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Abstract

Some modified techniques are used in this article in order to have approximate
solutions for systems of Volterra integro-differential equations. The suggested
techniques are the so called Laplace-Adomian decomposition method and Laplace
iterative method. The proposed methods are robust and accurate as can be seen from
the given illustrative examples and from the comparison that are made with the
exact solution.
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Introduction
Integro-differential equations emerge in different branches of physics and engineering, such as
fluid mechanics, thin films, diffusion processes and so on [1-3]. It has encouraged many authors to
have numerical and approximate solutions [4-6]. The Laplace-Adomian decomposition method
(LADM) combines between two powerful methods, which are the Laplace transform and the Adomian
decomposition, and was introduced for the first time by Khuri [7, 8]. Previously presented methods
handled a wide class of non-linear problems and showed a great success in terms of obtaining the
approximate results. Agadjanov [9] solved the Duffing equation by using LADM, while Hossein
zadeh et al. applied LADM for solving Klein—Gordon equation [10]. Khan et al. employed LADM to
obtain a solution for nonlinear coupled partial differential equations [11]. Jafariet al. solved non-linear
fractional diffusion—wave equations by using LADM [12]. Manafianheris [13] applied the modified
LADM for solving integro-differential equations. In this work we employ two techniques to obtain an
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approximate solution for systems of integro-differential equations, which are LADM and Laplace
Iterative Method (LIM). This article is ordered as follows: The description of LADM is illustrated in
section 1, in section 2 Laplace Iterative Method is given, in section 3 some illustrative examples are
given, and at last the conclusions are presented in section 4.

1. Laplace-Adomian Decomposition Method ( LADM )

Consider the system of Volterra’s integro- differential equations:

yi(n) =fi +Ik| (X 1t)F(y11y2;--.!ym) dtl i :1!27""m (1)
0

y;(0) =Cj
where ¢j; , j=0,1,2,....,m-1 are given constants.
The technique consists at first of implementing Laplace transformation to equation (1), hence

L(y™ =f, +]ki(x,t)F(yl,yz,...,ym)dt), i =12,..,m )
Equation (2) ca; be simplified as :

L(y™)=F (s)+L(].ki(x,t)F(yl,yz,...,ym)dt), i =12,..,m

According to the propeorties of the Laplace transform we get :

" (s)=s""y; (0)=s"?y{(0)...—y;"(0) =

x | 3
F. (s)+L(Iki X OF(Y LY,y dt), 1 =12,...,m

Equation (3) can be written as :
Yi(S):S_n(S Y (0)=s"?y [ (0)...—y, " (0) +
1 1 (4)
S—n(Fi (S))+S—n(L(Iki(X,t)F(yl,yz,---,ym)dt)), i=12..m
0
By performing the inverse Laplace transform to equation (4) we get,
— 1 n- n-— ! n-—
yi(t)=L1(S—n(S 'y, (0)=s"y[(0)...—y, " () +
1 1 ()
L‘l(s—n(Fi (S)))+L‘1(S—n(L(Iki(X,t)F(yl,yz,~~-,ym)dt))), i=12..,m
0

According to Adomian decomposition method, we have,
S - 1 n- n- ' n-:
2V ®) =L 6"y, (0)-8"7y(0)...—y, " () +
n=0 S

1 1 X 0 © Ee) (6)
L (R M+ L Lk OOF Y100 2 Y ooy 2 Y D), 1 =12,m

0 n=0 n=0 n=0
This implies that
- 1 n-. n- ! n-— _ 1
yio=L1(s—n(S Y (0)=s"?y{(0)...~y; 1)(0)))+L1(S—H(Fi(8)))
x ()
~ 1 o0 0 o0 A
Vi =L1(S—n(L(J.ki(x OF O Y1 D Yoo DY u)t)), 1 =1,2,..,m
0 n=0 n=0 n=0

2. Laplace Iterative Method ( LIM)
Consider the system of Volterra’s integro- differential equations:
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Y =t + K CGOF (V1Y g0 V) At i =12,000m (8)
0

y;"(0) =Cjj,
where c;; , j=0,1,2,....,m-1 are given constants.
The technique consists at first of implementing Laplace transformation to equation (8), hence

Ly =f, + [k OCOF (Y3, 50 V), 0 =12,.,m )
0
Equation (9) can be simplified as :
Ly™)=F )+ L[k (COF (Y1 Y 5en Y o)), | =1.2,.0m
0

According to the properties of the Laplace transform we get :
s"Y,(8) 8"y, (0)=s"?y{(0)...—y,"(0) =

[ : (10)
F (s)+L(.[ki(x,t)F(yl,yz,...,ym)dt), i =1,2,...,m
Equation (10) can be V\;)ritten as:
1 1 n-2.,1 n-1
Yi(S)ZS—,,(S”’yi(O)—S y{(0)...—y; " P(0)) +
1 1 (11)
(R (s))+s—n(L(jki(x,t)F(yl,yz,...,ym)dt)), i =1,2,...,m
By performing the inverse Laplace transform to equation (11) we get,
1 1 n-1 n-2,,1 n-1
yi(t)=L_(S—n(S y:(0)-s yi(o)"'_yi( )(0)))+
LG )+ L (LK (DR Y YA, §=12000m (12
=f, +A (yl(t)!yz(t)!"'vyn(t))
where
f =L 6", =50y, " OD LR 6)) (13)
and

A (yl(t),yz(t),---,yn(t))=L1(8%(L(Iki(X,t)F(yl,yz,.--,ym)dt))), i=12..m
We are looking for the solution,
yi(t)=Zyij t),i=12...,n (14)

The nonlinear operators A; can be decomposed according to Daftardar-Gejji [14],
A (Y1) Y)Y () = A (Y10 (E) Y 50 (t) . Y o () +

0

5 A s O S0 A s O Sy )

j=0
According to equation (14) and equation (15), then equation (12) is equivalent to

(15)
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Zw:yij (t)=F +A (Y)Y 0(t)--, Y ot)) +

j=0

z{A ¥ O iynk(t»—Ai(’Zylk(t),...,’zynka))}

j=0
Hence we have,
Yie=f, ,1=12....m

Yis =A (Y1) Y o)y nolt)) = Ll(sin(l—(.[ki (X OF (Y1), Y 20 (t) Y hot))dt))), i =1,2,...,m
Vitg =L K KOF (Y O XY €0

LK OF (Y O E Y QDI T =120

For the uniqueness and convergence, see refer to a previous work [ 14].
3. Hlustrative Examples
In this section, two non-linear examples will be given in order to demonstrate the applicability
and accuracy of the suggested methods.
Example 1: consider the following equations
X
y/=1-2cost +sint +t° —J.(yl+y2)dt
Y (16)
y, =1-2sint —cost —j(y2 —y,)dt
0

with respectto  y,(0)=1, y,(0)=0, y,(0) =1, y,(0)=2

The exact solution is given by an earlier report [15] asy,(t) =t +cost,y,(t) =t +sint

(17)

Yiot) =2t +2cos(t)—sin(t)+ﬁ+_ 1

y11(t) =3sin(t) —cos(t) - 3t——+§—§—2—%—2520+

2 5 6 8
y1o(t) =4t —2cos(t) —4sin(t) -t —2L+12+§—0—;E+M+2

Yoolt)= —+25|n(t)+cos(t) -1
yoq(t) =t —3cos(t) - sm(t)——+t +M+3

_ SRS S S & £
Y22 (t) =2t +4cos(t) ~2sint) + 2t * ~ 5~ Yot L+ Ao e — o — g — 4
y1(t) =Y10®) +y11t) +y12(t)

Yolt)=Yoo)+yonlt)+yan(t)
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Table 1-demonstrates a numerical comparison between the approximate solution of problems (16)-(17)
using LADM and LIM with the exact solutions.

] LADM LIM LADM LIM

! () () yalt) yalt) Exactyy(t) | Exactyz(y
0 1 1 0 0 1 0
0.1 1.095 1.095 0.2 0.2 1.095 0.2
0.2 1.18 1.18 0.399 0.399 1.18 0.399
0.3 1.255 1.255 0.596 0.596 1.255 0.596
04 1.321 1.321 0.789 0.789 1.321 0.789
0.5 1.378 1.378 0.979 0.979 1.378 0.979
0.6 1.425 1.426 1.165 1.165 1.425 1.165
0.7 1.465 1.465 1.344 1.344 1.465 1.344
0.8 1.497 1.498 1.517 1.517 1.497 1.517
0.9 1.522 1.525 1.683 1.683 1.522 1.683

Table -1 Numerical comparison between the approximate solutions of problems (16)-(17) using
LADM with LIM and the exact solutions.
Figures-(1) and (2) represent a numerical comparison between the Approximate of y;and y, of
problems (16) — (17) using LADM and LIM with the exact solutions.
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Figure 1-Numerical comparison between the approximate solutions of y; using LADM and LIM with
the exact solutions.
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Figure 2-Numerical comparison between the approximate solutions of y, using LADM and (LIM with
the exact solutions.

2659



Ahmed Iragi Journal of Science, 2020, Vol. 61, No. 10, pp: 2655-2662

Example 2: Consider the nonlinear equations

[ICHOERHPLL

33t +7)
r=3t2 _
Y. o1

t?(t*-2)

Y5 =1-———"—[(y,() -y, ()t

4

subjectto  y,(0)=0, y,(0)=0

The exact solution is given by y,(t) =t°, y,(t) =t

8 4 3
Y1ott) =5+ 13 +t

10 t 14 t 13 t 12

V11(t) = 51556 ~ 54152 ~ 2565 ~ 5300
11 64800 61152 4368 52800 959616
7t t°

t12

ylz(t) _ t18 + t14 + tl3 +

959616 = 61152 © 4368 52800+64800 432

Yao(t) =% —35+t

g ot 5 t°
Y21() = 5025 T 830 360 T 22 6

_tt t* t® t
Y22(1) =5 325~ 360 " 22 5040
Y1) =yiot)+yt)+yo(t)
Yot)=yoot)+yort)+yoanlt)

432

10080

8
+ L4 167t

t® ottt
10080 190 T 12

(18)

(19)

Table 2-provides a numerical comparison between the approximate solution of problems (18)-(19)
using LADM and LIM with the exact solutions.

i LADM LIM LADM LIM Exact Exact yu(t)
ya(t) yi(t) Ya(t) Ya(t) ya(t) §

0 0 0 0 0 0 0
0.1 1.008x10° 1.008x10° 0.1 0.1 1x10° 0.1
0.2 8.134x10° 8.134x10° 0.2 0.2 8x10° 0.2
0.3 0.028 0.028 0.3 0.3 0.027 0.3
0.4 0.066 0.066 0.4 0.4 0.064 0.4
0.5 0.13 0.13 0.5 0.5 0.125 0.5
0.6 0.227 0.227 0.6 0.6 0.216 0.6
0.7 0.343 0.343 0.7 0.7 0.343 0.7
0.8 0.512 0.512 0.801 0.801 0.512 0.8
0.9 0.729 0.729 0.901 0.901 0.729 0.9

1 1 1 1.003 1.003 1 1

Table -2 Numerical comparison between the approximate solution of problems (18)-(19) using LADM

and LIM with the exact solutions

Figures-(3) and (4) represent numerical comparisons between the approximate solutions of y;and y,

of problems (18) — (19) using LADM and LIM with the exact solutions.
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Figure 3-Numerical comparison between the approximate solution of y; using LADM and LIM with
the exact solutions.
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Figure 4-Numerical comparisons between the approximate solution of y, using LADM and LIM with
the exact solutions.

4. Conclusions
In this study, the Laplace-Adomian decomposition and Laplace Iterative techniques were
successfully employed to investigate a solution of systems of Volterra integro-differential equations.
From the numerical results, one can observe that these techniques are powerful and acceptable for
solving such types of equations .
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