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Abstract

In modules there is a relation between supplemented and m-projective
semimodules. This relation was introduced, explained and investigated by many
authors. This research will firstly introduce a concept of “supplement
subsemimodule™ analogues to the case in modules: a subsemimodule Y of a
semimodule W is said to be supplement of a subsemimodule X if it is minimal with
the property X+Y=W. A subsemimodule Y is called a supplement subsemimodule if
it is a supplement of some subsemimodule of W. Then, the concept of supplemented
semimodule will be defined as follows: an S-semimodule W is said to be
supplemented if every subsemimodule of W is a supplement. We also review other
types of supplemented semimodules. Previously, the concept of =m-projective
semimodule was introduced. The main goal of the present study is to explain the
relation between the two concepts, supplemented semimodule and =-projective
semimodules, and prove these relations by many results.

Keywords: Semimodule, supplemented semimodule, m-projective semimodule, lies
above a direct summand, coclosed semimodule.
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1. Introduction.
By this paper, S will denotes a commutative semiring with identity 1£0. W will be a semimodule
over S. Previously, the concept of projective modules was introduced [1] and further studied [2].
Also the two concepts, supplemented and m-projective modules, were introduced [1] and studied [3].
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Then, the concept of n-projective semimodule was introduced and investigated for semimodules [4].
The concept of supplemented semimodule will be discussed in this paper, the relation between a
supplemented and n-projective semimodule will be explained, and investigated equipped to that in
modules. The organization of the research will be as follows:
- Section 2 contains the primitives related to this work.
- Section 3 will give the means of the concept of supplement subsemimodule which is: Let X and
Y be subsemimodules of a semimodule W. Y is said to be supplement of X if it is minimal with the
property X+Y=W. A subsemimodule Y is called a supplement subseminodule if it is a supplement of
some subsemimodule of W. An S-semimodule W is said to be supplemented if every subsemimodule
of W is a supplement. Other concepts analogues to that in the modules are also introduced as:
- In section 4, the relation between supplemented and n-projective semimodule will be studied and an
access will be provided to some results related to that relation. Also, in this section a concept of
coclosed semimodule will be introduced as follows: Let K be a subsemimodule of a semimodule W,
then we say that K is coclosed in W if, for all subsemimodules H of W, K/H«< W /H, implies K=H.
2. Preliminaries
This section will consist of definitions and other primitives related to the research.
Definition 2.1.[5] Let S be a semiring. A left S-semimodule W is a commutative monoid (W, +, 0) for
which we have a function SXW—W defined by (s, w)— s w (s €S and w ¢W) such that for all s, s’ €S
and w, w' €W, then the following conditions are satisfied:
a) s(w+w")=s w+ sw’
b) (s+s)w=sw+s'w
C) s' (sw)=(s's)w
d) Ow=0

In this work, an S-semimodule will be a left unitary S-semimodule (Iw=w for all w in W).
Definition 2.2.[5] Let D be a nonempty subset of a left S-semimodule W, then D is said to be a
subsemimodule of W if the following conditions hold:
1) (d;+d,) € D, for all d; and d, eD.
2) sd €D for all se S and for all de D.
Definition 2.3.[6, p.154] Let W be a semimodule and D be a subsemimodule of W, then D is said to
be subtractive if for all de D and (d+ ¢) e D implies that ce D.
Notes:
1- {0} and W are subtractive subsemimodules of a semimodule W.
2- If every subsemimodule of any semimodule is subtractive, then the semimodule is called
subtractive semimodule.
Definition 2.4. [6, p.149] A semimodule W is said to be semisubtractive, if for any w, w'e W there is
always some ke W satisfying w+ k =w' or w'+ k=w.
Definition 2.5. [5] An element w of a left S-semimodule W is cancellable if w+ x=w+ h implies
that x=h.
Definition 2.6. [5] An S-semimodule W is cancellative if every element of W is cancellable.
Definition 2.7. [7] An S-semimodule W is said to be a direct sum of subsemimodules W1,W,, ...,W, of
W, if each we W can be written uniquely as w=w;+w.,+...+w, where w; EW;, 1< i < k. It is denoted by
W=W,;® W,P...®&W,. Each W, is called a direct summand of W.
Remark 2.8.[8] Let W be a subtractive cancellative semisubtractive S-semimodule, then W = W,
@ W, if and only if W =W; + W, and W; n W, = {0}.
Definition 2.9.[7] If S is a semiring and W, N are left S-semimodules, then a map g:W— N is called a
homomorphism of S-semimodules, if :
(i) a(w + w’) = q(w) + q(w")
(i) g(s w) = sq(w), for all w, w'e W and se S.

The set of S-homomorphisms of W into N is denoted by Hom (W, N). A homomorphism q is called
an epimorphism if its onto, it is called a monomorphism if q is one-one, and it is isomorphism if q is
one-one and onto.

Remarks 2.10 [9].
For a homomorphism of S-semimodules q: W— N we define

() ker (gq)={weW]| qw)=0}
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(i) q(W) ={a(w)lwe W}.
(iii) Im (q) = {ne N | n +q(w) =q(w’) for some w, w'eW}

As previously described [9], ker(g) is a subtractive subsemimodule of W, Im(q) is a subtractive
subsemimodule of W and g (W) is a subsemimodule of W. In the module theory, g(W) = Im (q),
whereas in the semimodule theory this is not true in general. It is clear that g(W)< Im(q), where the
equality is satisfied if q(W) is subtractive subsemimodule of K.

According to the same study [9], End(W) means the set of all Sendomorphisms of W. Using standard
arguments, it can be shown that for each S-semimodule W, End(W) is a semiring.
Definition 2.11.[9] A subsemimodule K of W is called small (superfluous) if for any subsemimodule
K'of W, K+K' =W implies K' = W and denoted by (K&KW).
Definition 2.12.]9] A semimodule W is said to be hollow if every proper subsemimodule H of W is
small.
Definition 2.13.[10, p.7] A left S-semimodule W is said to be projective if for every epimorphism g: N
— P and for every homomorphism h:W— P there is a homomorphism f: W—N such that the diagram
(gf=h) commutes.

W

N
r

N q > P

2
Definition 2.14. [10, p.5] The sequence L—>NE>B is called an exact sequence if kerg=ImA.

Definition 2.15.[10, p.27] A proper short exact sequence 0—>LiNf>B—>0 is called split or split exact
split if there is a homomorphism y: B—N such that ¢y=Is.
Note: A monomorphism ¢ is split if it has a left invers and an epimorphism 4 is split if it has a right
inverse.
Definition 2.16.[11] If H is a subsemimodule of a semimodule W, then W/H is called quotient (factor)
semimodule of W by H , defined by W/H={[w] | w eW}.
Definition 2.17.[4] A semimodule W is indecomposable if the direct summands of it are only {0} and
itself .
Definition 2.18.[4] An S-semimodule W is said to be n-projective if for every two subsemimodules A
and B of W, with A+B=W, there exist f and g eEnd(W) such that f+ g=1, f(W)SA, and g(W) <B.
Definition 2.19 Amply supplemented: A semimodule W is called amply supplemented if for any two
subsemimodules H, D of W such that H+D=W, there is a supplement A’ of H such that H' € D.
Definition 2.20 Weakly supplemented: Let W be an S-semimodule and let X be a subsemimodule of
W if there is a subsemimodule Y of W such that X+Y=W , XNY<«K W (« denotes a small sub
semimodule), then we can say that Y is a weak supplement in W. The semimodule W is weakly
supplemented if every subsemimodule of W has a weak supplement.
Definition 2.21 Mutual supplements: Let A, B be subsemimodules of a semimodule W, then A, B are
said to be mutual supplements if they are supplements of each other.
Definition 2.21 Lies above a direct summand: a subsemimodule A of a semimodule W lies above a
direct summand if there exists a decomposition W=K@®K", with KE A and KNAKK".
In this work, S- semimodule will be cancellative, subtractive and semisubtractive.
3. Supplemented semimodules:

The following concept was introduce [1] and then studied [12].We will introduce this concept for
semimodules and give some results related to this concept.
Definition 3.1. Let A and B be subsemimodules of a semimodule W, B is said to be supplement of A if
it is minimal with the property A+B=W. A subsemimodule B is called a supplement subseminodule if
it is a supplement of some subsemimodule of W [12, p.25].
Definition 3.2. An S-semimodule W is said to be supplemented if every subsemimodule of W is a
supplement [ 12, p.26].
Example 3.3. (i) 3Zy, is a supplement of 4Z,, in Z;, as N-semimodule.
(ii){0, 2}is not supplement of Z, in Z, as N-semimodule.
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(iii) 2Zg is not supplement of 4Zgin Zg as N-semimodule.
Definition 3.4. Let A, B be subsemimodules of a semimodule W, then A, B are said to be mutual
supplements if they are supplements of each other [ 12, p.26].
Example 3.5 (i) 5Z1, 271, are mutual supplements in Z, as N-semimodule.
(ii) As an N-semimodule, Zg is a supplement of 4Zg in Zg, while 4Zg is not a supplement of Zg S0 Zsg
and 4Zg are not mutual supplements in Zs.
Remark 3.6. Let A and B be subsemimodules of a semimodule W, then X is said to be supplement of
B if and only if W=X+Y with XNY is small in X [ 1, p.348].
Proof :(=) If X is a supplement of Y and C c X with (XNY)+ C=X, then we have W= X+ Y
=(XNY)+C+Y=C+Y (XNYc Y) then X=C by the minimality of X, XNY<«< X.
(<) Let W=Y+X and YNXK X. Let Dc X with Y+D=W, we have X=WNX=(Y+D)NX=(YNX)+D,
since (YNX)<X—X=D is minimal at the desired rate.
Example 3.7.(i) Zs, Z1pand Z;s as N-semimodules are supplemented semimodules.
(i) Zy,, as N-semimodule is not supplemented semimodule, because 6Z;, is not a supplement of any
subsemimodule of Zy,. (Z15=6 Z1, + Z15, 6 Z1,N Z;, is not small in 6 Zy,).
Definition 3.8. A semimodule W is called amply supplemented if for any two subsemimodules H, D
of W such that H+D=W, there is a supplement H' of H such that H' < D [1, p.359].
Example 3.9. (i) As N-semimodules, Zq, Z,s and Z,9 are amply supplemented, since they are hollow.
(ii) As a Z-semimodule, Z is not amply supplemented.
Definition 3.10. Let W be an S-semimodule and let X be a subsemimodule of W if there exists a
subsemimodule Y of W such that X+Y=W , XNY«K W, then we say that Y is a weak supplement in
W.W is weakly supplemented if every subsemimodule of W has a weak supplement [12, p.27].

In the coming results, we need to define the concept "lies above a direct summand" for
semimodules, where this concept was given previously for modules [1, p.357].
Definition 3.11. A subsemimodule A of a semimodule W lies above a direct summand if there exists a
decomposition W=K@®K’, with KS A and K'NAKK".
Example 3.12. As an N-semimodule, 3Z, @ 4Z1y=7Z1,, 47.,,S27Z,, and 3Z,,N27,,<<3Z;,, hence 2Z;,
lies above a direct summand.
The following lemma is needed for the next results.
Lemma 3.13. Let C, D and K be subsemimodules of a U- semimodule W then:
1) If CKD and DEK, then C«K.
2) If C&KW and q:W—Y is a homomorphism, then q(C)«<q(W).
3) If CKW, € € D, and D is a direct summand of W, then C«D.
4) If C«D and KEC, then K«D.
5) If C&KW and D«W, then C+D«W.
Proof: Similar to the proof in the case of modules [13, 5.1.3].
Lemma 3.14. If W is a supplemented semimodule and W=, then W' is supplemented.

Proof: Let W and " be semimodules such that W=", then Wﬁ W', B(X)=X", X<W and X'<W". Since
W is supplemented, then there exists a subsemimodule Y such that X+Y=W and XNY<« Y then
LX)+BY)=W"implies X'+A(Y)=W"and S(Y)NX'<K B(Y), by Lemma (3.13). Thus W' is supplemented.

In [1, p.362], [1, 41.16], [1, 41.11], [1, p.355], [1, 41.11], and [1, 41.12] respectively, the next
results were proved for modules. We will prove them for semimodules.
Lemma 3.15. Every factor semimodule of a supplemented semimodule is also supplemented.
Proof: Let W be a supplemented semimodule and let H be a proper subsemimodule of W, to show that

%is supplemented semimodule. Let g be a subsemimodule of% , then K is a subsemimodule of W

containing H and since W is supplemented, then there exists a subsemimodule L of W such that K+

L= W and KNL«L . Then Ky i _W and K LtH _KOWAH)_ (KOL)TH which is small in L+i since
H H H H H H H H

it is the image of KNL under the natural epimorphism from W onto% (Lemma (3.13)). Hence% is

supplemented semimodule.
Corollary 3.16. A direct summand of a supplemented semimodule is supplemented.
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Proof: Let A be a direct summand of a supplemented semimodule W, then there exists B
subsemimodule of W such that A@B = W, then A=W/B (since when W=A+B, then A=A/Wand
B =W/A). By Lemma(3.15) W/B is supplemented semimodule and by Lemma(3.14) A is
supplemented.

Lemma 3.17. Let A be a sub semimodule of a semimodule W, then the following are equivalent:

(1) A lies above a direct summand of W.

(2) A has a supplement H in W such that ANH is a direct summand in A.

Proof :(1= 2) Assume that A lies above a direct summand of W, then W=K&®H with K < A and
ANHK H. A=WNA=(K@H)NA=K®(HN A) — HNA is a direct summand of A. We claim that H is a
supplement of A, and to verify this: A+H=K+(H N A)+ H =W. Since ANH« H, hence H is
supplement of A.

(2= 1) Let H be a supplement of A in W such that ANH is a direct summand in A, then W=A+H with
ANH<K H. There exists a subsemimodule B of A such that A=B&(A n H). W=A+H=B® (4NH)+H
=B+H and BNH=BN(ANH)=0, hence W=B@H, then A lies above a direct summand in W.

Lemma 3.18. If every subsemimodule A of a semimodule W is of the form A=K+H with K
supplemented and H« W, then W is amply supplemented.

Proof: Let W=B+A, then by assumption A=K+H, K supplemented and H« W. Now, W=B+A
=B+K+H since HK W— W=B+K. Since BNK<K, then K=BNK+D with (BNK)ND=BND<« D and
W=B+(BNK)+D=B+D. It is clear that D c A.

Proposition 3.19. Let L be a subsemimodule of an S-semimodule W, then the followings are
equivalent:

1) L lies above a direct summand of W.

2) There are two idempotent f, g eEnd(W), with f+ g=1y, such that f(W)< L and g(L)<< g(W).

(3) There is a direct summand U of W with U € L, L=U+K and K« /.

Proof: (1=2) Assume that W=E,;@®E, such that E;SL and LNE,K E, Let /= m and g=n,
mi:E1@®E,—E; be the natural projections. It is clear that both f and g are idempotent endomorphisms of
W, f(W)=E;< L. On the other hand f + g =1y, so L=f(L)+ g (L), hence LNE,=[f(L)+ g (L)]N E;
=f(L)NE,+ g (L)NE,= g (L), since g (L)< E,and f(L)NE,=0, therefore g (L)=LNE>,<K E,= g (W).

(2= 3) By (2) there exists f, g ¢End(W) idempotent such that f(W)< L, g(L)< g(W) and f+ g =1y,
then we have y ef(W)N g (w) implies that y=f(w)= g (w’), butw=g (W)+ g (w)— g (W) =

g% W)+ g*w) — g W)=g (W)+ g W)— g (w)=0—y=0, that is, f(W)N g (W)=0. f+ g =1y, W
=f(W)®g(W). Put U=f(W), then L=LNW=LN[U &g(W)] =U + L N g (W) (since f(W)< L), so, LN
gW)cgL)K g(W),hence K = LN g (W) K W.

(3=1) By (3), W=U @U’' with U € L, L=U+K and K« W. We claim that U’ is a supplement of L in
W. Note that W=U+U' < L +U’, thus W=L+U' |If there exists U"” € U, W=L+U", then
W=U+K+U"=U+U"(since K& W) which implies that U"=U". This proves the claim.

Proposition 3.20. Let W be an S-semimodule, then the followings are equivalent:

(1) W is amply supplemented and every supplement subsemimodule is a direct summand.

(2) Every subsemimodule of W lies above a direct summand of W.

Proof:(1= 2) Let W be an amply supplemented and every supplement subsemimodule is a direct
summand and let A be a subsemimodule of W. Let K be a supplement of A, then W=A+K and ANK«K
K. Since W is amply supplemented thus A contains a supplement of K, say H, i.e. H+K=W and
HNK<K H, since H is a direct summand of W, hence W=H@&D where D is a suitable subsemimodule of
W, since HND=0, then D is a supplement of H, by Proposition (3.19)(3—1) D is a supplement of
H+ANK, but H+ANK=(H+K)NA=WNA=A. This implies that AND< D which means that A lies
above a direct summand.

(2= 1) Assume that every subsemimodule of W lies above a direct summand of W. Let H be a
subsemimodule of W, then W=A®B, with A € H and HNB<«K B. But W=H+B, implies B is a
supplement of H in W, and then W is supplemented. Let D be any subsemimodule of W. Then by
Proposition (3.19) part (1—3), there is a direct summand K of W with K€ D, D=K+E and E«<
W. Since W is supplemented, then by corollary (3.16) K is also supplemented and by Lemma (3.18) it
is amply supplemented. Now, suppose that C is a supplement of a subsemimodule D of W, since D
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lies above a direct summand of W by Lemma (3.17), DNC is a direct summand of D and again by
Lemma (3.17)(2—1),W=K@&C for some K =W. Hence C is a direct summand of W.
4. Supplemented and z-projective semimodules

The class of supplemented n-projective modules was studied by many references. In this section, this
class will be converted to semimodules.

The next proposition is a generalization for the proposition (41.15) which was previously introduced
[1].
Proposition 4.1. Let A and B be mutual supplements in a n-projective semimodule W, then W=A®B.
Proof: Assume that A and B are mutual supplements in W, then W=A+B such that ANB«< A and 4ANB
«B. It is enough to prove that 4NB=0. Consider the map h:A][B—W defined by h(a, b)=a +b, itis a
split epimorphism [12], so ker h={(a, b)e A]]B: h(a, b)=0} ={(a, b)e A]|B: a +b = 0} is a direct
summand of A]]B, hence there is a submodule K such that A] [B= ker h @K. On the other hand, (a, b)
€ ker h implies a, b € A4NB, then ker hc (4NB) [] (ANB) < A]]B, hence ker h« A]IB and so ker
h={(0, 0)}, that is, h is an injective map. Now, a € ANB implies h(a, 0)=h(0, a)= a, so (a, 0)= (0, a)
which implies that a=0. Therefore, ANB=0.

The next proposition is a generalization for the proposition (2.3.1) in which was described earlier

[12].
Proposition4.2. For a semimodule W, the following assertions are equivalent:
1. W is supplemented and nt-projective.
2. (a) W amply supplemented; and

(b) The intersection of mutual supplements is zero.
3. (a) Every subsemimodule of W lies above a direct summand ; and

(b) If C and D are direct summands of W with W=C+D, then CND is also direct summand in W.
4. For every subsemimodules C and D of W, with W=C+D, there are idempotents h and ge End(W)
such that h+ g=1y, h(W)<C,q(W)<SD, and q(C)<«<q(W).
Proof: (1= 2) (a) Let W=C+D and A be a supplement of C in W. Since W is n-projective , so there
exist homomorphisms h and q such that h(W)eD, q(W)<C and h+ g=1,, . We claim that h(C)<C,
W=C+h(A) and h(CNA)=CNhA(A). Now to verify this claim, let ce C, then g(c)eC and c=h(c)+ q(c)e C
(h+ g=1y), since W is subtractive, then h(c)eC, hence h(C)<C. Since A is supplement of C in W, then
W=C+A implies h(W)=h(C)+h(A)=SC+h(A) and since W is zw-projective, then W=h(W)+q(W)<SC+C+
h(A)=C+ h(A), thus W=C+ h(A). Now to prove that h(CNA)=CN h(A), let we CN h(A), implies that we
C and we h(A), that is w=h(a), for some a in A, but a= h(a)+ g(a) and h(a) €C, q(a) €C, so a €C, then
we h(CNA), then (CN h(A)) € h(CNA). Clearly, h(CN4) <h(C)NA(A)) S (CN h(A)). Since A is
supplement of C in W, then CNA«A and by Lemma(3.13) h(CN4)<«h(A), since h(CNA)= CN h(A),
then CN h(A) «< h(A), that is, h(A) is a supplement of C in W and h(A)SD. Hence W is amply
supplemented.
(b) Directly from Proposition (4.1).
(2=3) (a) It is enough by Proposition (3.17) to prove that every supplement subsemimodule of W is a
direct summand (since W is amply supplemented). Let D be a supplement subsemimodule of W, then
D is a supplement of some subsemimodule C of W, implies that W=C+D and CND<«D. But W is
amply supplemented, thus C contains a supplement C’ of D in W, then W= C'+D and C'ND<«C". Since
C'NDECND«KD, hence C'ND«KD, therefore C’and D are mutual supplements, then by 2(b), C'ND=0,
thus W=C'®D.
(b) Suppose that C and D are direct summands of W with W=C+D. W is amply supplemented, then
there exists a supplement D’ of C in W such that D'ED and C’ a supplement of D' in W such that
C'c C. Therefore, CND'K D’ and C'ND'K C". Now, C'ND'cCND’ and since CND’'«K D', then
C'ND'KD’, that is, C’" and D’ are mutual supplements, and by 2(b) C'ND'=0, hence W=C'@D".
WNC=C=C'®(CND’) and C is a direct summand in W, then W=C®H=C'®@CND'@®H, where H is a
suitable subsemimodule of W, implies that CND’ is a direct summand of W, since CND'KD’, then
CND'KW, then CND'=0. Therefore, W=C@®D', where D'CD. Similarly, W=C'®D, where C'cC.
Since W=C+D, then C=WNC=(C'®&D)NC=C"®(DNC), also D=WND=(C®D)ND=(CND)D D',
hence W=C'@D'®CND, that is, (CND) is a direct summand of W.
(3=4) Let every subsemimodule of W lies above a direct summand, by Proposition(3.20) W is amply
supplemented and every supplement is a direct summand in W. Let W=C+D, since W is amply
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supplemented, then there is a supplement D’of C in W such that D'€D. This means that W=C+D’ and
CND’is small in D". Also, there is a supplement C'€C of D’ in W, then W=C'+D’and C'ND’ is small
in C', which means that C" and D' are mutual supplements. Thus C'ND’'=0, then W=C'® D'. Now, let
h:W—C" and q:W—D' are the natural projections, so h+ g=1y, then h(W) €C’, then h(W) cC and
g(W)eD’ceD, also q(C)cq(W) €D’ and g(C)<C, then g(C)=CND’. Now, to prove that CND'cq(C),
let ae CND’, then ae D’ implies a= q(a) and ae C implies g(a) € q(C), hence a € q(C), so CND'cq(C),
then CND'=q(C). But CND'«D’, then q(C)«<D". By Proposition (3.19), q(C)<q(W).
(4=1) Let C and D be subsemimodules of W such that C+D=W. By (4) there exist idempotent h and
g eEnd(W) with h(W)<C and q(W)<D such that h+ g=1y. Thus, W is z-projective. Now to show that
W is supplemented. Let A be subsemimodule of W, then we can write W=A+W and by (4) there exist
idempotent f and g eEnd(W) such that g + f=1,y f(W)<A, g(W)<SW and g(A)<«<g(W). Claim that g(W) is
a supplement of A. To verify this claim :1) to satisfy that W=g(W)+A, let w €W, since f+ g=1y, then
w=f(w)+g(w), but g(w) eg(W) and f(w)eA implies that WSg(W)+A and it is clear that g(W)+ASW,
hence W=g(W)+A. Now we must show that g(W)NA<«g(W), here we must prove that g(W)NAKg(A) .
Let ce g(W)NA, then c=g(w)eA, for some we W, since f(W)<SA, then f(w)e A and since f(w)+g(w)=w,
then we A, so that ce g(A), thus g(W)NAZSg(A), but g(A)«<g(W), therefore g(W)NAKg(W), hence g(W)
is a supplement of A, thus W is supplemented semimodule.

The next corollary is a generalization for the corollary (2.3.2) in[12].
Corollary 4.3. Let W be n-projective supplemented semimodule, then for any two subsemimodules A
and B of W such that W=A+B, there exist 4'CA and B'SB (A’ and B’ are subsemimodules of W) such
that W=A'®B’.
Proof: Let A and B be subsemimodules of a n-projective supplemented semimodule W with W=A+B,
then by Proposition(4.2), there exist idempotent h and g €End(W), h+ g=1y, h(W)<SA and g(W)Z<B.
Since h+ g=1y, then W=h(W)@&g(W), take 4'=h(W) and B'=g(W), thus W=A4'@®B".

The next definition is a generalization for the definition (2.3.3) in[12].
Definition 4.4 Let W be an S-semimodule and let A be subsemimodule of W, then if for every
subsemimodule B of W with W=A+B, there exists a weak supplement B’ of A with B'SB. Then we say
that A has an ample weak supplement in W. If every subsemimodul of W has an ample weak
supplement in W, then W is said to be ample weak supplemented.

The next proposition is a generalization for the proposition (2.3.4) [12].

Proposition 4.5. If W is weakly supplemented and z-projective semimodule, then W is amply weak
supplemented.
Proof: Let A be a subsemimodule of W and W=A+B for some subsemimodule B of W. Since W is
weakly supplemented, then there exists a weak supplement D of A in W, thus W=A+D and ANDKW.
Since W is m-projective, then there exist h and ge End (W) such that h+ g=1y, h(W)<SB and q(W)<A. It
is clear that h(A)SA and q(B)<B. Claim that h(D) is a weak supplement of A in W. We know that
W=h(W)+q(W) Sh(A+D)+A=h(A)+h(D)+A=A+ h(D), so, W= A+ h(D). Since AN A(D)Sh(4ND) KW,
then AN h(D)<W, hence h(D) is a weak supplement of A . Since h(D)<B, then A has an ample weak
supplement in W. Hence W is amply weak supplemented.

The next definition is a generalization for the definition (2.3.6) in[12].
Definition 4.6. Let K be a subsemimodule of a semimodule W, then we say that K coclosed in W if
K/H« W /H, thus K=H, for all subsemimodules H of W contained in K.

Example 4.7. Let H ={0, 5, 10} be the subsemimodule of Z-semimodule W=Zs, then H is coclosed
in W, because the only subsemimodule N contained in H such that H/N<W/N is H.

Note: We know that every direct summand of any module is coclosed[12. p.63].

Proposition 4.8. Every coclosed subsemimodule in a m-projective supplemented semimodule is a
direct summand.

Proof: Let K be a coclosed subsemimodule of a semimodule W where W is -projective supplemented.
There exists a supplement subsemimodule H of K in W, that is W=K+H and KNH <«H. Claim that
KNHKK. Let KNH+K'=K such that K’ is a subsemimodule of K. Let p:W—W/K' be the natural

epimorphism, since KNH<«H, then KNHKW. Thus p(KNH)<W/K'. Since p(KﬂH)anZJrK', then

K/K'KW/K'. But K is coclosed in W, therefore K=K, hence KNH«K, implies that K and H are
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mutual supplements. But, since W is n-projective semimodule, by Proposition (4.1) KNAH=0. Thus K is
a direct summand in W.

The next proposition is a generalization for the proposition (41.14) [1].
Proposition 4.9. Every direct summand of 7-projective semimodule is n-projective.
Proof: Suppose that W is a m-projective semimodule. Let K be a direct summand of W, then W=K@®D,
where D is a suitable subsemimodule of W. Let A and B be subsemimodules of K such that K=A+B,
then W=A+B+D and since W is a w-projective, then there exist « and g such that a+p=1y a(W)<SA and
LW)SB+D, where a and g eEnd(W). Let p:W—K be the projection map of W onto K, let h, q eEnd(K)
be such that ~=pa and g=pf. To show that h(K) € A, q(K)< B and h+ g=1x. For ke K,
h(k)=p(a(k))=a(k)e A. While p(k)=b+ de B+D and p(d)=0, p(b)=b, so q(k)=b. That is, h(K)SA and
g(K)EB, finally, h+ g= pa+ pS= p(a+p)= ply= 1k. Hence K is n-projective.

By Proposition(4.8) and Proposition(4.9) we can obtain the following corollary.
Corollary 4.10. Let W be a m-projective supplemented semimodule, and let K be a coclosed
subsemimodule in W, then K is a m-projective semimodule.

The next proposition is a generalization for the proposition (41.16) [1] which was previously proved
for modules [10, p.64-67].
Proposition 4.11. Let W be a subtractive supplemented =-projective S-semimodule and E=End(W) ,
then:
1. Every direct summand of W is supplemented and m-projective and every supplement
subsemimodule of W is a direct summand.
2. Let h and g be idempotent in E and C is a direct summand in W. If q(C)«q(W), then CN ¢(W)=0
and Ceq(W) is a direct summand in W.
3. For any 0#weW, there is a decomposition W=W;@W, such that W, hollow and wg&W,_
Proof:1) To prove that every supplement subsemimodule of W is a direct summand, suppose that K is
a subsemimodule, there exists a subsemimodule D of W such that K+D=W and KND<«K. Since W is a
supplemented n-projective semimodule, by Proposition (4.2) W is amply supplemented, hence there
exists D'C D such that D’ is a supplement of K in W, thus W=K+D" and KND'KD'. But (KND") €
(KND) «K, then K and D' are mutual supplements and by Proposition (4.1) KND'=0, then W=K&D".
2) Let h, g be idempotent in E and C is a direct summand in W. Since W is supplemented and 7-
projective, then by Proposition (4.2) every subsemimodule of W lies above a direct summand. Since W
is m-projective, then W=h(W) @q(W) by 1) h(W) is supplemented n-projective semimodule. But
h(C)cW, so there is a decomposition h(W)=K@&D such that K h(C) and h(C)ND«D. For the
projection p:K@D&q(W)—D, p(C)=h(C)ND. To verify this, let ce C, then q(c)e q(W) implies that
p(g(c))=0. Then p(c)=p(h(c)+ q(c))=p(h(c))=h(c), therefore p(C)<p(h(C))=h(C), so p(C)=h(C)ND.
Since h(W)=K@D and Kch(C), then h(C)=K&é(h(C)ND). Hence p(h(C))=p(Ké&(h(C)ND))=h(C)ND
which is small in D. Claim that p+ q =1pgqw)- To verify this claim, let (d+ q(w))e Dé&g(W), then
(p+ g)(d+ g(w))=d+ q(d)+q(w). We need to prove that g(d)=0. Since gq(d)=q(W), de DS h(W), since W
is m-projective, then h(d)+q(d)=d and since W subtractive, then q(d)e h(W), therefore g(d)e
q(W)Nh(W), but h(W)Nq(W)=0, then q(d)=0. Thus g+ h=1pg4w, - Also, CN(DBg(W)) Sp(C)+q(C).
To prove this, let x=d+ g(w)=p(x)+q(x)e p(C)+q(C), since p(C)=h(C)NCKD«KW and q(C)=q(W)<W,
thus p(C)+q(C)<W. Since Kch(C), then W=h(C) &(D&q(W)) and for ceC, h(c)+q(c)=c € C+ q(W),
then h(C)c C+ q(W), thus W=C+(D&q(W)), then by Proposition (4.2) CN(D&q(W)) is a direct
summand of W.
3) Let 0#weW and I'={B: B is a direct summand of W}. It is clear that I" #p where Oe I". By Zorn's
lemma, I has a maximal element Wy. Suppose that W=W;@W, for a suitable semimodule W, of W.
Now to show that W, is hollow, assume that W, is not hollow, then there exist H and D proper
subsemimodules of W, such that W,=H+D. By (1), W, is supplemented and m-projective. By
Proposition(4.2) (1=2(a)), W, is amply supplemented, thus there exists a supplement D; of H in W
such that D; €D, that is W,=D;+H and D;N\H«Dj. Also, there exists a supplement H; of D in W, such
H,;SH, then W,=D+H; and DNH;<«Hj;, therefore D; and H; are mutual supplements. By Proposition
(4.1), D;NH;=0, hence W,=D;@H;, thus W=W,@D;@H,. Since W, is maximal, then either D;=0 or
H;=0, which is a contradiction since D;and H; are mutual supplements, implies that W, is hollow.
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The next definition is a generalization for the definition (p.16) [12].
Definition 4.12. Let W be a semimodule, then W is said to be direct projective if for every direct
summand H of W, every epimorphism from W to H splits .

The next lemma is a generalization for the lemma (1.1.7) [12].
Lemma 4.13. If W is a direct projective semimodule, then:
1) If K and D are direct summands of W, then every epimorphism K—D splits.
2) If K and D are direct summands with K+D=W, then KND is a direct summand.
Proof: 1) Let K and D be direct summands of a direct projective semimodules W, f:K—D be an
epimorphism, and let p:W—K be a projection map , fp is an epimorphism and splits (because W is a
direct projective), implies that there exists a homomorphism ¢: D—W such that A(nq)=1p.Thus g
splits.

2) ) Let K and D be direct summands of W with W=K+D, hence W=D@Y where Y is a suitable

subsemimodule of W, so Y= % = K%D, and by the second isomorphism theorem % ~ %, thus
Y=~ %. Since K and Y are direct summands of W, then by (1) the homomrphism fp: K—Y splits

where p:K— 1<KW and f:% —Y are the isomorphisms. But fp is an epimorphism, hence ker(fp)=KND

is a direct summand of K, hence is a direct summand of W.
The next proposition is a generalization for the proposition (2.3.10) [12].
Proposition 4.14 Let W be a supplemented direct projective S-semimodule, then the followings are
equivalent:
1) Every subsemimodule of W lies above a direct summand.
2) W is a m-projective semimodule.
Proof: (1=2) Let K and D be direct summands of W with W=K+D. By Lemma(4.13) 2) KND is a
direct summand of W. Then by Proposition(4.2) W is n-projective.
(2=1) Clear. |
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