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Abstract

This paper is concerned with the numerical blow-up solutions of semi-linear heat
equations, where the nonlinear terms are of power type functions, with zero
Dirichlet boundary conditions. We use explicit linear and implicit Euler finite
difference schemes with a special time-steps formula to compute the blow-up
solutions, and to estimate the blow-up times for three numerical experiments.
Moreover, we calculate the error bounds and the numerical order of convergence
arise from using these methods. Finally, we carry out the numerical simulations to
the discrete graphs obtained from using these methods to support the numerical
results and to confirm some known blow-up properties for the studied problems.
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1. INTRODUCTION

In the field of mathematical modeling, many real life excremental problems can be contracted in
the form of partial differential equations in different fields [1]. Some of these equations have semi-
linear or nonlinear behavior that makes obtaining the exact solution of its governing equation difficult
or without exact solution. In that case the alternative way is to use the numerical method to solve these
equations such as the Finite Difference Method, which has been used to solve different type of partial
differential equations [2-5].

It is well known that semi-linear parabolic equations arise in many physical situations, where the
diffusion and source terms have to be modeled. Many of physical situations, including chemical
reaction and electrical heating have been presented by Lacey, [6]. In some cases the solution of the
semi-linear heat equation cannot be continued globally in time, the so called blow-up phenomena, and
that due to the infinite growth of the nonlinear term (source term) describing the evolution process.
The phenomenon of blow-up in finite time for semi-linear heat equations has been extensively studied
by many authors, and much effort has been made from analytical points of view, see for instance [7-
12]. In this paper, we consider the numerical solutions of the zero Dirichlet problem of a semi linear
heat equation:

U = Uy +UP, 0<x<1,t>0,
ulx,t) =0, x=0,1 )
u(x,0) =uy(x),0<x <1,

where p > 1; uy(x) € C?(R), satisfying uy(0) = ug(1) = 0. .

For problem (1), it is well known that the local existence of a unique classical solution is guaranteed
by standard parabolic theory, see [13]. On the other hand, Friedman and McLeod, [8], have proved
that, with a large size initial function, the blow-up in this problem can only occur at a single point.

The study of numerical solutions of time-dependent problems, especially, with blow-up, is at an early
stage. However, some authors has considered the numerical solution for some special cases, see [14-
19].

According to [14], it has been shown that the blow-up solution and numerical blow-up time of the
semi discrete problem of (1) converge to the theoretical values as we refine the grids. Moreover, two
numerical schemes (explicit and linear implicit Euler) have been used to compute the blow-up solution
and estimate the blow-up time for problem (1), where p = 2, and u,(x) = 20 sin(mx), with using the
time-step formula:
min (h—z h—: ) for explicit Scheme

2 "okl
h—: for implicit scheme
lurll,,

where h is the space-step ; U} is the vector of numerical solution of the discrete problem. In fact,
the reason behind dealing with this type of time-steps rather than fixed time-steps is to ensure that the
time-step goes to zero as time is approaching the blow-up time. Hence, in this way, we avoid any
possible instability, which may occur near blow-up time.

In this research, we use the explicit and linear implicit Euler finite difference schemes to compute
the numerical blow-up solution and estimate the blow-up times for problem (1), where p =3,4,5,
with ug(x) = 100(x — x2). In order to increase the order of numerical convergence and get more
accurate results, a special time-steps formula, dependent on p, will be used with these schemes:
min (h—z _h ) for explicit Scheme

3 " lugll,)P
__ht
(e L

Moreover, the numerical simulations will be carried out to support the numerical findings and to

confirm the known theoretical blow-up results.

k, = ,n=0,a >0,

k, = n=0,a >0

for implicit scheme
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2. FINITE DIFFERENCE SCHEMES

In this section, we recall the semi discrete problem for problem (1) will be used eventually to
derive the explicit and linear implicit Euler schemes.
Let | be a positive integer, and consider the grid x; =ih, 0<i<I, where h=1/I. We can
approximate the solution u of problem (1) by the solution:

Un(®) = (Uo(8), Uy (1), ..U ()"
of the following semidiscrete problem with using central finite difference operator of second order to

replace the second space derivative:
d Uit1—2Ui+Ui1 __ 4P ,
SUi - ==, 1<i<I-1
Up(®) =U; (t) =0, )
Ui(0) =up(x;) , 0<i<I.

Definition 2.1 [14]: Let U, be nonnegative solution of problem (2). We say that U, blow-up in finite
time, if there exists T}, < oo such that:
”Uh(t)”oo < OO,fOftE [0 JTh)
”Uh(t)”oo — ©,ast- Th_
where ||Uy, ()|l =maxo<i<|U; (O] .
The next theorem shows that vV t € (0, T), the solution of problem (2.4) approximate the solution of
problem (2.1), ash - 0.
Theorem 2.1 [14]:
Assume that u € ¢*1([0,1] x [0, T]), where u is the solution of problem (1). Then for h sufficiently
small, problem (2) has a unique solution:
U, € C1([0,T],R™1) such that:
max [[Un () — un (Ol = 0(h?),h > 0.

The next theorem shows that blow-up time T, of problem (2) converges to the blow-up time of
problem (1).

Theorem 2.2 [14]:

Letu € ¢*2([0,1] X [0,T)) be a blow-up solution of problem (1) and T is the blow-up time, such
that:

lim;_ fol u(x, t)v(x)dx = o,

where v(x) is the solution of problem

Ve = AV ,0<x <1, v(0)=v(1) =0,

Then for h sufficiently small, U, blows up at T, < o and

T,—> T as h- 0.
2.1 Euler Explicit Schemes
In order to derive the fully discrete explicit Euler finite difference equation to problem (1), we need to
approximate the time derivative in problem (2) using the forward word finite difference formula as
follows:

n+1 n n n n
A S B P 1S i< -1

or UMt = A = 2r)UP + it (U, + UL + UF (3)

where U* denotes the numerical of problem (1) at the point (x;, t,,),

x;=ih, ty=ty,1+k,; 1<i<I—1,n=12,....
UR = (U UR LURDT, =
It is well known that % < 1 is the stability condition of the explicit Euler scheme for heat equation,

[8]. So that, to ensure and speed up the convergence, the time-steps will be chosen as follows:
. (h? h%
k, = min (? '—(”Uf’f”w)p) ,a>0 4
The discrete problem (3) can be written in a matrix form as follows:
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UMY = (I + M H)US + k, FF (5)
-2 1 0
1 -2 1
where H = ) , B = ((UMP, (UDP, ... (U DP)T
0 1 -2 (m-1)x(m-1)

2.2 Euler Linear Implicit Scheme
Secondly, we derive linear implicit Euler formula, in this case we replace the time derivative in
problem (2) using the backward finite difference formula, as follows:

UM - UF _ URR - 208 4 U

+ (U™)P
or
A+ 2rHUM = UM+ U =0+ U 1<i<T -1

where

k, = (h—a) >0 6)

= \qormr) ¢

The matrix form of linear Euler implicit method can be written as follows:

(I = H)UF™! = UR + ky Fy; (7)

where H takes the form as in (4).

Remark 2.1: At each time level n, in order to find the approximate value of the vector U;} , we need to
solve the linear system (5).

Definition 2.2 [15]: We say that the solution of the explicit (implicit) Euler scheme blows up in a
finite time, if

1- Ul = 0asn = oo

2-Ty = Xn=0kn

where T}, is called the numerical blow-up time of the discrete problem.

Remark 2.2: The numerical blow-up time of the discrete solution depends on space step h and also on
the choice of time steps k,, . In addition, it is well known that, for each fixed time interval [0, T],
explicit (implicit) Euler numerical schemes give approximate solutions with rate of convergence,
0(k + h?), where k = max,, k,, ,[14], while with this choice of time —steps,(4) and (6), we have a rate
of convergence as follows:

0(h*), a h-0, for a<2.

3. NUMERICAL EXAMPLES
In this section, we will use the two discrete finite equation derived in section two (explicit and Implicit
Euler methods). Three numerical experiments will be considered:

U =uUy tu>  , x€(0,1),t>0
Problem 1: ulx,t) =0, ,x=0,1
u(x,0) = 100(x — x?) , xe (0,1)
U =u,,+ut , x€(0,1),t>0
Problem 2: ulx,t) =0, ,x=0,1
u(x,0) = 100(x — x?) , xe (0,1)
Up = Uy +u°>  , x€(0,1),t>0
Problem 3: <{u(x,t) =0, ,x=0,1
u(x,0) = 100(x — x?) , xe (0,1)

3.1 The time-steps, Error Bounds and order of convergence
For explicit Euler scheme, the time step, will be taken as follows:
. (h? h%
k, = min (? ’—(”Uﬁl”w)p) ,n=>0,
while, for linear implicit Euler scheme the time-steps will be taken as follows:

ha
k =(—) >0,
n = \qopr )"
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where « is a fixed positive constant.

As mentioned before, with (6) the stability condition of the explicit Euler method (2h~1k, < 1)is
satisfied. In fact, we have chosen this type of time-step in order to examine experimentally the rate of
convergence for the numerical blow-up times with respect to the space-steps. Therefore, we have
taken different choices of «a.

3.2 Numerical Blow-up Time

Since the analytical (exact) solutions to problems 1, 2 and 3 with the associated initial condition are
not known, we can only estimate numerically the blow-up times. As we will see later that, the
numerical solution for problem 1, 2 and 3 do not exist for all € N, because they become unbounded
(too large) at some time level n .

In this section, the numerical blow-up time is compute at the first time that ||U™||., = 10°, and the
value t,, = Yot k, is taken as the blow- up time of the discrete problems , which also can be
considered the numerical blow-up time of the differential equations in problems 1, 2 , and 3 .
Moreover, the error bonds between any two numerical blow-up times T,, and T}, are computed
respectively with discretization parameters (space-steps) 2h and h , is defined as follows:

Ep = |Ton = Tal
In order to estimate experimentally the order of accuracy of the numerical blow-up times, the order of
convergence will be estimated using the formula [8]:
S, = log(Ezn/En)
n log(2)
3.3 Numerical Results

The two schemes (Euler explicit and Euler implicit) will be used to compute the numerical solution
for each problem (1, 2 and 3), for different values of the space-step, while, the time-step formulas, (4)
and (6), will be considered with @ = 1,2. All the computational codes are written in Matlab.

In the next tables, we present blow-up times, the errors bound and the order of convergence and the
CPU time in second, and m represents the number of iteration when numerical blow-up occurs.

In tables (1) and (2), we present the numerical results of problem one, using explicit Euler scheme
with respect to @ = 1 and 2, respectively.

In tables (3) and (4), we present the numerical results of problem one, using implicit Euler scheme
with respect to @ = 1 and 2, respectively.

In tables (5) and (6), we present the numerical results of problem two, using explicit Euler scheme
with respect to @ = 1 and 2, respectively.

In tables (7) and (8), we present the numerical results of problem two, using implicit Euler scheme
with respect to @ = 1 and 2, respectively.

In tables (9) and (10), we present the numerical results of problem three, using explicit Euler scheme
with respect to @ = 1 and 2, respectively.

In tables (11) and (12), we present the numerical results of problem three, using implicit Euler scheme
with respect to @ = 1 and 2, respectively.

Table 1-Problem 1, p = 3, Explicit Euler scheme, a = 1

h m Ty CPUT E, Sy
1/20 16 8.217323e7%4 0.032616 e
1/40 44 8.153862e 04 0.065445 0.063461e7 9% ...
1/80 153 8.128780e ™94 0.141904 0.025081e %4 1.339217
1/160 586 8.119270e~%4 0.301804 0.009510e %4 1.399135
1/320 2315 8.115748e~%4 0.794801 0.003522¢ 04 1.433050

Table 2-Problem 1, p = 3, Explicit Euler scheme, a = 2

h m Ty CPUT Ey Sy
1/20 48 8.117361e~%4 0.242958 ... L
1/40 237 8.114347e04 0.402206 0.003014e %4 ...
1/80 1299 8.113593e704 0.713649 0.000754e~94 1.999042
1/160 1634 8.113404e 704 1.473871 0.000188e %4 1.996178
1/320 2545 8.113356e 04 3.613842 0.000048e %4 1.977279
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Table 3-Problem 1, p = 3, Implicit Euler scheme, a = 1

h m Th CPUT Eh Sh
1/20 19 8.114953e~ 04 0.181253 ...
1/40 52 8.113332e704 0.345534 0.001621e7%¢ ...
1/80 189 8.112719e %4 0.658324 0.000613e~%4 1.402925

1/160 620 8.112509e 04 2.058695 0.000210e~%4 1.545497
1/320 2762 8.112444e~04 5.151270 0.000064e %4 1.691877

Table 4-Problem 1, p = 3, Implicit Euler scheme, a = 2

h m T, CPUT E, Sh

1/20 50 8.115572e~04 0314055 e,
1/40 241 8.113178e~%4 0.712546 0.002394e=%% ...
1/80 1314 8.112552e~04 1.337102 0.000625e 04 1.935188
1/160 1675 8.112394e~04 4.003412 0.000158e =4 1.986238
1/320 2690 8.112354e~%4 18.222905 0.000040e =4 1.981852

Table 5-Problem (2), p = 4, Explicit Euler scheme, a = 1

h m T, CPUT Ej, Sk
1/20 5 2.705021e~05 0173642 e,
1/40 9 2.334890e 05 0.236839 0.370131e™% ...
1/80 29 2.204093e05 0.421795 0.130797 =05 1.500706

1/160 156 2.161953e705 0.760673 0.042140 =05 1.634067
1/320 802 2.149072e05 1.426539 0.012881 ™05 1.709945

Table 6-Problem (2), p = 4, Explicit Euler scheme, a = 2

h m T, CPUT Ep, Sh
1/20 6 2.133134e705 0243383  en e
1/40 11 2.141119e705 0.407437 0.007985¢™°5 ...
1/80 35 2.143078e05 0.762645 0.001959¢ 05 2.027175
1/160 166 2.143572¢705 1.433216 0.000494¢ 05 1.987534
1/320 904 2.143697e~05 2.679134 0.000125¢ 05 1.982582

Table 7-Problem (2), p = 4, Implicit Euler scheme, a = 1

h m T, CPUT Ep, Sk
1/20 5 2.438780e05 0.185578 e e
1/40 10 2.253194¢ 05 0.382259 0.185586e™5 ...
1/80 31 2.179634e~05 0.752232 0.073560e 05 1.335094
1/160 160 2.154803¢ 05 2.230338 0.024831¢705 1.566779
1/320 810 2.147023e05 8.852154 0.007780e~°5 1.674300
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Table 8-Problem (2), p = 4, Implicit Euler scheme, a = 2

h m Ty CPUT E, Sy
1/20 7 2.144663e7°5 0.323161 ...
1/40 12 2.143999¢ 795 0.646921 0.000664e7% ...
1/80 38 2.143798e 795 1.506066 0.000201e~95 1.723987
1/160 170 2.143752e79 4.381798 0.000046e~9> 2.127489
1/320 910 2.143742e795 18.229119 0.000010e~9%5 2.201633

Table 9 -roblem 3, p = 5, Explicit Euler scheme, a = 1

h m Ty, CPUT E, Sy
1/20 4 6.908534e797 0.150712 e
1/40 8 6.659545e 97 0.250338 0.248989¢7°7 ...
1/80 29 6.528684e797 0.448085 0.130860e~%7 0.928046
1/160 139 6.461718e797 0.777276 0.066966e 97 0.966534
1/320 780 6.427855e~97 1.387930 0.033863e~97 0.983719

Table 10-Problem 3, p = 5, Explicit Euler scheme, a = 2

h m T, CPUT E, Sy
1/20 5 6.430133e797 0.254173 ...
1/40 10 6.420118e~97 0.411752 0.010014e7°7 ...
1/80 31 6.422077e~97 0.729479 0.001958e~97 2.353973
1/160 148 6.422571e797 1.363684 0.000494e~97 1.987534
1/320 803 6.422696e~°7 2.733435 0.000125e~97 1.982582

Table 11-Problem 3, p = 5, Implicit Euler scheme, o = 1

h m Ty CPUT E, Sy
1/20 4 6.481121e°97 0.181134 ...
1/40 9 6.447556e~97 0.371425 0.033565e7%7 ...
1/80 30 6.433019e797 0.771574 0.014537e797 1.207228
1/160 142 6.427204e~97 2.325200 0.005815e~97 1.321878
1/320 798 6.424901e~%7 8.597677 0.002302e~97 1.336264

Table 12-Problem 3, p = 5, Implicit Euler scheme, a = 2

h m T, CPUT Ey, Sy,
1/20 5 6.422664e7°7 0.321618 e
1/40 10 6.421429e7°7 0.665700 0.001235e797 ...
1/80 33 6.421120e~°7 1.424917 0.000309e~97 1.998832
1/160 151 6.421042e7°97 4.642498 0.000078e~°7 1.986060
1/320 812 6.421023e7°7 17.445631 0.000019e~97 2.037474

3.4 Numerical Simulations

In this section, the numerical simulations are carried out to visualize the numerical graphs for the
numerical blow-up solution of problems 1,2 and 3 obtained from using explicit and linear implicit
Euler schemes, with h = 320 and a = 2.
Figure-(1, 2) present the discrete graph of the numerical solution of problem (1) obtained from using
explicit and implicit schemes, respectively.
Figure-(3, 4) present the discrete graph of the numerical solution of problem (2) obtained from using
explicit and implicit schemes, respectively.
Figure (5, 6) present the discrete graph of the numerical solution of problem (3) obtained from using
explicit and implicit schemes, respectively.

2083



Rasheed et al. Iraqi Journal of Science, 2020, Vol. 61, No. 8, pp: 2077-2086

Figure 1-Problem (1), explicit scheme Figure 2-Problem (1), implicit scheme

Figure 3-Problem (2), explicit scheme Figure 4-Problem (1), implicit scheme

$- 4 (10
1

Figure 5-Problem (3), explicit scheme Figure 6-Problem (3), implicit scheme

3.5 Analysis and Discussion

From the numerical results in section 3 and 4, we can point out the following observations:

1. In each of problems 1, 2 and 3, the numerical blow-up can only accour at the center point (x =
0.5), and that confirms the known theoretical blow-up results for semilinear heat equations, see [8].

2. The numerical blow-up times are decreasing as we increase the power of the nonlinear term in the
semi-linear heat equation. In fact, this result can be proved theoretically using maximum principle,
[20].

3. The errors bounds are decreasing as we refine the space-steps, which indicates that the sequence of
numerical blow-up times is convergent, as the space-step goes to zero.
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4. The order of convergence of numerical blow-up time, S, is almost close to 2, for @ = 2, while
1<85,<2, fora=1, as the space-step goes to zero, which indicates that with this choice of k,, ,
for a = 2, we have a rate of convergence:
0(h*), as h-0.
5. The numbers of iterations are increasing as we increase the value of a, or as we turn from the using
explicit scheme to the implicit scheme.
6. CPU time is increasing, as we refine the grids with respect to space and time.
7. The numerical simulations show that the growth rate of blow-up solution for each of studied
problems, arises from using explicit Euler scheme, is almost the same as that arises from using implicit
Euler scheme.
4. CONCLUSIONS

In this research, we have proposed two algorithms for the numerical solution of semi-linear heat
equations. The numerical blow-up solutions are computed for semi-linear heat equations with
Dirichlet boundary conditions. Explicit and implicit Euler finite difference schemes with a special
time-steps formula are presented and analyzed in order to solve the proposed problem and estimate the
blow-up times. The numerical result obtained by the proposed methods is analyzed, simulated and
presented in the form of tables and figures. Numerical examples show that the proposed methods are
successfully implemented with good efficiency and high order of convergence.
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