     . A prime  subsemimodule of    is a 

proper subsemimodule   of   in which      or       whenever     , [5]. We  define  -ideals  

and prime ideals of a semiring   in a analogous manner [5]. 

Remark (1.6):   Let    be  an   -semimodule, we  say  that    is a torsion-free  semimodule 

whenever      and       with        implies that either       or     . If   is a 

subsemimodule of  , then                    and  ann                      
are   -ideals of   , [5]. 

Proposition (1.7): Let   be a non-zero  -semimodule, and let   be the set defined as in Definition 1.3, 

then   has the following properties: 

1)  ⋂ann( ) is the empty set. 

2)   is a multiplicative subset of   and    . 

3) If   is torsion-free then    . 

Proof:  For (1)  from  the definition of     we have    ⋂ann     . For (2)   first observe that    . 

Let         , and           for  some     , then   since           , then         and hence  

   , therefore         . Thus   is a  multiplicative subset of   .  For (3) from definition of  , then  

   . Now, assume  that     is  torsion-free. Let        and         for some     , since    is 

torsion-free then    , and hence    . Thus    . This completes the proof.   
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Definition (1.8):  [4]  A subset   of  the total  quotient  semiring      of    is  called  fractional ideal  

of a semiring  , if the following hold: 

1.   is an  -subsemimodule of     , that is, if        and     , then        and     . 
2. There exists a not zero-divisor element     such that     . 

     Let  ,   be two fractional ideals of a semiring  . Then 

                                                                            . 
     By Frac( ), we mean the set of all nonzero fractional ideals of a semiring  . It is easy to check that 

Frac( ) equipped with the above multiplication of fractional ideals is an abelian monoid [4]. It is clear 

that each ideal   of   is fractional ideal of a semiring   since (1) and (2) holds for    ,     . 

Definition (1.9):  [4]  Let    be a fractional  ideal of a  semiring  , then    is called  invertible  if  there 

exists a fractional ideal   of   such that      . Note that   is unique and  will be  denoted that by    . 

The set of all invertible fractional ideals of   is an abelian group. 

Example(1.10):   Let    be the set of  all non-negative integers. Clearly     its  semifield of  fractions. 

Let   be a positive integer. The set   
 

 
    

 

 
      is a fractional  ideal of  . It is clear   as an 

 -subsemimodule of      is generated  by  
 

 
  and      . While     

 

   , where     runs over  all 

positive integers. Since there is no positive integer   such that     ,   is not a fractional ideal of   . 

    Let   be a semidomain,      its semifield of  fractions,   and     -subsemimodules of     . Then 

the residual quotient of   by   is defined as                     , see [6]. 

Proposition(1.11):   Let   be  a  semidomain,   and   some fractional ideals of   . Then the 

following statements hold: 

(1)             . 

(2)       is a fractional ideal of  . 

(3) If   is invertible, then          . 
(4) If   is an invertible ideal of  , then   is finitely generated. 

Proof: (1):  Suppose that       , then    ∑     
 
   ,  where       ,     ,   . Now          ,  

so           ,   . Therefore           , and            . By  similar  way  we prove  that  

             Thus             . 

(2):   is fractional  and   an  -semimodule, 1 is a common denominator of  . Choose  a non-zero   in 

   . Clearly, for any        , then     . Therefore,   is  a common denominator of        and 

hence        is fractional. 

(3): In the formula,             , put       . 

(4) Let     be an invertible  ideal of   . So, there is  a fractional ideal    of    such  that      . This 

implies that    ∑     
 
   , for some              and              . Clearly, the set         

   

generates   in  .     

      Now we can give our definition of invertible subsemimodule, as in modules theory [1]. 

Definition (1.12):  Let   be a non-zero  -semimodule and    be a subsemimodule of  . If      , 

then we say that    is an invertible subsemimodule of  . Note that if    is invertible then    . It is 

clear that   is invertible in  . 

      The following proposition is useful for testing the invertibility of subsemimodules. 

Proposition (1.13):  Let   be a non-zero  -semimodule. 

1) A non-zero subsemimodule   of    is invertible of   iff            
  

                

such that   ∑   
  

 
     . 

2) If   is invertible subsemimodule in  , then           such that     . 

Proof: The proof of (1) is an immediate consequence of  the Definition 1.12. For (2)  Since      , 

then             
  

              , such  that    ∑   
  

 
     , where        ,      . Put 

           and      ∏            , then    ∑     
 
     .    

      As a special case of Proposition 1.13 we obtain. 

Corollary (1.14):  A non-zero cyclic subsemimodule    of   is invertible in   iff               
    such that      ,   depends on  . 

Proposition (1.15):    If      is  a  non-zero   invertible  subsemimodule   of    -semimodule   .  Then 

  ∑        , where the sum is taken over all             . 
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Proof:  Since       . Hence  each  element  of    can  be  thought of  as  an   -homomorphism in 

        . In  fact,         ∑     
 
                    . i.e.    ∑    

    
 
   , 

where if     , then              . This completes the proof.     

Definition(1.16): A non-zero  -semimodule   is called a Dedekind semimodule(or D semimodule), 

if  each  non-zero  subsemimodule of   is  invertible in   , and   is called a     semimodule  if each 

non-zero  cyclic  subsemimodule  of     is  invertible  in   . It  is  clear  that  every  D semimodule  is 

   semimodule.  

Example (1.17):  Here some examples to explain invertible subsemimodules and D semimodules:- 

1) Let        as  a  semiring, and  let      ̅    ̅  ̅  ̅  ̅ . So          ̅  ̅  ̅  ̅ . Let     ̅. 

             |       . It  is  easy  to  check  that        , and  hence     . Then      
   . Thus    is  not invertible in   . 
2) Let   be the semiring  of  non-negative  integer  numbers  and       . Let      , since the 

set   of all not zero-divisors of   is      , hence 

                                                |            . 

Therefore,                 |            
 

 
 , where      is  the  semifield   of  non-

negative rational numbers. Then it is clear that       . Since   is  an invertible ideal  in  ,  we have 

           , and   is an invertible as subsemimodule. Now let       as a subsemimodule of the 

 -semimodule   . Then     {    
|          . 

One can check that      

 
 , therefore     ( 

 
 )       , i.e.,     is  an  invertible 

subsemimodule in   . 

3) Consider    as an  -semimodule. Suppose that   be a non-zero subsemimodule of   . Since    

is torsion-free, then          , and              . Thus 

     

 
   |   

 
      . It is clear that      , and  we obtain        , hence     is a 

Dedekind  -semimodule. 

4) Consider     as a  -semimodule, where   is any  positive  integer  1, which is not prime number. 

Let   be a non-zero proper subsemimodule of   . Now 

       |  gcd        .       {  

 
   |      , gcd        . Hence it is clear that, 

            |             . Therefore                 . Hence   is not an  

invertible subsemimodule in   . While, if   is a prime number, then    is simple semimodule;    has 

no non-zero proper  subsemimodule, hence is a D semimodule. Thus    is a D semimodule iff   is a 

prime number.  

5) Let   be  a prime number, and let       be  the set of  rationals of  the form    , with   and   are  

in     and     is not  divisible by   . Then        is a  subsemigroup  of    .           ⁄  is an  

 -semimodule. It is known that  each  proper non-zero subsemigroup of      is cyclic of the form  

   . Note  that  since each  element  of         , where                is of order less than or 

equal to    . Thus      ∑           , where                 . Hence  by  Proposition 1.15, we 

have     has no proper invertible subsemimodule. 

Lemma (1.18):    Let    and    be torsion-free  -semimodules and   be  an  -epimorphism from 

   to   . If    is  an invertible  subsemimodule of     then       is an invertible subsemimodule of   

  .  

Proof: Suppose   is invertible subsemimodule in   . Then       ,            |       .  
If      then       and so               .  

So                    |         .  
Take     . Let         be such that         .  

Then                  for some    ,       and     .  

Then                              ,  and therefore                          .   

Thus      is an invertible subsemimodule in   .      

Corollary (1.19):  Every homomorphic image of  a Dedekind semimodule is again  Dedekind.      

Remark (1.20):   If    is  a non-zero  proper direct  summand of  an   -semimodule   , then   is  not 

invertible subsemimodule in  .   
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Proof: Let   be invertible subsemimodule in  ; thus       , where             |      , 
and         |       for some      implies       . Since    is a direct summand of  , i.e. 

there is a  subsemimodule   of   such that      . If      , since    is invertible in  , then 

by  Proposition 1.13,       with      , but     , hence     ⋂     , and since    , then 

   , which is a contradiction, then   is not invertible in  .     

Corollary (1.21):  It easy checked that if      , and   is an invertible subsemimodule in  , 

then    .   

Proposition (1.22):   Let   be a semiring and    be  a non-zero ideal  of   , then   is an invertible ideal 

in   if and only if    is an invertible  -subsemimodule in RR. 

Proof:  Let   be  the  set of  all  not zero-divisors of  . Then            |      for some 

    implies      . So that    . Thus         is  the total quotient semiring     . Hence  

      . i.e.         , and so   is an invertible ideal in   if and only if   is invertible  -

subsemimodule in RR.    

     A semiring   is semidomain if       implies      for all        and all non-zero     [6]. 

We  say  that  a  semidomain   is  said to be a  Dedekind semidomain if  every  non-zero ideal of   is 

invertible in    [6]. According to the equivalent conditions explained on page 143 in Narkiewic   book 

[7], a  Dedekind   domain   is  a  domain  in  which   non-zero   fractional  ideals  form  a  group  under 

multiplication. Inspired by this, we give  the  following  definition: We  define a  semidomain     to be  

a  Dedekind  semidomain  if  every non-zero fractional ideal of   is invertible. Hence   is a  Dedekind  

semidomain if and only if  Frac( )  is an abelian group. 

Corollary (1.23):  Let   be a semiring. Then  

1)   is Dedekind  -semimodule if and only if   is a Dedekind semidomain.  

2)   is    semimodule if  and only if      is a semidomain, i.e. each non-zero  principal  ideal of  

  is invertible as a subsemimodule in   if and only if it is generated by not a zero-divisor. 

The following remark shows that    semimodule may not be D semimodule. 

Remark (1.24):  Let    be a semidomain, and    the polynomial semiring        in  two independent  

variables    and  . Then    is a  semidomain. By Corollary 1.21,    is  a    semimodule. But if we 

take the ideal    generated by   and  , it is clear that    is not invertible subsemimodule of   . Thus    

is not a D    semimodule.     

      Next, we defined  the notion of  "essential"  subsemimodule. In  Golan book’s  [8], it  was  

proposed  the  following definitions. An R-monomorphism         of R-semimodules is essential 

if  for any R-homomorphism           ,       is  a monomorphism  implies  that     is  a  

monomorphism.  

      A subsemimodule   of an  -semimodule    is essential ( or large ) in   if  the inclusion mapping 

        is an essential  -monomorphism. Note that         is an essential R-

homomorphism if and only if      is a large subsemimodule of    [8]. 

      Another way for defining the notion of  "essential" is proposed in [9] as follows. A subsemimodule  

  of    is said to be  semi-essential  in   , written as     , if  for every  subsemimodule    of   :  

         . A monomorphism        of  -semimodules is said to be semi-essential if:     

        .  

      In [9], we have the following characterization of semi-essential subsemimodules. 

Lemma (1.25):   A subsemimodule    of  an  -semimodule   is a semi-essential if and only if for 

each      , there exists     such that       . 

Lemma (1.26):   Every invertible subsemimodule of   is a semi-essential subsemimodule of  .   

Proof:  Let   be invertible  subsemimodule of   . Let      . By Proposition 1.13,       such 

that        and hence   is essential  

Proposition (1.27):   Let   be a    semimodule. Then ann(  ) ann( ), for each      . 

Proof:  It  is  clear  that   ann     ann    , so  it is enough  to  show  that  ann     ann   . Let 

  ann    , then      . Let     . Since     is a     semimodule; then      is   invertible in   , 

and hence  by Corollary 1.14,          such that       . Thus           . Hence     , 

and ann     ann   . This completes the proof.    

      From now  on, we will put         , for  the  semiring  of  endomorphisms  of   -semimodule  . 

Lemma (1.28):   Let    be a  non-zero   -semimodule   and           . If  ker  contains an  
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invertible subsemimodule of   then    . Therefore if   is a    semimodule  then  every  non-zero 

element of         is a monomorphism. 

Proof:  Let    ker  is  invertible in  . Then by  Proposition 1.13,                   such 

that     . So             ; but     hence        and    .  

     Now assume that   is a    semimodule and             . Let      ker , then     

invertible in   and subset  of ker  from above; we have    , which is a contradiction, then 

ker   , and   is a monomorphism.     

      For any  -semimodule  , there exists an obvious semiring monomorphism:  
    ann( )         . Hence one may think of as a subsemiring of        . So we have: 

Corollary (1.29):   If     is a    semimodule, then    ann( )  is a  semidomain and thus  ann    is 

a prime ideal. 

     As a special case, we record the following. 

Corollary (1.30):   If a semiring   is a     -semimodule. Then   is a semidomain.   

2. Multiplication Semimodules 

    In this section we study multiplication semimodules. We begin with following definition:         

Definition (2.1):  Let   be a  semiring  and   an   -semimodule. Then   is said to be  

multiplication semimodule if  for all  subsemimodule   of    there exists an ideal   of   such that 

      .  In this case it is easy to show that           . For instance, all  cyclic  -semimodule 

are  multiplication  -semimodule [10, Example 2]. 

       Note that, if   is an ideal of  , then the set    consisting of all  finite sums of  elements       with 

     and       is a subsemimodule of  .  

Example(2.2): Let   be a multiplicatively idempotent semiring. Then all ideals of   are multiplication 

 -semimodule [11].   

     An element   of a semiring   is multiplicatively-cancellable (abbreviated as MC), 

if        implies     for all      . Each non-zero element in a semidomain is an MC element. 

Theorem (2.3):   Let   be a semiring. An ideal    of   is invertible if and only if  it is a multiplication 

 -semimodule which contains an MC element of  , see [11]. 

Proposition(2.4):  Let   be a semiring. An  -semimodule   is multiplication  semimodule if and 

only if for each   in   there exists an ideal   of   such that        . 

Proof: The necessity is clear. For the sufficiency, assume that for each     there exists an ideal   

of   such that      . Let   be a subsemimodule of  . For each     there exists an ideal    

such that       . Let   ∑      . Hence   ∑    ∑             . Therefore   is a 

multiplication  semimodule.       

Theorem (2.5):  Let   be a multiplication semimodule over a  semiring  . If    is a finitely generated 

subsemimodule of  , then there exists a finitely generated ideal   of   such that     . 

Proof: Suppose that               . Since   is a multiplication, we have         . So, 

there exists             and          such that                          for           and 

         . Let    be an ideal of    generated  by               . It is  easy to see  that          
and           . On  the  other  hand, since  for every         , we must have      . Hence 

             . Thus      and   is finitely generated.      

      The following  shows  that  every  homomorphic image  of  a  multiplication  semimodule  is again 

multiplication [11].   

Theorem(2.6):  Let    and    -semimodules and       a surjective  -homomorphism. If   is a 

multiplication  -semimodule, then   is a multiplication  -semimodule. 

      A semiring   is called yoked if for all      , there exists an element      such that        

or       [8, p. 49]. A semiring is entire if      implies that     or     [8, p. 4].  

An  -semimodule   is called  multiplicatively cancellative ( or simply     ) if for any        and 

     ,         implies        [11]. For example every ideal  of  a  semidomain    is an     

 -semimodule. 

      Note that  if   is  an     -semimodule, then    is a faithful semimodule. Let        for some 

   . If      , then        . Hence    . Thus   is faithful.     

      An element   of an  -semimodule   is called cancellable if             implies that     

    . The semimodule   is cancellative if and only if  every element of   is cancellable [8, P. 172]. 

Lemma (2.7):[11]   Let     be  a  yoked   entire semiring and    a cancellative  faithful  
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  Multiplication  -semimodule. Then   is an    semimodule. 

Theorem(2.8):[11]    Let     be a yoked semidomain and   a cancellative torsion-free   -

semimodule. Then   is an    semimodule. 

Lemma(2.9):[11] Let    be an   -semimodule and      ∑          . If    is a  multiplication     

 -semimodule, then          .  

Theorem (2.10): [11]  Let   be a semiring and    is  an    multiplication  -semimodule. Then    is 

finitely generated.     

      By Lemma 2.7, we have the following result.      

Corollary (2.11):  Let     be an entire yoked  semiring  and     a cancellative   faithful   

multiplication  -semimodule. Then   is finitely generated.     

     The next theorems give a characterization of    multiplication semimodules, for the proof see[11].  

Theorem(2.12):  If   is  an    multiplication  -semimodule. Then   is a projective   -semimodule. 

Theorem (2.13):   Let    be  a semidomain. If    is  an     multiplication    -semimodule, then    

is a torsion-free semimodule. 

Theorem (2.14):   Let    be  a semidomain. If    is  an     multiplication    -semimodule, then    

is isomorphic to an invertible ideal in  . 

3. Dedekind Multiplication Semimodules  

   From Remark 2.3 we can say that a semiring   is a Dedekind semidomain iff each non-zero 

ideal in   is a multiplication ideal  which contains a not zero-divisor. In this section  we study  

Dedekind multiplication semimodules. We begin with the following.         

Lemma (3.1):    Let   be a torsion-free  -semimodule. If   is an invertible subsemimodule of   and 

  is an  invertible ideal  in  , then    is an  invertible subsemimodule of  . 

Proof: Suppose      . But             , and hence                   . From 

Proposition 1.7, we have      and from Proposition 1.22, we have           . Hence easy to 

see that           By above we have         , and   is invertible.    

Lemma (3.2): Let   be a non-zero   -semimodule and   is invertible ideal in  . Then    is an 

invertible subsemimodule of  .  

Proof: Suppose      . But       , and hence                          . From 

Proposition 1.22, we have           , thus it follows that       . Hence            
 , so      , and   is invertible.   

      A subsemimodule   of  an   -semimodule     is  called  invariant  subsemimodule  if        ,  

           , [3, 12]. 

Definition (3.3): A semimodule   is said to be duo if each subsemimodule of   is invariant, [12]. 

      In [12], we have the following characterization of duo subsemimodules.      

Theorem(3.4): Let   be a yoked semidomain, and   a torsion-free  -semimodule. Then   is duo if 

and only if for each  -endomorphism   of  , there exists   in   such that         for all    .   

Remark(3.5): It is clear that any multiplication semimodule is duo. Hence by Theorem 3.4, if   is a  

multiplication torsion-free semimodule over a yoked semidomain  , then for each          , 

    , such that         for all    .   

Corollary (3.6):  If   is a torsion-free multiplication semimodule over a yoked semidomain  , then 

there exists an epimorphism of semirings from   onto        . 

Proof: By Remark 3.5,           ,     , such that      and          for all    . 

Hence            , defined by        . It is easily check, that   is an epimorphism of 

semirings. 

Theorem(3.7):  If   is a torsion-free multiplication semimodule over a yoked semidomain  , then  

                                                                      ann( ) 

Proof: By Corollary 3.6,          |            |          |           
=ann( ). But               , then           ann( ).      

      By Lemma 2.7, Theorem 2.13, and Theorem 3.7 we have.  

Theorem(3.8):   If    a  cancellative faithful  multiplication  semimodule over  a yoked semidomain 

 . Then           . 

The following lemma shows the importance of the faithful multiplication semimodules.  

Lemma(3.9):   Let    be a  finitely generated  cancellative  faithful  multiplication  semimodule over 
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 a yoked semidomain  . If      is  an invertible subsemimodule of    for some ideal   of  , then   

is an invertible ideal in  .. 

Proof: Since    , then    . By assumption      , hence           . It is clear that 

    is an  -subsemimodule of  . Also, it is easy to see that every element of     can be considered as 

an  -endomorphism of  . Now, since   is a faithful multiplication semimodule, then by Theorem 3.8, 

         . Therefore     is an ideal in  . As in modules see [13], it follows that      . Hence 

      , so               which implies       .     

Theorem (3.10):  Let   be a cancellative faithful multiplication  -semimodule over a yoked 

Dedekind semidomain  . Then   is a finitely generated Dedekind  -semimodule. 

Proof: Since   is a faithful multiplication semimodule, and   is a semidomain. By Corollary 2.11,  

we have   is a finitely generated. Now, let   be a non-zero subsemimodule of  . Hence there exists a 

non-zero ideal   in   such that     . Since   is a Dedekind semidomain, thus   is invertible in  , 

and by Lemma 3.2,   is invertible.     

      The following theorem is a converse of above theorem: 

Theorem (3.11): Let    be a cancellative  faithful  multiplication  semimodule over a yoked 

semidomain  . If   is a Dedekind semimodule, then   is a Dedekind semidomain. 

Proof: By assumption,   is a semidomain. By Corollary 2.11, we get   is a finitely generated. 

Assume that   is any non-zero ideal of  . Then    is a non-zero subsemimodule of  , hence    is 

invertible. From Lemma 3.9,   is an invertible ideal.     

      A semidomain   is said to be a Pr ̈fer semidomain if every non-zero finitely generated ideal of   

is invertible in   [6]. Note that   is a Dedekind semidomain if and only if   is a Noetherian (each of 

its ideals is finitely generated) Pr ̈fer semidomain. 

     Let D be a Dedekind domain (D is a ring). By Theorem 3.7 in [4], the semiring of ideals Id(D) of D 

(the set of all ideals of D) is a Pr ̈fer semidomain. By Theorem 3.7 in [4], Id(D) is subtractive (each of 

its ideals is subtractive). If  Id(D) is also Noetherian, then Id(D) is a Dedekind semidomain. Note   that 

the   semiring Id(D)  is  proper semiring, i.e., it is not a ring. If D is a Dedekind semidomain then  the 

above  argument  remains  true. Note that, each  Noetherian  Pr ̈fer  semidomain is  Dedekind. 

      For a more specific example, we assert  that (Id( ),+, ) is a principal ideal semidomain (each of its 

ideals is principal) [6]. Hence, Id( ) is evidently a Dedekind semidomain. Note that the semiring 

(Id( ),+, ) is isomorphic to the semiring ( , gcd,  ).  
Definition (3.12): A semimodule   is said to be a Pr ̈fer semimodule if every non-zero finitely 

generated subsemimodule of   is invertible in  .  

      The proof of the following theorem is basically the same as the proof of the last results. 

Theorem (3.13):  Let   be a cancellative faithful multiplication semimodule over a yoked semiring  . 

Then   is a    ̈    semimodule if and only if   is a    ̈              . 

       If   is a    semimodule, we have the following remark which is special case of  above theorem. 

Remark (3.14):  Let   be a cancellative faithful multiplication semimodule over a yoked semiring  . 

Then   is a    semimodule if and only if   is a           . 

Proof:( ) By Corollary 1.29, we get   is a semidomain, so each non-zero principal ideal is invertible.   

      ( ) Assume that   is a semidomain. Let now    be a non-zero cyclic subsemimodule of  , 

     , for some ideal   of  . In this case we can take         , and hence           . 

By Corollary 2.11,  we get   is finitely generated, and thus        is a multiplication ideal in   

[13]. But   is a semidomain; thus by Theorem 2.3,        is an invertible ideal in  . Then by 

Lemma 3.2,    is an invertible subsemimodule of  .    

Proposition (3.15): If   is a faithful multiplication Dedekind  -semimodule. Then    
          is also a faithful multiplication Dedekind  -semimodule. 

Proof: Similarly in the proof of Theorem 3.10,   is a f.g. faithful multiplication semimodule. So as in 

the modules see Corollary (2) of [2], we obtain that    is a f.g. faithful  multiplication  -semimodule. 

By assumption and using Theorem 3.11, we get   is a Dedekind semidomain. Now    is a f.g. 

faithful multiplication  -semimodule over the Dedekind semidomain  , then by Theorem 3.10,    is 

a Dedekind  -semimodule.    

4. Embedding of  Semimodules 
      In this section we study "embeddability proplem" , thus we look for necessary and (or) sufficient 
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 conditions under which an  -semimodule   is isomorphic to a subsemimodule of  the  -semimodule 

 . Now, put            ,   is an  -semimodule. We start by the following.     

Proposition (4.1): Let   and   be  -semimodules. If there exists a monomorphism    , then 

ann     ann( ). 

Proof: It is clear that ann( )   ann(  ), so it is enough to show that ann      ann( ). Let 

  ann     , then              . But   is a monomorphism, therefore       , and 

  ann   . But it is easily seen that ann     ann   , thus ann     ann   .    

Remark (4.2): The converse of Proposition 4.1 is not true in general.  

Proof: Let   be a projective  -semimodule with a non-commutative endomorphisms semiring,      

(for example   can be any free semimodule of rank ˃1, such as       as  -semimodule). Put 

     . Then              , where             and            . If   

represents a generator of a semiring   in the last direct sum, hence it is clear that ann      

ann      . Whereas    does not contain any monomorphism. To prove this, let      such that 

      . Thus      is a projective ideal of   (since   is projective). And thus by [14],     , so also 

  is a multiplication ideal. By [15],         is commutative. By [16, lemma 2.1], we have         

is commutative, which is a contradiction.     

       Now, let us observe that  if there exists  a  monomorphism       , for any  -semimodules,    

  and  , then it is clear that ⋂             . 

       The following theorem gives a sufficient condition for the existence of a monomorphism in 

           , in the case   is a multiplication  -semimodule. 

Theorem(4.3): Let    be a multiplication   -semimodule and   any  -semimodule such that 

⋂                          . Then for any    , then    is a monomorphism iff     

ann     ann   . 

Proof:     If   is a monomorphism then by Proposition 4.1, we have ann     ann   . 

          Put       . There is an ideal   in   such that     . So                     , 

which implies    ann    . Then       , hence       ,      , and thus       . Therefore 

      and   is a monomorphism.    

      As a special case of Theorem 4.3, we give the following , comparison with [2, Lemma(1.1)]. We 

say that an  -semimodule   is called torsionless if  ⋂          ,       . 

Corollary (4.4):  Let   be a torsionless  multiplication   -semimodule. Then   is embeddable in   iff 

      such that ann     ann    . 

      More generally, we have: 

Corollary (4.5):  Let   be a torsionless multiplication  -semimodule. Then   is embeddable in    iff 

  a f.g. subsemimodule   of   , which is generated by a set             , where             

and ann    ann    . 

Proof:     Assume that   embeds in   , i.e.         which is a  monomorphism.          

define         as follows        , where             is the natural projection of    onto 

the ith component. Note, since           is isomorphic to the direct sum of   copies of     
        . Therefore ann             ann      and since   is a monomorphism hence, by 

Proposition 4.1 ann    ann    . Now, ann    ⋂        
 
    ann   . Thus  ann    ann    .  

          Assume that   a f.g. subsemimodule   of   , which is generated by a set             , and 

ann     ann     . Now let us define an  -homomorphism        as follows      

(                   )     .  Now since ann             ann     , and by assumption 

ann     ann    ⋂          
   ann   . Therefore  by  using  Theorem 4.3, we  obtain         is a  

monomorphism in            
     From our main results in this section, is that if       such that (  ) is invertible in   , and   is 

torsionless, then   is a monomorphism, and hence   embeds in R, this means   is isomorphic to an 

ideal of R. But now, let us recall that for any  -semimodule  , 

        | if      for some    , then     . Hence, for an  -semimodule           ,  
       | if      for some    , then     . 
Theorem(4.6): Let   and   be any two  -semimodules, with ⋂            , and      . If 

there exists a cyclic invertible subsemimodule      in  , then   is a monomorphism, and hence   

embeds in  . Moreover, if  ∑          , then      is invertible subsemimodule in  . 
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Proof: By Corollary 1.14                such that      . Put        and let    , 

then              , which implies    . Thus   is a monomorphism. Next, by assumption, 

                                    such that   ∑       
 
   . Since      is invertible 

in  , so by Corollary 1.14                       such that      
  
 . Hence   ∑   

  
     

 
   , 

and by Proposition 1.13, we obtain that      is invertible in  .   

      The following two corollaries are  special case of Theorem 4.6. 

Corollary(4.7): Let   be a torsionless   -semimodule. If    contains a cyclic invertible 

subsemimodule, then   is isomorphic to an ideal of  . Further if  trace      , then   is isomorphic 

to an invertible ideal, and thus is a faithful multiplication semimodule. 

Proof: Since     , where   is the set of all non-zero devisor in  , and hence       . Let      

such that      is invertible in   . Thus by Theorem 4.6,   is a monomorphism. Since trace    
∑            , again by Theorem 4.6,      is an invertible subsemimodule of   . Hence by 

Proposition 1.20,      is an invertible ideal in  . By Remark 2.3, we obtain     , and hence   is a 

faithful multiplication semimodule   

Corollary (4.8):  Let   be a torsionless  -semimodule. If    contains a f.g. invertible subsemimodule 

 , and   can be generated by   elements. Then   embeds in   .  
Proof: Let              be a set of generators of  . Define        , as follows,            

(                   )     . Now our aim is to show that   is a monomorphism. Since   is 

invertible in   , then by Proposition 1.13, we have                and             

such that    ∑     
 
   . Now, let        ⋂      

 
   . Thus       ∑     

 
        , but 

   , then             , i.e   ⋂          . Thus         , and   embeds in   .                         

Theorem (4.9):  Let   be a Dedekind semimodule and let   be a non-zero element of  . Then   is 

isomorphic to the  -subsemimodule        of     . 

Proof:  Since     is  a  Dedekind  semimodule, then                     such  that       .  

Define a homomorphism             with         for each         . It is clear that   is an  

 -isomorphism.     
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