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ABSTRACT

In this paper, we establish the conditions of the occurrence of the local
bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium
points of an eco-epidemiological model consisting of a prey-predator model with Sl
(susceptible-infected) epidemic diseases in prey population only and a refuge-stage
structure in the predators. It is observed that there is a transcritical bifurcation near
the axial and free predator equilibrium points, near disease-free equilibrium point is
a saddle-node bifurcation and near positive (coexistence) equilibrium point is a
saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation.
Further investigations for Hopf bifurcation near coexistence equilibrium point are
carried out. Finally, numerical simulations are used to illustrate the occurrence of the
local bifurcations of this model.

Keywords: Prey- predator, Eco-epidemiological, Sl epidemic disease function,
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1. Introduction

Bifurcation theory is the mathematical study of changes in the qualitative asymptotic structure of a
dynamical system [1, 2]. It attempts to explain various phenomena that have been discovered in the
natural sciences over the centuries. Performing a bifurcation analysis is often a powerful way to
analyze the properties of such systems. The prey and predator model is an important topic at present,
as it is used to solve many problems in ecology, nature and other sciences. The prey system includes
several interactions, including competition co-existence and stage-structured [3, 4]. The ecological
models of the age stage are more logical than models that do not contain phase structure. In addition,
there are several factors that affect the system, for example, refuge, disease, shelter and others.
Sometimes, differences in any parameter in the system can lead to complex behaviors that lead to
system instability, causing a bifurcation that is the main qualitative change in the behavior of a
dynamic system as a result of changing one of its coefficients. The bifurcation is divided into two
principal classes, local and global. Local bifurcation can be analyzed through changes in the local
stability properties of equilibria or periodic orbits. While global bifurcation occurs when periodic
orbits collide with equilibria. This causes changes in the topology of the trajectories in phase space
which cannot be confined to a small neighborhood, as is the case with local bifurcation. These
bifurcations happen when one varies a single parameter [5-9]. On the other hand, Perko [10]
established the conditions of the occurrence of local bifurcation, such as saddle-node, transcritical,
pitchfork, period -doubling, and Hopf bifurcation near coexistence equilibrium point. The Hopf
bifurcation is a local bifurcation in which the equilibrium point of a dynamical system loses
stability, as a pair of complex conjugate eigenvalues of the linearization around the equilibrium point
cross the imaginary axis of complex plane. This type is also known as Poincare Andronov Hopf
bifurcation.

In this paper, an application of Sotomayor’s theorem [11] for local bifurcation is used to study the
occurrence of local bifurcation near the equilibria. Furthermore, Hopf bifurcation near positive
equilibrium point conditions is established for a mathematical model previously proposed by Kafi
and Majeed [12].

2 . The mathematical models [12]

In this section, an eco-epidemiological model is proposed for study. The model consists of a prey,
whose total population density at time T is denoted by N(T), interacting with a stag-structured
predator . It is assumed that the prey population is infected by an infectious disease with the prey
refuge. Now, the following assumptions are adopted in formulating the basic eco-epidemiology model:

1. There is an ST epidemic disease in the prey population which divides the prey population into
two classes, namely S(T) that represents the density of susceptible prey at time T and I(T) which
represents the density of infected prey at time T. Therefore, at any time T, we have N(T) = S(T) +
I(T). The predator population is divided into two classes, namely S(T) that represents the density of
immature predator at time T and W (T) which represents the density of mature predator at time T.

2. It is assumed that only susceptible prey S is capable of reproducing in a logistic growth with a
carrying capacity K > 0 and an intrinsic growth rate constant r > 0. The infected prey | is removed
before having the possibility of reproducing. However, the infected prey population | still contribute
with S to population growth towards the carrying capacity.

3. The disease is transmitted within the same species by contact with an infected individual at
infection rates of a >0 for the prey.

4. The mature predator w(T) consumes the susceptible prey S(T) and the infected prey I(T),
according to Holling type-Il of functional responses with a maximum attack rate of a > 0, and a half
saturation rate of b > 0 for the susceptible prey , as well as a maximum attack rate of ¢ > 0 and a
half saturation rate of d > 0 for the infected prey .

5. The disease may causes mortality with a constant mortality rate of d; > 0 for the infected prey.
6. The immature predator depends completely in its feeding on his parents, so that it feeds on the
portion of the uptake food by the mature predator from the susceptible and infected prey, with portion
rates of 0 <n; <1 and 0 <n, <1 associated with uptake rates of 0 <e; <1 and0<e, <
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1, respectively. The immature predator individuals grow up and become mature predator individuals
with a grown up rate of u > 0.

7. There is a type of protection of the prey species from facing predation by the mature predator
with refuge rate constants m, € (0.1) and m, € (0,1) for susceptible and infected prey,
respectively.

8. Finally, in the absence of the predator facing death with natural death rates of d, > 0 and d; >
0 for immature and mature predators, respectively.

Therefore, the dynamics of the above proposed model can be represented by the following set of
first order nonlinear differential equations.

s S+1 a(l—m)SW

ar -~ " ( _—)_ Th+(1-mp)S

dl c(1—my)IwW

ar S ara Ty B! 1)
dZ ea(l—n)(1—my) SW eyc(1—ny)(1—my)IW

dar - b+ (1—my)S At (—my)l W~ d?
d_W _@ea ny(1—my) SW N e,cn, (1 —my)IW fuZ—dy W

dT b+ (1—my)S d+ (1 —my)l J

. my=m,=m For the simplicity of the above model, it is assumed that
Note that the above proposed model has sixteen parameters in all, which makes the analysis
difficult. In order to simplify the system, the number of parameters is reduced by using the following
dimensionless variables and parameters.

alng, S = ,l:E,Z:

R _ ok _a(l-m) b _c(1l-m) . d
=T Ial_ riaZ_ r ia3_k;a4_ r faS_ ]
dq eia(l—nqy) (1 —m) e;c(1—ny)(1—m)
a6 =, a7 = ] a8 = ]
r T T
_u _dy _ejany (1 —m) _ezeny(1—m)
a9—r'a10—r'a11— - y Q12 = - )
ds s 1 Z w

—-w=—.
k )
Then dimensional form of system (1) can be written as:

ds ) a,w . z
E=S[1—S—(1+a1)l—m] =f1(S,l,Z,W)

di | a, w ]
E=l[15—m—a6]=f2(s,l,z,W) >(2)
dz a;sw ag iw ]
E=a3+(1—m)s+a5+(1—m)i_ agz — ay0z = f3(s,i,2,w)

dw a;1Sw aqp iw )
E=a3+(1—m)s a5+(1—m)i+a9z_a13W=f4(S'l'Z'W)

withs(0) >0, i(0)>0,z(0)=0 and w(0) >0. It is observed that the number of
parameters was reduced from sixteen in system (1) to fourteen in system (2). Obviously, the
interaction functions of system (2) are continuous and have continuous partial derivatives on the
following positive four dimensional spaces.
Ri={(s,i,zzw) €R*:5(0)=>0,i(0)=0,z(0)=0,w(0) =0}

Therefore, these functions are Lipschitzian on R% , and hence the existence and uniqueness of
solutions for system (2) are guaranteed. Further, all the solutions for system (2) with non-negative
initial conditions are uniformly bounded, as demonstrated in the following theorem.

Theorem 1[12]
All the solutions of system ( 2) are uniformly bounded.
3. Existence and stability of equilibrium points [12]

System ( 2) has at most five equilibrium points, which are mentioned in the following:

@® The equilibrium point E, = (0,0,0,0), which is known as the vanishing point that always exists
and unstable.
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@ The axial equilibrium point E; = (1,0,0,0 ), which exists unconditionally.
Also, it is a locally asymptotically stable if the following conditions hold:

ag > ay, (3)
S — > (ay3 + ag + ayp) , (4)
as;+ (1 —m)

[a11(ag + aqo) + asas] )
az+(1-m)

® The free predators' equilibrium point E, =(s,i ,0 ,0 ) which exists uniquely in the Int. R2 (Interior

of R2) of si —plane, provided that:

a;3(aqg + aso) >

ag < aj, (6)
where
— a6
s=—, (7)
a
T a;—ag
L= a;(1+aq)’ (8)
And it is a locally asymptotically stable if the following conditions hold:
2s+(1+a))i >1, 9
< %
s< oL’ ) (10)
a{1S a,l
ags > 11 _ 12 _ (11)
az+(1-m)s as+ (1 —m)i
@1 > @2, (12)
where:
aq1S aqpl
¢1 = (ag + aysg) [a13 —( = =) |
az+ (1 -m)s a5+ (1—m)i
a7§ agl
P2 = Qo = =
az+(1—-m)s g+ (1—m)i

@ The disease-free equilibrium point E; = (5,0,2,W ) exists uniquely in the interior R3 of szw —
space Where,
_ (A =3[az+ (1 -m)3]
w = a,
~ a; §w q
zZ = = an
(ag + aqgy [az + (1 —m) 3]
< = asa;3(aq + ag)
) _ (ag + aro)la;s —a;s(1—m)] +asay ’
if the following conditions hold:

, (13)

§<1, (14)
o S > ag3 (2-m). _ N (15)
And it is a locally asymptotically stable if the following conditions hold:
a,w+ asa
§< 4T T U576 ) (16)
a,as
25 + P28 >1 (17)
N l[as + (1-m)5]2 =

@5 > TG 49

N33 Ngq > Ny3 N3y, (19)

Ng1(My1 + Ngy) > NzqMys. (20)

@ Finally, the positive (coexistence) equilibrium point E, = (?, i,z ,17/) exists in the Int. R} if the
following conditions hold:
a,a6(1 —m) < aza,(1+ ay), (21)
aiz > ay3(1 —m), (22)
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i1<1y, (23)
where:
= —(aza, + azasag) = asaiz(ag + app)
- i, = ,
YT apas(1—m) — aza,(1 + ay) (ag + ajp)[a;; —a3(1 —m)] + agaq

The characteristic equation of J(E,) is given by:
A*+H 22 +Hy, 22 +Hz;A+H, =0, (24)

where:
Hy =—(o+71)
Hy=yov1+v2+v3—(at+tvs+ve+vs)
Hz = =[(vo(r2 —va) + v1(¥3 —V6) —M2a(¥s — Yo + ¥10) + Ve¥11 + M1a(Y12 — V13 + V14)]
H4_E (Y2 = ¥a) 3 —ve) + (Yo = ¥10) (V15 — ¥16) + V17 (Ya — V18) + V1o(Y13 — V1),
wit
Yo =Myg +Mpp, V1 = M3z +Myg, V2 = M3zMyq, Y3 = MyiMyp, V4 = M3zaMy3 >0, Y5 =
MagMyp <0, ¥ = Mypmyy <0, y7 =myamyy <0, yg = my1Myy,
Yo = M3aMyz >0, Y19 = MyoM3z <0, Y11 = Myg+Myy, V12 = MypyMyy <0,
Y13 = M31Myp > 0, Y14 = MyyM3z <0, Y15 = My1Myy <0, Y16 = Myamyy <0,
Y17 = MyaMyy > 0, Y18 = M31My3 > 0, Y19 = MyyMy, > 0.

Now by using Routh Hurwitz criterion all the eigenvalues, which represent the roots of eq. (24),
have negative real parts if and only if H; > 0, H; > 0, H, > 0 and
A= (H,H, — Hy)H; — H? H, > 0. Now,H; > 0,i = 1,3 and 4 , provided that;

_ =2

a,asw + ag [as +(1- m)i]

2

mini{ Wy, W,, - >5> W, (25)
a, [as +(1- m)i]

ang [as + (- m)?] + a1; [a3 +(1- m)g]

a3 > - = , (26)
[a3 + (1 - m)s] [as +(1- m)i]
Wy >ap|— 25y ®L | @7)
_a3+(1—m)s a5+ (1 -m)i )
agi a, (agv_v —s [a3 +(1- m)g]) 8
as + (1 —m)i [a3 +(1- m)zr ’

where : W, = W

o [[1 — 25— 1+ al)?] [as + (1 —m)s] —a, a3v=v]

W, =

1]

a;a; [a3 + (1 - m)?] [a5 + (1 - m)?]

W (1 -1+ al)?) [a3 + (- m)§]2 — a2a3v=v
’ 2 [a3 +(1- m)g]2 ’

as1S a,l

W, = (ag + azp) [a13 — ( = =)|,
az+(1—-m)s a4+ (1—m)i
A straightforward computation shows that:
A =K, —-K, where:
Ki = Wov1 = Vs —v2) Vo T YD Vo 2 = va) + vi(¥s — ¥e) — Maa(¥s —
Yo + ¥10) + ¥e¥11 — Mia(Viz — V13 + V1) + Yora(v2 — va)* —

Mya (V2 = ¥a) V12 — V13 + Vi) [V2(Viz — Vi3 +v1e) — V1l +

YoV1(ys — Ve)z Mya(Yo — Y1) (V3 — ¥6) (V12 — Y13t V14),

Ky = m3,(yg — Vo + v10)® + mis(yi2 — Va3 + v1a)* + vévir + (Y12 — vz +
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Y14) [2myamas(Ys — Vo + V10) — 2m14V6V11]2 — 2myYe¥11(Ys — Vo +
Y10) + 2Y0¥V1 (V2 = ¥a) (V3 —¥e) + (Yo — ¥1)“[(Yo — Y10)+ (V15 +V16) +

Y17(Y1a — ¥18) + Y10(r1z — v14)]-
Hence, A will be positive under conditions (25 — 28). Therefore, all the eigenvalues of j, have

negative real parts under the given conditions and hence E, is locally asymptotically stable. However,
it is unstable otherwise.
4. Local bifurcation analysis

In this section, the effects of varying the parameter values on the dynamical behavior of
system (2 ) around each equilibrium point are studied. We recall that the existence of non-hyperbolic
equilibrium point of system (2 ) is the necessary but not sufficient condition for bifurcation to occur.
Therefore, in the following theorems, an application to the Sotomayor’s theorem for local bifurcation
is appropriate.

Now, according to Jacobian matrix of system (2) which is given in
equation (4.1)in a previous work [12], it is easy to verify that, for any nonzero vector H =

(Hy, Hy, Hy, H,)", we have:

D?F, (X ,w)(H ,H) = [ t; ]m, (29)
where:
_ a,asH; (1 -m)wH, . . .o
fin =2 [[a3 + (1 —m)s]? (a3 +(1-m)s Hy ) —Hf -1+ al)Hle]'
| asasH, (1-mwH, . o
2 = T A — i <a5 Tad-mi H‘*) * “1H1H2]'
asa,;H; ) (1 -m)wH,
B [a3+(1—m)s]2< 4_a3+(1—m)s)
fs1 =2 asagH (1 -—m)wH |’
5Aglly . 2
[a5+(17m)i]2( *ag +(1—m)i> |
[ asza; Hy i (1 -m)wH, 1
f =2 |[a3+(1—m)5]2< 4_a3+(1—m)s>+|
asa;,H, . (1-m)wH, '
l [a5+(1—m)1]2< 4_a5 +(1—m)l> J
and D3F”(X,y)(H,H,I-'I) = [fl-j ]4X1 , (30)
where:
_ 6ayaz(1-m)H? [ . (1 -m)wH,
17 as + (1—m)5]3< 4_a3 +(1—m)s>’
_ 6azas(1—m)Hj [ . (1-m)wH,
f21 = [as + (1 —m)i]3 < 4 as + (1 - m)i)'
[ aza,(1-m)H? [ (1 -m)wH, . T
6 [a3+(1—m)5]3<a3+(1—m)s_ 4>+
31 asag(1—m)HZ [ (1 — m)wH, i
| [as + (1 —m)i]3 <a5 + (1 —m)i - 4) |
[asa,,(1—m)H? [ (1 —m)wH, i l
P [a3+(1—m)s]3<a3+(1—m)s_ 4>+
b asa;, H? (1 -m)wH, i '
| [as + (1 —m)i]3 <a5 + (1 —m)i - 4) |

where X = (s,i,z,w)T and u is any bifurcation parameter.
In the following theorems, the local bifurcation conditions near equilibrium points are established.
4.1 Local bifurcation analysis near E4
Theorem (2): If the parameter a4 passes through the value
g = a, thensystem (2) atthe axial equilibrium point E; =(1,0,0,0) possesses :

2092



Kafi and Majeed Iragi Journal of Science, 2020, Vol. 61, No. 8, pp: 2087-2105

« No saddle-node bifurcation.
* Transcritical bifurcation.
« No pitchfork bifurcation.
Proof: According to the Jacobian matrix J(E;) given by eq.(4.3) [12], the system (2) at the
equilibrium point E; = (1,0,0,0) has a zero eigenvalue (say A,; = 0) at ag = @, and the Jacobian
matrix J; with ag = dgbecomes:
J1=]1(ag = dg) = [f'ij]4x4 ,
where, 7y = 1;; foralli,j=1,234except 7, = a; — dg = 0.
i i i i unT
Now, let A1 = (Hl[l] Nis:is ,HE]) be the eigenvector corresponding to the eigenvalue A;; =
0. Thus (Jy — Ay;I) ™ = 0, which gives:
H = (alHE],HZ[”,HE],az HE]) where M and A1 are any nonzero real numbers,

where:

oo=—-(1+ay), o,= (aq + a10)[C;3; +(1 - m)]

T
Let gt = ((bgl] Lot gl ,(2)5,1]) be the eigenvector associated with the eigenvalue A;; = 0 of the
matrix [ j,]". Then we have (]"IT —~ Alil) ¢!l = 0. By solving this equation @],

T
we obtain @l = (0, oM, o 0lH ,(2)5,1]) where ¢! and @Y are any nonzero real numbers,
where:

Qg
O-3= .
a9+a10
Now,
of of, ofy Ofs 6f4>T .
— = X = (2> 1= I 7%} _ _ T
0ae fa, X, as) <6a6’6a6'6a6’6a6 (0,-£0,0)

50, 2L (B, ,ds) = (0,0,0,0)" and hence (9)" <L (£, d) = 0.
aag 6a6

Therefore, according to Sotomayor’s theorem, the saddle-node bifurcation cannot occur. While the
first condition of transcritical bifurcation is satisfied. Now, since

5[]
o H
0 0 0 0 /1_2 \ 0
e [0 -1 o o) AM g
Dlas(Ers@H =\ o o of| pu || o )
0 0 0 0 3 0

@Y [Df, (B )M = — A0l o,
Now, by substituting H*! in (29), we get:

—20,H}" [0, HY + A} (01 + 1+ ay)]

oacatls’

. ] .
21" +oya, A"

as

sz( Ey, de) H[l]'H[l] = 1] . .
( ) 202H£1]H£1] [a70401H£1] + Z—:]

202H£1]H:£1] [a1104H:£1] + C;_152] /
as

~ laa+(1-m)
Hence, it is obtained that:

(@[1])TD2f( Ey,dg)(AW, A1) =

where: Oy

+[1]
. . a,o,H . . ag +a
2H2[1] <®£1] [01‘11“2[1] -3 ]+ 02”3[,1]@51] [0401“51](617 +ag1) + —( & 12)]) #0

as as
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Thus, according to Sotomayor’s theorem, system (2 ) has transcrirtical bifurcation but does not
experience a pitchfork bifurcation at E; with the parameter ag = dg Where dg = a;.
4.2 Local bifurcation analysis near E,
Theorem (3): Suppose that the following conditions are satisfied:
§#0, (31)
§ = —RsRq[azfy + Ry + (1 + a)R;]-RaRy[aufy — ar Ry | + Re[ azRy By + agk; B] +
a1 ®q B +aR; B,

R, = Upy X _ Ugqlpy — Uggllp X, = Uzq R, = —U11 (Ug3lzg — Ugqlss)
1— — 2 ) 33— T T 4 — . . . . . ’
'ule Upqlyp Uq3 Upa (Up1llyp — Upallys)
“U21%2 u43 as as
Ns——u , Rg = =, fo =3,
11 (a3+(1 m)s ) (a5+(1—m)i)

Then system (2) at the equilibrium point E, = ( S, ; 0,0 ) with the parameter

az+(1—-m)s g+ (1—m)i

pOSsesses:

« No saddle-node bifurcation.

* Transcritical bifurcation.

« No pitchfork bifurcation.

Proof: According to the Jacobian matrix J, given by eq.(4.4) [12], system (2) at the equilibrium

point E, = (E, ; 0,0) has zero eigenvalue (sayA1,, =0) at ay3 =d;3, and the Jacobian
matrix J, with a,3 = d,3 becomes:
J2=J2(ais = d13) = ],

a3 =

where, 1;; = w;; foralli,j=1,2,3, 4 except iy, = — 22 i

_ i, =0,
as+(1-m)s | ager(1-m)i

. ol t2] f2l ol \T
Let A2 = (Hl[z],ng],Ha[,z],Hf]) be the eigenvector corresponding to the eigenvalue A,, = 0.
Thus (J; — Ao 1) H'?) = 0, which gives:
AP = %, B2 AP = %, A7 and A1 = %;H1%, where H? is any nonzero  real number,
with X; and X, which are mentioned in the state of the theorem.
T
Let gltl = ((Z)[Z],(Z)[Z], g2 52]) be the eigenvector associated with the eigenvalue A, = 0 of the
matrix j, .
Then we have ( j, —A,l) 821 = 0. By solving this equation for @21, we obtain @2 =
T
(NS(D[Z] %0 R0l (D[f]) , where ¢! are any nonzero real numbers, with X,, X5 and X which

are mentioned in the state of the theorem.
Now, consider that:

af _ _(90h 0fs O0fz Ofy )T _ T
da a1 (X' a3 ) - fa13 (X, a3 ) - (aalg 'aa13 !aa13 !aa13 - (0! 0' 01 W)
of
So, — (Ez,a13) = (0,0,0, 0)7,
da 13

and hence ((2)[2]) fury (g, dy3) = 0.
Therefore, according to Sotomayor’s theorem, the saddle-node bifurcation cannot occur. While the
first condition of transcritical bifurcation is satisfied. Now, since

[2]
0 /xH \ 0
o \| a2 0
0

0
RyHY 2]
[2] —Hy
H4—

Dfa13 ( Ea, d13)H[2] =

S OO O
S OO O
o OoOC O

(@) [Dfo,, (E; 1) H?] = —02 A2 % 0,
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Moreover, by substituting H[2! in (29), we get:
— . 2 -
=28 (A7) [a2By + 80+ (1 + ap)Ry]
. 2
—2R; (Hz[;z]) [asBz — a;Rq]
. 2
2 (HLEZ]) [a;R:B1 + agR; f]

N2
2 (Hz[;z]) [a;1R1B1 + a1aRzp |

sz(Ez' d13)(H[2]: H[Z]) =

Hence, it is obtained that:
(812)) D2f(E,, d15)(H12), H12)) = 25 AP g12]
where & are mentioned in the state of the theorem.
So, by condition (31), we obtain that:
(812))' D2 (E,, diy3) (H2), H121) # 0,
Thus, according to Sotomayor’s theorem, System (2) has a transcritical bifurcation at the
aq1S aqpl

az+(1-m)s  qg+(1-m)i

equilibrium point E, = (E, ; 0,0) with the parameter d;; =

4.3 Local bifurcation analysis near E3(S,0,Z, W)
Theorem (4): Suppose that the following conditions are satisfied:

25 + a2a5W <1 (32)
s )
[as + (1 —m)3]?
1
s< E , ( 33)
£+0, (34)
where:
- TR Tl147131 . Tgply . —(flgp +Tizply +1igplp)
[1 .. ) [2 — . o o o ) 13 - . ) 14_ - . )
N33 Ny1N34 — N31MNyy N3q Nao
UMW pla — (arky + hayy) )
H1 (a3 + (1 —m)3]° Hila; 712 + 11014

Then system (2 ) at the equilibrium point E; = (§ ,0,Z, W) with the parameter value: d, =
(1-28)[az+(1-m)3)?
azw

bifurcation can occur at Es.

Proof: By using the characteristic equation given by eq. (4.5) [12], system (2) at the

equilibrium point E5 has zero eigenvalue (say A3 =0 ) at a, = d, and the Jacobian matrix Js
with parameter a, = d, becomes:

J3 =J5(az = d3) = [ ]4><4’ where,

fi;j = nyjforall i,j =1,2,3,4 except #i;; =1-35

has a saddle — node bifurcation, but neither a transcritical nor a pitchfork

d, azw
[as+(1-m)3]?

Note that, d, > 0, which is provided by condition (33).

: 1 13) (3] 3] T
Let HI3I = (H1[3],H£3],H_,E3],Hf]) be the eigenvector corresponding to the eigenvalue As5 =0 .
Thus (J3 — A3s1) H'31 = 0, which gives:

a s

=0 and Tl14=m.

g3l = (H1[3] 0,5 B ,O)T,where HE! is any nonzero number with J;, which is mentioned in the
state of the theorem.

Let i3] = ((25[3],(2)[3],(2)[3], 53])T be the eigenvector associated with the eigenvalue A, = 0 of the
matrix J5. Then we have (]"3T — /1351) g3l = 0.

By solving this equation for @!31, we obtain:

o3l = ((2)£3],f4(2)£3],f3 ol i, f])T where @'*) is any nonzero number with I,, f; and 7,, which is
mentioned in the state of the theorem.
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o O 0% Oy _(_
da, da, da, da,

. F+3[as+(1— )]~ T
o oo, = (-t

and hence (Q)[3])Tfa2(E3, i,) = —ob

EY _faz(X' a;) = (

1 azW+5[az+(1-m)s] .

ara-maz > 7 0

asw + sla; + (1 —m)s] r
o+ a—mse 00 0) |

Therefore, according to Sotomayor’s theorem, neither a transcritical nor a pitchfork bifurcation can

occur at E5, while the first condition of a saddle-node bifurcation is satisfied.

Moreover, by substituting H3! in (29), we get:

0
| —2 (HH )2azuy
|l—2 G

2a2y1(H1[3])2 l

sz(E3' aZ)(H[3]'H[3]) [t ]]4,x1 -

[
a11#1J|
Hence, it is obtained that:

i ) 131\ 2 -
(@11 D2 (Ey, ) (HI, HPT) = 208 (AP) &
So, according to the condition (34) we obtain that:
(883D D2f(E,, dy) (3], AB31) = 0.

Thus, by using Sotomayor’s theorem, system (2) has a saddle-node bifurcation at E; = (§,0,Z,Ww)

(1-28)[az+(1— m)s]2
azw
4.4 Local bifurcation analysis near E,
Theorem (5): Suppose that the following conditions are satisfied:

(1 -(1- al)?) [a3 +(1- m)z]2 - a2a3v=v

at the parameter: da, =

s> — : 35)
2 [a3 +(1- m)s]
=12
_ Qg [a3 +(1- m)s]
w > ) (36)
a,as
b, #1, (37a)
Py (s +Dyi) %1 (37b)
£+0, (38a)
£#0, (38b)
where:
My m —m —(mg, + Mg D, + 15, D
b, =— 222 , Dp=—; u b,, b;= (2 222 et )
My1Maq —MygMyz My Mms3
_ M12M31M33
D4 T e . . . . ’
W;Z(Tﬁ43m31 Tg3Myq) — Myq (usigy — 1y, Tigs)
D. = (14313, — My 1M33) D, _ —My3D,
: Titss ©CT gy )
. asb 1-m)w .. a 1-m)w
Y, = 22 = ( ) =—D;|, Yo = : =2 ( ) =— Dby,
[az + (1 —m)s ]* |az + (1 —m)s [a5+(1—m)i] las + (1 —m)i
as(1 —m)(D,)? 5 (1-m)w ] ¢ as(1—m) (1-mw
- = - =|,14 = =_3 1 =)
[az + (1 —m)s |3 az + (1 —m)s [a5+(1—m)i] as + (1 —m)i]

£=D:D,[a,Y; + D, — (1 + ay)] + a ¥, + a;D; — Dgla, ¥y + ag¥,]
£=a;DsY3 + asYy — [P(a;Ys + agYy) + Dy(as1Ys + as2Ys)]
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Then system ( 2 ) at the equilibrium point E, = G i,z ,\7/) with the parameter value:
3 ayasw — aglas + (1 —m)i ]2

a; = — =

s[as + (1 —m)i ]2

has a saddle — node bifurcation, a transcritical and a pitchfork bifurcation at E,.

Proof: The characteristic equation given by eq.(4.6 ) [12] of system (2) having zero eigenvalue

(say A4; = 0 ) if and only if H, =0, and then E, becomes a non-hyperbolic equilibrium point.

Clearly, the Jacobian matrix of system (2)at the equilibrium point E, with parameter a; = d;

becomes:

Ja=Ja(ag = d9) = [ﬁlij ]4><4’
where, my; = my; foralli,j=1,2,3,4 except m;; which is given by:

)

a, az;w

—, = —(1+ dy)s

iy, =1-25—(1+ d)i —
[a3 + (@ —m)g]

and Tn,; = dlf. Note that, d; > 0 provided that condition (36).
. 4l tal etal ra\T

Let A4 = (H1[4],H£4] ,H?E4] ,HE”) be the eigenvector corresponding to the eigenvalue A,; =0 .
Thus (J, — A4:0) H™ = 0, which gives:

. ] . T .

H = (BZHZ[‘”,H2[4],B3H2[4],£)1H£4]) ,where HI* is any nonzero number with D,,D, and b5
which is mentioned in the text of the theorem.
Let gl = (gl*], pl4] gl4] ,(2)[4])T be the eigenvector associated with the eigenvalue 1,; = 0 of the
matrix J,. Then we have (];T — L“-I) g4l = 0.
By solving this equation for @4, we obtain:

T

g4l = (BS(Z)E”,(Z)£4],B6®[24],D4®[24]) where @5 is any nonzero number with B, D5 and Ds which

is mentioned in the state of the theorem.
Now,

of <6f1 f, 0fs 0fa

T
—_— — - le _Z0 7T — _ . . T
9q, ~ JuXo0) aal'aal'aal'aal) (=si,si.,0,0)%

SO, fa,(Ey, d1) = (—si 50,0, O) and hence it is obtained that:
T . ==

(014 £, (B, éy) = siob(1 - by).

So, according to the condition (37a) we obtain that:

T
(@[4]) fa,(E4, dy) # 0.
Therefore, according to Sotomayor’s theorem 4, neither a transcritical nor a pitchfork bifurcation 4

can occur at E, , while the first condition of a saddle-node 4 bifurcation is satisfied. Moreover, by
substituting H™! in (29), we get:
[2(H£4])252[a2Y1 +b, -1+ a1)]]
2 (H£4])2[a4Y2 +a;D,]
—2 (H1[4])2[a7Y1 + ag¥s]

D2f(E, , dy)(H™ ,Hm):i i
l -2 (H1[4])2[a11Y1 + a;,Y,] J

Hence, itis obtained that:

(¢[4])T D2f(E, , d;)(H™ A1) = ng] (HZ[‘”)Z 0. £
So, according to the condition (38a) we obtain that:
(84))" D2F(E,, a)(H™, B4 % 0
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Thus, by using Sotomayor’s theorem, system (2) has a saddle-node bifurcationat E, = (s:* ,Z,; , VT/)

at d,.
Now, if the condition (37a) is not satisfied, we obtain that:

T .
(®[4]) fal(E4' d;) = 0.
Therefore, according to Sotomayor ’s theorem, the saddle - node bifurcation cannot occur .
While the first condition of transcritical bifurcation is satisfied . Now, since

_ 4] o _
(50 o\ [P (e e

Df, (E,,apH* =] i i i} :
a;\E4, U \0 / H[4] 02

©COoOC u,
oo ©©C

0

(@) [Dfa, (s, a) ] = — A} [pg (s + le) il
So, according to the condition (37b) we obtain that:
(0 DF(E, ) (B4, HH) = o,
Now, by substituting H!* in (29), we get:
[2(H£4])292[a2\"(1 +D, — (1 +ay)]]
2 (H£4])2[G4Y2 +a;b,]
| —2 (H1[4])2[a7Y1 + ag¥s] |
| -2 (H1[4])2[a11Y1 +a,Y,] |
Hence, itis obtained that:
4N\ 2 < (4] pylal [4] ( y[41)
(@) D2f(E, , a)(H™, A1) = 2057 (A1) ¢
So, according to the condition (38a ) we obtain that:
(0 D2f(E, ,d)(HM , A1) = 0.
Now, if the condition (38a) is not satisfied, by 4substituting H*! in (30), we obtain that:
[ 6(H[4])3a2Y3 ]
| 6 (A3h3a,¥, |
| 6 (H*N3[a,V; + agV,] |
; -6 (H[4]) [a11Y3 + a;,Y,] J
(01) D3f(E,, a)(A™, A, HWT) = 6914 (H})3E.
So, according to the  condition (38b ) we obtain that:
(04) D3F(E, , day)(HH, 14, A4 % o,
Thus, by using Sotomayor’s theorem, system (2) has a transcritical bifurcation and pitch fork
bifurcation at E, = G 0,2, v=v) by the conditions (37a) and (38a), respectively, which are not

satisfied at d;.
5. Hopf bifurcation analysis
In this section, the possibility of the occurrence of a Hopf bifurcation near the positive
equilibrium point of the system (2) is investigated, as shown in the following theorem.
Theorem 5: Suppose that the local conditions (21 — 23) with the following conditions are
satisfied:

D%*f(E,, d)(H™ , A=

D3f(E,, d)(H™, A, A14)=

A1 > AZ, (39)
A3 > A4, (40)
As > A, (41)
A, <A, (42)
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4HH — H}
————— < H,, (43)
. 2+ 2

Yo <min{ 2T (s —y) (44)

where:
Ay =ro +¥3 = VellVo® —¥7 = 2¥o] — Yomaa(Ys — Yo + ¥10) + 3E[vo® + vo(ys —ve)l +
3Emgs — ¥omya(Y12 — V13 + ¥14) + YoVeV11 + Y17Y18 T V1o — V16
— Y15 — Y12 V17 — Y1o(Y13 — V14) — V02V4 — Yo,

A5 = [2mg3(ys — v6)2Eyo + 2E(ys — ¥6) + M2a(Ys — Yo + ¥10) — YoVa — Ye¥11l + YoVa?
+

Yo(rs = ¥6)® + 2v0[(Yo = ¥10) + Y10(¥13 — ¥14)] + 2mas[—¥omas(¥s — ¥o +¥10) +
Vo Ya¥eY11-(r1s + ¥v16)] +¥o? (B3E?mas + mas®) — [yo?va + (v — v10)] —
2(¥Y1a — Y18)M33 V17 — 2E ¥19(¥13 — ¥14),

Ry = ovs + v1¥s + Yoy ) [(rs — Ye) + Yomas]tmys(Viz — Yas + v1a) Vo” — ¥7)
+

2Y0 ¥17(Y14 — 1) + Mas[(y1z = vas + v1a)®mauaya — mia(yi2 — v13 + v1a)] —
M4 (V12 = Y13 + V1a)[Va + 2Eyo — 2m33y03_)_/§] + (s — Vg)[mlzx__(z)/lz PRAE +v14) +
2y0¥al — 2m33(Yo — Y10) + Yo(¥3 — ¥6) (BE“m33 + m33°) + 3E“m33* + 2E[—
2Yo(Ya +¥3 —¥e) = Yomaa(¥s — Yo +¥10) + Yo¥e¥11l + (Y15 + ¥16)(2¥0 —
%E) = 2Ey17(r1a —v18) — 2¥10(¥13 — v14)ms3, )
As = [(¥o + Y1)¥s + Yo¥7)l[maa(vs — Yo + ¥10) + E(rz — v6) Wo® — ¥7) — Ve¥11
+
Yomasz + Mya(Y1z — V13 + V1) + YoVal + Yo(¥3 — ¥Ve)[Mm33® + m33 (2 +E - 2V4) -
1=mys(y12 = V13 + Y12 — D] + 10 (V13 — ¥14) (1 — E ms3 + 2yoms; — 2Em33) +
m33(2y0 — 2E — E®)(yo — ¥10) — Maamss(vo® = ¥7) (Vs — ¥o + ¥10) + (3 — ¥6)* (Yomaz +
2E__mg3y0_) + Eveyi1(2myy — vo? +v7) + E maz® + Emaz(E 2 — 2y0)[Vova + Vevir — Va2l +
Emss(E 2 — 2y0)[YoVa + VeVi1 — Va?l + maz?[(vo® — Y;)()@ —Ye) —YoMaa(Ys — Vo +
Y10) (Yo — E + 2Emyy) — (¥15 + ¥16) + Emyams; (V4 —Evo—vo®+ V7) Y12 — V13 + V14) —

Y17 (V14 — V18)(E + m332).

A;

and

ai1S aqxi

= -+ =.
az+(1-m)s gz 4 (1—m)i
Then at the parameter value a;3 = a,3, system (2) has a Hopf bifurcation near the point E,.
Proof: Consider the characteristic equation of system (2) at E, which is given by eq. (24), then by

using the Hopf bifurcation theorem, for n=4, we need to find a parameter, say (aig ), to verify that
the necessary and sufficient conditions for the Hopf bifurcation are satisfied, that is:
4i(a) >0i=134 A (a13) >0, H3 (a15) 48, (ar3) >0and 4, (a3 ) =0,
where 4;; i = 1,3,4 represents the coefficients of the characteristic eq. (24).
Straightforward computation gives that:
A; (a;3) >0;i=13,4and A, (a13) > 0 under the local conditions (25-28),

while A3 (a;) —4 A (a13) > 0, provided that the condition (43 ) holds.
On the other hand, it is observed that A,= 0 gives that:
Hs (H{H, — H3 ) — H{ Hy = 0.
By a straight forward computation, we get:
x 3 * 2 *
M1 a13 + M2a13 + M3a13 + M4 = 0, (45)
where:
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M; = ?m330[y02 +m33® +vo(¥s — ve)l,
M; = A; + Ay,
M; =A; +A,,
M, = Ag + A,
where Ai; i =1,2,3,4,56 which are mentioned in the text of the theorem.
Clearly, M; > 0, i = 2,3,4 provided that in addition to the conditions (25 — 28), the conditions
(39 — 42) holds.

Note that, by using Descartes rule of sign, eq.(45) has a unique positive root a; 3.
Now, at a3 = a,3 the characteristic equation given by eq. (24). can be written as:

2 H3 2 A1 _ .
Ac + A Ac+ HiA+ )= 0, which has four roots:
1 1

. | H3 1 2 A
/11'2 = il H_1 and 13,4 = E _H1 i Hl - 4‘?1 .

Clearly, at a;3 = a,3 there are two pure imaginary eigenvalues (A, and 4, ) and two eigenvalues

which are real and negative. Now for all values of a;3 in the neighborhood of a3, the roots are in
general of the following form:

, , 1 2 Al
11:€1+l€2 ,12281_182 ) 13’425 _Hli H1_4H_ .
1

Clearly, Re(Ay(as3)) |a13=a;3 =&, (@13) = 0,N = 1,2, which implies that the first condition of

the necessary and sufficient conditions for Hopf bifurcation are satisfied at a3 = a;,. Now,
according to the verification of the transversality condition, we must prove that:

é(a;,) ‘P (a;,) + F (a;,) CD (a;,) * 0,

. . . . *

where ©,¥,land @ are given in lemma (1) of a previous work [11]. Note that for a,3 = a;3 we

have sl(a;) =0 and ez(aig) = /Z—3, thus it gives the following simplifications:
1
W (a3) = —2 Hs (a33)

® (a:3) =2 #(Hll‘lz — 2 Hs),

(:) (a:3) = H, (a:3) - I:I_?;Hé (a13),

P (ais) = e (ais) 1 (a1s) = 5 (i) )
where:
dH,

- da13 ai3=as3

dH,

- da13 ai3=ass
dH,

— *
da13 a13=0aj3

_ dH,

- da13 ai3=as3

!
1 =1,

= —(myy + my, + ms3),

=Mqq + Myy + MMy,

= —m33(¥3 — Ve)-

Then, we get that: 0 (aig) v (aig) + F (a13) o (aig) = A, + A3 # 0, where:
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H,

H, + ms3(ys — Y6))»

Z\7=2H3<

2

° &y H3

Ag =2 i (H{H, — 2 H3) (mn +my, + myymy, + o (mqyq +my, + m33)> .
1 1

Now, according to condition (45 ), we have:
0 (a13) yp (a13) +T (a13) ()] (a13) 0.
So, we obtain that the Hopf bifurcation occurs around the equilibrium point E, at the

parameter a3 = aq3 .

6. Numerical simulation
In this section, the dynamical behavior of system (2 ) is studied numerically for a set of parameters

and different sets of initial points. The objectives of this part are:

1- Investigating the effect of varying the value of each parameter on the dynamical behavior of
system (2).

2- Confirming the obtained analytical results.

It is observed that, for the following set of hypothetical parameters that satisfies stability conditions of

the positive equilibrium point, system (2) has a globally asymptotically stable positive equilibrium
point, as shown in Figure— (1) (a — d).

a,=2,a,=0.3m=0.7,a3 =0.5, a4,-0.2,

as_0.5,a,=0.01, a; =0.1, ag=0.1,a9 =0.5,

A9 = 001, a1 = 0. 1, aqp = 0. 1, a3 = 0.1

(@)

Susceptible prey

0.3

T
sl
s2

©)

c c c c c c c c
o] 500 1000 1500 2000 2500 3000 3500 4000 4500
Time

5000

15

Immature predator

0.5

AR

o

Figure 1-The time series of the solution of system (2) starting from the three different initial

Time

1% - c c : c c c :
o] 500 1000 1500 2000 2500 3000 3500 4000 4500

5000

Infected prey

(b)

1.4

1.2

iz |

i : c : c : c : c
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

(d)

25

=
o

Mature predator
w
T

0.5

wil
w2
w3

o]
0

: 1 1 : : 1 : : :
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

points ( 0.4,0.5,0.6,0.6), (0.4,0.5,0.7,0.9) and (0.8,0.9,1.5,0.5)

for the data given by eq. (6.1 ). (a) the trajectories of s as a function of time, (b) the trajectories of i
as a function of time, (c) trajectories of z as a function of time, (d) the trajectories of w as a function

of time.

2101



Kafi and Majeed Iragi Journal of Science, 2020, Vol. 61, No. 8, pp: 2087-2105

Clearly, Figure — (1) shows that system (2) is globally asymptotically stable as the solution
of  system (2) approaches  asymptotically to  the positive  equilibrium point
E,=(0.233,0.050,0.116,1.173), starting from three different initial points, which confirms our
obtained analytical results.

Now, in order to discuss the effects of the parameters’ values of system (2) on the dynamical
behavior of the system, the system is solved numerically for the data given in eq. (6.1 ) with varying
one parameter at each time, The obtained results are given in Table-1, while more details are
provided elsewhere [4].

Table 1-NUMERICAL BEHAVIORS OF SYSTEM (2) FOR THE DATA GIVEN IN (6.1)WITH
VARYING ONE PARAMETER AT EACH TIME

Range of Numerical behavior of system (2) Bifu rqatlo
parameter n point
01<a; <19 Approaches to the infected prey free equilibrium point E5 a, =19
19<a, <22 Approaches to the positive equilibrium point E,
01<a,<0.29 Approaches to the infected prey free equilibrium point E5 a, = 0.29
029<a,<1 Approaches to the positive equilibrium point E,
0.25<a; <04 Approaches to the infected prey free equilibrium point E5 a; = 0.4
04<az<1 Approaches to the positive equilibrium point E,
0.1<a,<0.22 Approaches to the positive equilibrium point E, a, = 0.22
022<a,<1 Approaches to the infected prey free equilibrium point E;
0.1 <as5<045 Approaches to the infected prey free equilibrium  point E3 as = 0.45
045<a5<0.6 Approaches to the positive equilibrium point E,
0<ag<0.3 Approaches to the positive equilibrium point E, a;, =0.11
03<ags<1 Approaches to the infected prey free equilibrium point E5
0.0001 < a,
<0.11 Approaches to the positive equilibrium point E, a, =0.11
0.11 < a, Approaches to the infected prey free equilibrium point E;
< 0.15
0.01 < aq;
< 0.97 Approaches to the infected prey free equilibrium point E3 a;3 = 0.97
0.97 < aq; Approaches to the positive equilibrium point E,
< 0.13

The effects of varying the predation rate on susceptible prey a, in the range of 0.1 < a, < 0.29
while keeping the other parameters as the data given in eq.(6.1), causes extinction in the infected prey
and the system will approach to the infected prey free equilibrium point E; , as shown in Figure-(2) a,
for a typical value of a, = 0.2. In the range of 0.29 <a, < 1, it is observed that the solution of
system (2) approaches asymptotically to the positive equilibrium point E,, as shown in Figure- (2) b
for a typical value of a, = 0.35.
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a b
2.5 T T T T T T T T T 1.4 T
Susceptiple prey
Infected prey
1.2 Immature predator
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Figure 2-(a): Time series of the solution of system (2 ) which approaches asymptotically to the
infected prey free equilibrium point E; = (0.298,0,0.205,2.070) in the positive quadrant of szw
— space, for the data given in eq.(6.1) with a, = 0.2. (b): Time series of the solution of system (2)
approaches asymptotically to the positive equilibrium point E, = (0130, 0.144,0.067,0.677) in the
int. Of R% , For the data given in eq. (6.1) with a, = 0.35.

By varying of the parameter a, ,which represents the conversion rate from the susceptible prey to
the immature predator in the rang 0.0001 < a; < 0.11, and keeping the rest of parameters values as
in the data given in eq. ( 6.1 ), the solution of system (2) still approaches asymptotically to the
positive equilibrium point E,, as shown in Figure-(3) (a), for a typical value of a, = 0.08. However,
by increasing this parameter further to 0.11 < a, < 0.15, it is observed that system (2) still
approaches the infected prey free equilibrium point E5, as shown in Figure (3) (b), for a typical value
of a; =0.12.

b

1.4

— Susceptiple prey —
Infected prey
Immature predator
mature predator

| |
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Immature predator
mature predator

Populations
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0 c c c : c : : : : ot r c : : c c ; : r
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Time

Figure 3 — (a) Time series of the solution of system (2) for the data given by (6.1) with a,; =
0.08, which approaches to E, = (0.150,0.139,0.074,0.785) . (b) Time series of the solution of
system (2) for the data given by eq.(6.1) with a, =0.12, which approaches to
E; = (0.267,0,0.153,1.460).

7. Conclusions and discussion

In this paper, we proposed and analyzed an eco-epidemiological mathematical model consisting of
a prey-predator model involving an Sl infectious disease in a prey-stage structured predator species
with a prey refuge . Further, in this model, we used Holling type Il of functional responses for the
predation of susceptible and infected preys which are outside refuge, as well as a linear incidence rate
for describing the transition of disease. Our aim is to study the role of infectious diseases on the
dynamics. Also, system (2) was solved numerically for different sets of initial points and different sets
of parameters, starting with the hypothetical set of data given by eq. System (6.1). The following
observations were obtained.
e System (2) has only one type of attractor in Int. R approaches to a globally stable point.
e For the set of hypothetical parameters’ values given in eq. (6.1), system (2) approaches
asymptotically to a globally stable positive point E, = (0.234,0.049,0.117,1.178).
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e As the infection rate of prey a, increases to 1.9, with keeping the rest of parameters as in eg. (6.1),
the solution of system (2) approaches to the infected free equilibrium point E;. However if 1.9 <
a, < 2.2, then the infected prey will grow again and then the trajectory is transferred from the
infected prey free equilibrium point to the positive equilibrium point E,. Thus, the parameter a; = 1.9
is a bifurcation point.

e As the attack rate of the mature predator on the susceptible prey a, increases to 0.29, with keeping
the rest of parameters as in eq. (6.1), the solution of system (2) approaches the infected free
equilibrium point E5. However, if 0.29 < a, < 1, then the infected prey will grow again and then the
trajectory is transferred from the infected prey free equilibrium point to the positive equilibrium point
E,. Thus, the parameter a, = 0.29 is a bifurcation point.

e As the half saturation rate of the predator upon the susceptible prey increases to 0.4, with keeping
the rest of parameters as in eq.(6.1), the solution of system (2) approaches to the disease free
equilibrium point E; = (§,0,Z,w ).In the rang 0.4 < a; < 1, the trajectory is transferred from the
disease free equilibrium point E; to the positive equilibrium point E, . Thus, a; =0.4 is a bifurcation
point.

o As the attack rate of the mature predator on the Infected prey a, increases to 0.22, with keeping
the rest of parameters as in eq. (6.1), the solution of system (2) approaches to the positive equilibrium
point E, . In the rang 0.22 < a4 < 1, the trajectory is transferred from the positive equilibrium point
E, to the disease free equilibrium point E5 . Thus, a, =0.22 is a bifurcation point .

e As the half saturation rate of the predator upon the Infected prey increases to 0.45, with keeping
the rest of parameters as in eq.(6.1), the solution of system (2) approaches to the disease free
equilibrium point E; = (§,0,Z,w ).In the rang 0.45 < a5 < 0.6 the trajectory is transferred from
the disease free equilibrium point E; to the positive equilibrium point E,. Thus,as =0.45 is a
bifurcation point.

e Moreover, increasing the parameter a,, which represents the death rate of the infected prey due to
the disease, to 0.3, and keeping the rest of parameter values as data given in eq. (6.1), the solution of
system (2) approaches to the positive equilibrium point E, . But, for 0.3 < ag < 1, the trajectory is
transferred from the positive equilibrium point E, to the infected prey free equilibrium point E; and,
thus, the parameter a, =0.3 is bifurcation point.

¢ Now, increasing the conversion rate of food from susceptible prey to immature predator a, to
0.11, with keeping the rest of parameters as in eq. (6.1), the solution of system (2) approaches to the
positive equilibrium point E,. For 0.11 < a, < 0.15, the trajectory is transferred from the infected
prey free equilibrium point E; and, thus, the parameter a, =0.11 is a bifurcation point.

e The parameters ag, aq, a;9, a11, a1 and m, which represent the rate of food from infected prey to
immature predator , the growth rate of immature predator onto mature predator, the natural death rate
of immature predator, the conversion rate of food from susceptible prey onto mature predator, the
conversion rate of food from infected prey onto mature predator,

and the number of prey inside the refuge parameter respectively, are not bifurcation points of
system (2), with keeping the rest of parameters as in eq. (6.1).

e As the natural death rate of mature predators a5 increases to 0.097, with keeping the rest of
parameters as in eg. (6.1), the solution of system (2) approaches to the infected prey free equilibrium
point Es. In the range 0.097 < a,3 < 0.15, the trajectory is transferred from the infected prey free
equilibrium point E; to the positive equilibrium point E, and, thus, a;3 = 0.097 is a bifurcation
point.
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