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Abstract 
     This paper is concerned with the numerical blow-up solutions of semi-linear heat 

equations, where the nonlinear terms are of power type functions, with zero 

Dirichlet boundary conditions. We use explicit linear and implicit Euler finite 

difference schemes with a special time-steps formula to compute the blow-up 

solutions, and to estimate the blow-up times for three numerical experiments. 

Moreover, we calculate the error bounds and the numerical order of convergence 

arise from using these methods. Finally, we carry out the numerical simulations to 

the discrete graphs obtained from using these methods to support the numerical 

results and to confirm some known blow-up properties for the studied problems. 
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1. INTRODUCTION 

     In the field of mathematical modeling, many real life excremental problems can be contracted in 

the form of partial differential equations in different fields [1]. Some of these equations have semi-

linear or nonlinear behavior that makes obtaining the exact solution of its governing equation difficult 

or without exact solution. In that case the alternative way is to use the numerical method to solve these 

equations such as the Finite Difference Method, which has been used to solve different type of partial 

differential equations [2-5]. 

     It is well known that semi-linear parabolic equations arise in many physical situations, where the 

diffusion and source terms have to be modeled. Many of physical situations, including chemical 

reaction and electrical heating have been presented by Lacey, [6]. In some cases the solution of the 

semi-linear heat equation cannot be continued globally in time, the so called blow-up phenomena, and 

that due to the infinite growth of the nonlinear term (source term) describing the evolution process. 

The phenomenon of blow-up in finite time for semi-linear heat equations has been extensively studied 

by many authors, and much effort has been made from analytical points of view, see for instance [7-

12]. In this paper, we consider the numerical solutions of the zero Dirichlet problem of a semi linear 

heat equation: 

 

{

                     

  (   )                                   
 (   )    ( )                    

 

}                                                    (1) 

 

where         ( )    ( )  satisfying   ( )    ( )   .  .  

For problem (1), it is well known that the local existence of a unique classical solution is guaranteed 

by standard parabolic theory, see [13]. On the other hand, Friedman and McLeod, [8], have proved 

that, with a large size initial function, the blow-up in this problem can only occur at a single point. 

The study of numerical solutions of time-dependent problems, especially, with blow-up, is at an early 

stage. However, some authors has considered the numerical solution for some special cases, see [14-

19].  

     According to [14], it has been shown that the blow-up solution and numerical blow-up time of the 

semi discrete problem of (1) converge to the theoretical values as we refine the grids. Moreover, two 

numerical schemes (explicit and linear implicit Euler) have been used to compute the blow-up solution 

and estimate the blow-up time for problem (1), where    , and   ( )       (  )  with using the 

time-step formula:  
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   (

  

 
  

  

‖  
 ‖
 

 )                           

                  
  

‖  
 ‖

 

                                   
}            , 

     where h is the space-step ;   
  is the vector of numerical solution of the discrete problem. In fact, 

the reason behind dealing with this type of time-steps rather than fixed time-steps is to ensure that the 

time-step goes to zero as time is approaching the blow-up time. Hence, in this way, we avoid any 

possible instability, which may occur near blow-up time.    

     In this research, we use the explicit and linear implicit Euler finite difference schemes to compute 

the numerical blow-up solution and estimate the blow-up times for problem (1), where          , 

with   ( )     (    ). In order to increase the order of numerical convergence and get more 

accurate results, a special time-steps formula, dependent on  , will be used with these schemes:  
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}             

     Moreover, the numerical simulations will be carried out to support the numerical findings and to 

confirm the known theoretical blow-up results. 
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2. FINITE DIFFERENCE SCHEMES 

     In this section, we recall the semi discrete problem for problem (1) will be used eventually to 

derive the explicit and linear implicit Euler schemes.  

Let I be a positive integer, and consider the grid        ,  0        where      ⁄  . We can 

approximate the solution u of problem (1) by the solution: 

 

  ( )  (  ( )   ( )    ( ))
 . 

of the following semidiscrete problem with using central finite difference operator of second order to 

replace the second space derivative: 

{

 

  
   

             

      
   

 
                        

  ( )     ( )                                                             

  ( )    (  )                                                     

}                                        (2) 

 

Definition 2.1 [14]: Let    be nonnegative solution of problem (2). We say that    blow-up in finite 

time, if there exists       such that: 

‖  ( )‖      for t  [      ) 

‖  ( )‖       as t     
  

where ‖  ( )‖  =        |  ( )| . 
The next theorem shows that     (    )  the solution of problem (2.4) approximate the solution of 

problem (2.1) ,  as       
Theorem 2.1 [14]: 

Assume that       ([      [     )   where u is the solution of problem (1). Then for h sufficiently 

small, problem (2) has a unique solution: 

      ([          ) such that: 

   
     

‖  ( )    ( )‖   (  )        

The next theorem shows that blow-up time    of problem (2) converges to the blow-up time of 

problem (1). 

Theorem 2.2 [14]:  

Let       ([      [    )) be a blow-up solution of problem (1) and   is the blow-up time, such 

that: 

       ∫  (    ) ( )     
 

 
, 

where  ( ) is the solution of problem 

-                 ( )   ( )      
Then for   sufficiently small,    blows up at       and 

                as             . 

2.1 Euler Explicit Schemes 

In order to derive the fully discrete explicit Euler finite difference equation to problem (1), we need to 

approximate the time derivative in problem (2) using the forward word finite difference formula as 

follows: 
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 ,                                         (3) 

 

         where   
   denotes the numerical of problem (1) at the point (     ),  

                                             ;    1       ,          
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 ) ,       
  

  

   

 It is well known that  
  

     is the stability condition of the explicit Euler scheme for heat equation, 

[8].  So that, to ensure and speed up the convergence, the time-steps will be chosen as follows:  

      (
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) 

)                                                                       (4) 

The discrete problem (3) can be written in a matrix form as follows: 



Rasheed et al.                                      Iraqi Journal of Science, 2020, Vol. 61, No. 8, pp: 2077-2086 

 

8727 
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     ,                                                                 (5) 

where         

( 1) ( 1)
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1 2 1

0 1 2
m m  

 
 


 
 
 

 

 ,     
  ((  

 )  (  
 )    (    

 ) )    

2.2 Euler Linear Implicit Scheme 
Secondly, we derive linear implicit Euler formula, in this case we replace the time derivative in 

problem (2) using the backward finite difference formula, as follows: 
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where  

     (
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)                                                                          (6) 

The matrix form of linear Euler implicit method can be written as follows:   

(    
  )  

      
      

                                                           (7)  

where   takes the form as in (4). 

Remark 2.1: At each time level n, in order to find the approximate value of the vector   
  , we need to 

solve the linear system (5). 

Definition 2.2 [15]: We say that the solution of the explicit (implicit) Euler scheme blows up in a 

finite time, if  

1- ‖  
 ‖           

2-    ∑   
 
    

where    is called the numerical blow-up time of the discrete problem. 

Remark 2.2: The numerical blow-up time of the discrete solution depends on space step h and also on 

the choice of time steps    . In addition, it is well known that, for each fixed time interval [    , 
explicit (implicit) Euler numerical schemes give approximate solutions with rate of convergence, 

 (    )  where          ,[14], while with this choice of time –steps,(4) and (6), we have a rate 

of convergence as follows:  

 (  ) ,      as      ,   for      . 

 

3. NUMERICAL EXAMPLES 

In this section, we will use the two discrete finite equation derived in section two (explicit and Implicit 

Euler methods). Three numerical experiments will be considered: 

Problem 1:      {

                    (   )     

 (   )                                              

 (   )     (    )               (   )

} 

Problem 2:      {

                    (   )     

 (   )                                              

 (   )     (    )               (   )

} 

Problem 3:    {

                    (   )     

 (   )                                              

 (   )     (    )               (   )

} 

3.1 The time-steps, Error Bounds and order of convergence  

For explicit Euler scheme, the time step, will be taken as follows:  

      (
  

 
  

  

(‖  
 ‖
 
) 

 )                          

while, for linear implicit Euler scheme the time-steps will be taken as follows: 

   (
  

(‖  
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 )                                  
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where   is a fixed positive constant.  

As mentioned before, with (6) the stability condition of the explicit Euler method (2        ) is 

satisfied. In fact, we have chosen this type of time-step in order to examine experimentally the rate of 

convergence for the numerical blow-up times with respect to the space-steps. Therefore, we have 

taken different choices of   .  

3.2 Numerical Blow-up Time 

     Since the analytical (exact) solutions to problems 1, 2 and 3 with the associated initial condition are 

not known, we can only estimate numerically the blow-up times. As we will see later that, the 

numerical solution for problem 1, 2 and 3 do not exist for all    , because they become unbounded 

(too large) at some time level n . 

     In this section, the numerical blow-up time is compute at the first time that ‖  
 ‖       , and the 

value    ∑   
 
    is taken as the blow- up time of the discrete problems , which also can be 

considered the numerical blow-up time of the differential equations in problems 1 , 2 , and 3 . 

Moreover, the error bonds between any two numerical blow-up times            are computed 

respectively with discretization parameters (space-steps)          , is defined as follows: 

   |      |   , 
In order to estimate experimentally the order of accuracy of the numerical blow-up times, the order of 

convergence will be estimated using the formula [8]: 

   
   (     )⁄

   ( )
  

3.3 Numerical Results  

     The two schemes (Euler explicit and Euler implicit) will be used to compute the numerical solution 

for each problem (1, 2 and 3), for different values of the space-step, while, the time-step formulas, (4) 

and (6), will be considered with      . All the computational codes are written in Matlab.   

In the next tables, we present blow-up times, the errors bound and the order of convergence and the 

CPU time in second, and m represents the number of iteration when numerical blow-up occurs. 

In tables (1) and (2), we present the numerical results of problem one, using explicit Euler scheme 

with respect to     and 2, respectively. 

In tables (3) and (4), we present the numerical results of problem one, using implicit Euler scheme 

with respect to     and 2, respectively. 

In tables (5) and (6), we present the numerical results of problem two, using explicit Euler scheme 

with respect to     and 2, respectively. 

In tables (7) and (8), we present the numerical results of problem two, using implicit Euler scheme 

with respect to     and 2, respectively. 

In tables (9) and (10), we present the numerical results of problem three, using explicit Euler scheme 

with respect to     and 2, respectively. 

In tables (11) and (12), we present the numerical results of problem three, using implicit Euler scheme 

with respect to     and 2, respectively. 

Table 1-Problem 1,    ,  Explicit Euler scheme,     

h      CPUT       

1/20 16 8.217323     71728020 ……………… ………. 

1/40 44 8.213862     0.065445 0.063461     ………. 

1/80 153 8.282027     0.141904 0.025081     1.339217 

1/160 586 8.122807     0.301804 0.009510     1.399135 

1/320 2315 8.125748     0.794801 0.003522     1.433050 

 

Table 2-Problem 1,     , Explicit Euler scheme,     

h      CPUT       

1/20 48 8.220361     0.242958 ………… ……… 

1/40 237 8.224347     0.402206 0.003014     …….. 

1/80 1299 8.222593     0.713649 0.000754     1.999042 

1/160 1634 8.112404     1.473871 0.000188     1.996178 

1/320 2545 8.113356     3.613842 0.000048     1.977279 
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Table 3-Problem 1,    , Implicit Euler scheme,     

h      CPUT       

1/20 19 8.114953     0.181253 ………… ……….. 

1/40 52 8.113332     0.345534 0.001621     ………. 

1/80 189 8.112719     0.658324 0.000613     1.402925 

1/160 620 8.112509     2.058695 0.000210     1.545497 

1/320 2762 8.112444     5.151270 0.000064     1.691877 

 

Table 4-Problem 1,    , Implicit Euler scheme,     

h      CPUT       

1/20 50 8.115108     0.314055 ………… ………. 

1/40 241 8.113202     0.712546 0.002394     ……….. 

1/80 1314 8.112118     1.337102 0.000625     1.935188 

1/160 1675 8.112224     4.003412 0.000158     1.986238 

1/320 2690 8.112214     18.222905 0.000040     1.981852 

 

Table 5-Problem (2),     , Explicit Euler scheme,     

h      CPUT       

1/20 5 2.705021     0.173642 ……….. ………. 

1/40 9 2.334890     0.236839 0.370131      ………. 

1/80 29 2.874722     0.421795 0.130797      1.500706 

1/160 156 2.102212     0.760673 0.042140      1.634067 

1/320 802 2.142708     1.426539 0.012881      1.709945 

 

Table 6-Problem (2),     , Explicit Euler scheme,     

h      CPUT       

1/20 6 2.133134     0.243383 ………. ………. 

1/40 11 2.141119     0.407437 0.007985     ………. 

1/80 35 2.143078     0.762645 0.001959     2.027175 

1/160 166 2.142108     1.433216 0.000494     1.987534 

1/320 904 2.143697     2.679134 0.000125     1.982582 

 

Table 7-Problem (2),     , Implicit Euler scheme,     

h      CPUT       

1/20 5 2.438780     0.185578 ………. ……….. 

1/40 10 2.253194     0.382259 0.185586     ……… 

1/80 31 2.179634     0.752232 0.073560     1.335094 

1/160 160 2.154803     2.230338 0.024831     1.566779 

1/320 810 2.147023     8.852154 0.007780     1.674300 
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Table 8-Problem (2),     , Implicit Euler scheme,     

h      CPUT       

1/20 7 2.244663     0.323161 ………. ……… 

1/40 12 2.243999     0.646921 0.000664     ………. 

1/80 38 2.142792     1.506066 0.000201     1.723987 

1/160 170 2.142018     4.381798 0.000046     2.127489 

1/320 910 2.142048     18.229119 0.000010     2.201633 

 

Table 9 -roblem 3,      Explicit Euler scheme,     
h      CPUT       

1/20 4 6.908534     0.150712 ………….. ………. 

1/40 8 6.019545     0.250338 0.248989     ……….. 

1/80 29 6.188684     0.448085 0.130860     0.928046 

1/160 139 6.461718     0.777276 0.066966     0.966534 

1/320 780 6.427855     1.387930 0.033863     0.983719 

 

Table 10-Problem 3,      Explicit Euler scheme,     

h      CPUT       

1/20 5 6.437132     0.254173 ………. ……… 

1/40 10 6.420112     0.411752 0.010014     ……… 

1/80 31 6.422070     0.729479 0.001958     2.353973 

1/160 148 6.422572     1.363684 0.000494     1.987534 

1/320 803 6.422690     2.733435 0.000125     1.982582 

 

Table 11-Problem 3,      Implicit Euler scheme,     

h      CPUT       

1/20 4 6.481121     0.181134 ……… ………. 

1/40 9 6.447556     0.371425 0.033565     ………. 

1/80 30 6.433019     0.771574 0.014537     1.207228 

1/160 142 6.487204     2.325200 0.005815     1.321878 

1/320 798 6.424901     8.597677 0.002302     1.336264 

 

Table 12-Problem 3,      Implicit Euler scheme,     

h      CPUT       

1/20 5 6.422664     0.321618 ..................... ………… 

1/40 10 6.421429     0.665700 0.001235     ………… 

1/80 33 6.421120     1.424917 0.000309     1.998832 

1/160 151 6.421042     4.642498 0.000078     1.986060 

1/320 812 6.421023     17.445631 0.000019     2.037474 

 

3.4 Numerical Simulations 

     In this section, the numerical simulations are carried out to visualize the numerical graphs for the 

numerical blow-up solution of problems 1,2 and 3 obtained from using explicit and linear implicit 

Euler schemes, with       and    .  

Figure-(1, 2) present the discrete graph of the numerical solution of problem (1) obtained from using 

explicit and implicit schemes, respectively.  

Figure-(3, 4) present the discrete graph of the numerical solution of problem (2) obtained from using 

explicit and implicit schemes, respectively.  

Figure (5, 6) present the discrete graph of the numerical solution of problem (3) obtained from using 

explicit and implicit schemes, respectively. 
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   Figure 1-Problem (1), explicit scheme                             Figure 2-Problem (1), implicit scheme                

  
Figure 3-Problem (2), explicit scheme                         Figure 4-Problem (1), implicit scheme 

  
Figure 5-Problem (3), explicit scheme                Figure 6-Problem (3), implicit scheme 

 

3.5 Analysis and Discussion  

From the numerical results in section 3 and 4, we can point out the following observations:  

1. In each of problems 1, 2 and 3, the numerical blow-up can only accour at the center point (  
   ), and that confirms the known theoretical blow-up results for semilinear heat equations, see [8]. 

2. The numerical blow-up times are decreasing as we increase the power of the nonlinear term in the 

semi-linear heat equation. In fact, this result can be proved theoretically using maximum principle, 

[20].    

3. The errors bounds are decreasing as we refine the space-steps, which indicates that the sequence of 

numerical blow-up times is convergent, as the space-step goes to zero. 



Rasheed et al.                                      Iraqi Journal of Science, 2020, Vol. 61, No. 8, pp: 2077-2086 

 

8721 

4. The order of convergence of numerical blow-up time,      is almost close to 2, for      while 

         for        as the space-step goes to zero, which indicates that with this choice of    , 

for        we have a rate of convergence:  

 (  ) ,    as      . 

5. The numbers of iterations are increasing as we increase the value of    or as we turn from the using 

explicit scheme to the implicit scheme. 

6. CPU time is increasing, as we refine the grids with respect to space and time.   

7. The numerical simulations show that the growth rate of blow-up solution for each of studied 

problems, arises from using explicit Euler scheme, is almost the same as that arises from using implicit 

Euler scheme. 

4. CONCLUSIONS  

     In this research, we have proposed two algorithms for the numerical solution of semi-linear heat 

equations. The numerical blow-up solutions are computed for semi-linear heat equations with 

Dirichlet boundary conditions. Explicit and implicit Euler finite difference schemes with a special 

time-steps formula are presented and analyzed in order to solve the proposed problem and estimate the 

blow-up times. The numerical result obtained by the proposed methods is analyzed, simulated and 

presented in the form of tables and figures. Numerical examples show that the proposed methods are 

successfully implemented with good efficiency and high order of convergence.  
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