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Abstract 

    In this paper, we introduce and study the notion of the maximal ideal graph of a 

commutative ring with identity. Let R be a commutative ring with identity. The 

maximal ideal graph of R, denoted by MG(R), is the undirected graph with vertex 

set, the set of non-trivial ideals of R, where two vertices I1 and I2 are adjacent if 

I1 I2 and I1+I2 is a maximal ideal of R. We explore some of the properties and 

characterizations of the graph.  

 

Keywords: The maximal ideal graph of a commutative ring R, maximal ideals and 
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 للحلقات الابدالية ان المثاليات الأعظميةبي
 

 فرياد حدين عبدالقادر

 .العراق اربيل ،  صلاح الدين، جامعة التربية، كمية الرياضيات، قدم
 

 الخلاصة
 Rلتكن  عنرر المحايد.بال الابدالية اتعظممية لمحمقالأمثاليات البيان  فكرة  راسةدبفي هذا البحث نقهم    

 مهجهغير  بيانهه و MG(R) يرمز له  Rلمحمقة عظممية الأمثاليات البيان عنرر المحايد. الب حمقة ابدالية
 اذا كان متجاورين I2 و  I1أي رأسين  ، حيث أن  Rلمحمقة مثاليات غير تافهةال هي الذي مجمهعظة رؤوسهو 

I1 I2   وI1+I2   لمحمقة  مثالية أعظمميةهيR وكذلك ندتكذف بعض الخهاص والمميزات لهذا النهع من ،
 البيان.

1. Introduction 
    The graphs assigned to a commutative ring have been studied by many mathematicians. The zero 

divisor graph of commutative rings was first introduced by Beck in [1]. After that, many 

mathematicians studied such graphs [2- 5].  

    Throughout this paper, R will be a commutative ring with identity.  We introduce and investigate 

the notion of maximal ideal graph of a commutative ring R with identity, which is denoted by MG(R). 

It is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I1 and I2 

are adjacent if I1 I2 and I1+I2 are maximal ideals of R. First, we explore some of the properties and 

characterizations of these graphs. For instance, the rings R, for which the graph MG(R) is star or 

complete bipartite, are characterized. Next, we study the planarity  as well as the connectivity of 

MG(R). It is shown that MG(R) is a connected graph and diam (AG) (R) ≤ 3. 

    We recall some definitions in graph theory which are needed in our work [6, 7]. 

    The neighborhood of a vertex v in the graph G, denoted by N (v), is the set of vertices adjacent to v. 

The degree of a vertex v of the graph G, denoted by degG(v), is the number of edges incident to v.  A 
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graph G is a complete graph if every two of its vertices are adjacent. A complete graph of order n is 

denoted by Kn. A graph G  is n- partite, n≥1, if it is possible to partition V(G) into n subsets V1 ,V2, 

…,Vn( called partite sets) such that every element of E(G) joins a vertex of Vi to a vertex of Vj, i≠j. A 

complete bipartite graph with exactly two partitions of size m and n is denoted by Km, n. A graph G is 

said to be star if G= K1,n. Two vertices u and v of a graph G are said to be connected in G if there 

exists a path between them. A graph G is called connected if all pairs of its vertices are connected. Let 

G be a connected graph. The distance between a pair of vertices u and v of G, denoted by d(u, v), is 

the length of the shortest u-v path in G. The diameter, eccentricity, and radius of a connected graph G 

are defined by diamG=Max{d(u, v): u, v  V(G)},  e(v)=Max{d(u, v): for all u  V(G)} and 

rad(G)=Min{e(v): v V(G)}, respectively. A vertex v of a connected graph G is a cut-vertex if the 

components of G-v are more than the components of G. The girth of a graph G is the length of the 

shortest cycle in G. A k-coloring of a graph G is a function C:V(G) {1,2,...,k} such that C(u)≠C(v) 
whenever u is adjacent to v. If a k-coloring of G exists, then G is k-colorable. The chromatic number 

of G is defined by χ(G)=min{k; G is k-colorable}. A complete sub-graph Kn of a graph G is called a 

clique, and ω(G) is the clique number of  G, which is the greatest integer r   such that Kr⊆G. A 

graph G is called a planar graph if it can be drawn on a plane in such a way that any two of its edges 

either meet only at their end vertices or do not meet at all. A graph G is perfect if every induced 

subgraph H of G satisfies χ(H) = ω(H). A graph is a split graph if it can be partition in an independent 

set and a clique.  

    Throughout this work, we use   ,   ,    and    to denote the Jacobson radical, the set of non-

trivial ideals, the set of minimal and maximal ideals of a ring R, respectively. 

2. The Maximal Ideal Graph of R 

    In this section, we introduce the notion of the maximal ideal graph of a commutative ring with 

identity. We illustrate this concept by examples and remarks and give some of its properties and 

characterizations. 

Definition2.1: Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by 

MG(R),  is the undirected graph with vertex set, the set of all non-trivial ideals of R, where two 

vertices I1 and I2 are adjacent if I1 I2 and I1+I2 are maximal ideals of R. 

     We begin with the following easy result which may be needed in the sequel.   

Lemma2.2:  

1. Every non-maximal ideal is adjacent to at least one maximal ideal in MG(R).  

2. If P1, P2, …, Pn     such that ⋂   
 
         {(0)}, then the ideal ⋂   

 
    is adjacent to every 

P    in MG(R).  

Proof: 

1. Let J V(MG(R))\   . Then J⊂Q, for some Q    . Obviously, I+Q=Q. Thus I is adjacent to Q. 

2. The proof follows from the first part of the Lemma2.2.  

Example1: Consider the ring  6 . The graph MG(z60) is: 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 1-The graph MG(z60) 
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     It is obvious from Figure-1 that every non- maximal ideal is adjacent to a maximal ideal. 

Remark2.3: The co-maximal ideals of R are not adjacent in MG(R). 

     The next main result shows the adjacency between ideal vertices of MG(R). 

Theorem2.4: Let I, J and P be three distinct vertices of MG(R) with P   . Then: 

1. P N (I)  N (J)   P N (I+J), where I+J P, R. 

2. I⊂      P N(I) 

3. I⊂J ∧ J M   I N(J) 

4. I N (JL)  I N (J L)  N (J), for every vertices L in which LJ (0). 

Proof:  

1. Let I+J P. If P N(I) N(J), then by Lemma2.2, I, J⊂P. This means that I+J⊂P. Thus P N(I+J). 

Similarly, P N(I+J) leads to P N(I) N(J). 

2. Let I⊂   . Then I⊂I+    =  ⊆P. By Lemma2.2, P N(I).  

    Similarly, we can show the other parts of Theorem2.4. 

Proposition2.5: If {I, J} E(MG(R)) with I, J    , then there exists a unique M    such that 

M N(I) N(J). 

Proof: Suppose that M1, M2     and each of I and J are adjacent to both M1 and M2 in MG(R). Then 

by Lemma2.2, I, J⊂M1 M2. Since I+J    , then M1=I+J= M2. 

     The next result shows that the degree of maximal ideals determines the finiteness of MG(R).    

Proposition2.6: Let R be Artinian. If degI< , for every I   , then MG(R) is a finite graph. 

Proof: Since R is Artinian ([8], Theorem8.7), then R is isomorphic to R1  R2    Rn, where (Ri, Pi) 

is a local Artinian ring. The maximally of I gives that I=R1  R2    Ri-1 Pi  Ri+1    Rn, where 

1 i n. Since degI is finite, then     is finite. Thus MG(R) is a finite graph. 

     The next result gives the conditions on MG(R) for which R is a local ring.   

Poposition2.7: If MG(R) Kn or MG(R) K(n, 1), where n Z
+
, then R is local. 

Proof: If MG(R) Kn, then by Remark2.4, R is local. Let MG(R) be a star with center I. If MG(R) 

consists of only one edge, then it refers to completeness case. Assume that |  ( )|  3. If I   , then 

by Lemma2.2, V(MG(R))\{I}=  . Thus I=    (0). Now, suppose that P, S    with P S. 

Obviously, (0) PS   . Thus PS=I=  . This contradicts that |  ( )|  3. Therefore, I   . Again 

by Lemma2.2,   ={I}. Thus the proof is completed. 

    The converse of Proposition2.7 will be true if V(MG(R)) is a totally ordered set. We illustrate it in 

the following result. 

Proposition2.8: If V(MG(R)) is a totally ordered set, then MG(R) is a star.  

Proof: Since V(MG(R)) is a totally ordered set, then MG(R) contains a vertex I which is adjacent to 

each other vertex. If J I and P I are two distinct vertices of MG(R), then either P⊂J or J⊂P. For both 

cases, J and K are not adjacent vertices. Thus MG(R) is a star with center I.      

Corollary2.9: For any prime number p, the graph MG(   ) is star. 

Proof: It follows from Proposition2.8. 

    Now, we give the condition for which MG(R) be a complete bipartite, as follows.  

Theorem2.10: Let    {(0)}   . Then MG(R)     ; m, n Z
+
 if and only if      ⊆   . 

Proof: Let      ⊆     Choose V1=   and V2={I V(MG(R)): I⊆  }. From Lemma2.2, every two 

vertices in V1 are independent with respect to the graph MG(R). Since |  ( )|  1, then      . 

Thus I+J    for every I, J V2. This means that every two vertices in V2 are independent with respect 

to the graph MG(R). On the other hand, Theorem2.4 mentions that every I V1 is adjacent to each 

J V2. This ends the proof.  

Conversely, if MG(R) is a complete bipartite with partite sets W1 and W2, we can prove that Wi=   

and Wj={I V(MG(R)): I⊆  }, for i, j=1, 2 with i j. This completes the proof. 

Corollary2.11: Let       {(0)}. If MG(R) is not a complete bipartite, then MG(R) is a 3-partite 

graph. 

Proof: Since MG(R) is not a complete bipartite, then by Theorem2.10, I⊈  , for some I MG(R)\   . 

We set V1=  , V2=={I V(MG(R)): I⊆  } and V3=V(MG(R))\(V1 V2). It is not difficult to show that 

every two vertices in Vi are independent, for i=1, 2, 3. Thus MG(R) is a  3-partite graph.  

Example2: The graph MG(z36) is a 3-partite graph, as the following figure shows:   
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Figure 2- The graph MG(z36) 

 

    Now we are at the position of the following main result. 

Theorem2.12: Let    . If V (MG(R)) =     , then: 

1. The graph MG(R) is split. 

2. The graph MG(R) is perfect. 

3. The clique number of MG(R) is  ω(MG(R)) = max {|  |,|  |   }. 

Proof:  

1. Let A be the induced subgraph of MG(R) by  . Let S, T    with S T. Obviously, S+T R. If 

we assume that S+T   , then S=S+T=T, which is a contradiction. Therefore, S+T MG(R). Thus A 

is a complete graph. From Remark2.3, the vertices in    are independent. Hence MG(R) is a split 

graph. 

2. Let C:I1, I 2, ··· I2n+1, I1 be an induced cycle in MG(R) with n≥2. If C does not contain any maximal 

ideal vertex, then by the first part of Theorem2.12, {I1, I3} E(MG( )), which is  a contradiction. Let 

I1   . Obviously, I2n+1, I2   . Then they are adjacent in MG(R), which is a contradiction. Now, 

assume that C՛ is an induced odd cycle in   ( )̅̅ ̅̅ ̅̅ ̅̅ ̅ of length n 5. Then C՛ contains at least P, Q    

with P Q such that they are not adjacent in C՛. From Lemma2.2, P and Q are adjacent in   ( )̅̅ ̅̅ ̅̅ ̅̅ ̅. This 

contradics Lemma2.2. Hence, by the strong perfect graph theorem in [9],  MG( ) is a perfect graph. 

3. The proof follows from the first part of Theorem2.12.[10] 

Example3: Consider the ring    . The following graph shows that MG(   ) is a split and perfect 

graph. Also ω(MG(   ))= |  |   =3. 

 

 

 

 

 

 

 

 

 

Figure 3- The graph MG(z12) 

 

    In the next result, we find the girth of MG(R). 

Theorem2.13: Let    (0). The girth g(MG(R)) is either 3, 4, or  . 

Proof: If MG(R) contains an edge {S, T} with S, T   , then S, T S+T   . Thus S+T is adjacent 

to both S and T. This means that C: S, T, S+T, S is a cycle in MG(R). In this case, g(MG(R))=3. 

Suppose that for every {I, J} E(MG(R)), either I    or J   . If MG(R) does not possess any 

cycle, then g(MG(R))= . Now, suppose that Cn: I1, I2, …, In, I1 is a cycle in MG(R) of length n. Since 

the maximal ideals are not adjacent in MG(R), the vertices of C are alternatively maximal and non-

maximal ideals. Consequently,      . Let I1   . From Lemma2.2,    is adjacent to each of I1, I3 
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and I5. If I2=  , then C՛: I2, I3, I4, I5, I2 is a cycle in MG(R). If    I2, then C
ʹʹ
:   , I1, I2, I3,    is a cycle 

in MG(R). From both cases, we have shown that g(MG(R)) is either 3 or 4.  

    The next result shows the upper bound of clique number of MG(R).  

Proposition2.14: The clique of MG(R) contains in an its induced subgraph by {I V(MG(R)): I⊆P}, 

for exactly one P   .  

Proof: Let G be the clique of MG(R). Since the co-maximal ideals are not adjacent in MG(R), G has 

at most one maximal ideal. The adjacency of every two vertices of G and Proposition2.5 illustrates 

that there exists exactly one P    for which G is a subgraph of the graph induced by {I V(MG(R)): 

I⊆P}. 

3. The Planarity of MG(R) 

     First, we find the clique number of MG(R).  

Proposition3.1: If the subgraph induced by {I V(MG(R)): I⊆P}is planar, for every P   , then 

ω(MG(R)) is either 2 or 3 or 4. 

Proof: The proof follows from Proposition2.14 and Koratowsky theorem [6]. 

     In the next result, we show that MG(R) is a planar graph under a certain condition on vertex set of 

MG(R). 

Theorem3.2: If V(MG(R))=      is finite and |  |  3, then the graph MG(R) is planar. 

Proof: To show that MG(R) is planar, we refer to Koratowsky theorem. Since |  |  3, then any 

subgraph of MG(R) induced by five vertices is not complete. This means that MG(R) does not contain 

any complete subgraph K5. If we assume that MG(R) contains a K3. 3 with partite sets V1={I1, I2, I3} 

and V2={J1, J2, J3}, then by Lemma2.2 either V1⊆    or V2⊆   . Assume that V1⊆   . Then 

V2⊆   . From Proposition2.5, any two of L, M and N are independent. This contradicts that every 

minimal ideal are adjacent in MG(R). Therefore, MG(R) is a planar graph. 

    The next result demonstrates that the planarity of MG(R) limits the order of   .  

Proposition3.3: Let    (0). If MG(R) is planar graph, then |  |  4. 

Proof: Let MG(R) be a planar graph. Assume by contrary that MG(R) has at least five distinct 

maximal ideals, say M, N, P, Q and S. Obviously, any one of the vertices MNP, MNPQ and MNPQS  

are non-zero ideals and adjacent to each of ideals M, N and P in MG(R). Thus MG(R) contains a 

complete bipartite graph K3, 3. This contradicts the Koratowsky theorem. Therefore |  |  4. 

     Before closing this section, we give the following main result. 

Theorem3.4: Let R R1 R2   Rn, with R1, R2, , Rn are distinct fields. Then MG(R) is planar 

graph if and only if n 4.  

Proof: Let MG(R) be a planar graph. Assume that n>4. Obviously, (0) R2   Rn    and the sum 

of every two of ideals (0) R2   Rn, (0) (0)  R3   Rn, (0) R2 (0)  R4   Rn, 

(0) R2 R3 (0)  R5    Rn, (0) R2 R3 R4 (0)    Rn is equal to (0) R2   Rn. Then 

MG(R) contains a complete sub-graph of order 5. This contradicts the planarity of MG(R). Therefore, 

n 4. 

Conversely, let n 4. Clearly, E(MG(R))= , when n {1, 2}. Now, suppose that n=3. Then V(MG(R)) 

consists of I1=R1 (0)  (0), I2=(0) R2 (0), I3=(0) (0)  R3 I4=R1 R2 (0), I5=R1 (0)  R3 and 

I6=(0) R2 R3, and the graph MG(R) is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4- The graph MG(R1 R2 R3) 
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    Obviously, MG(R) is planar graph, when n=3.  

    Now, suppose that n=4. The maximal ideal vertices of MG(R) are (0) R2 R3 R4, R1 
(0)  R3 R4, R1 R2 (0) R4 and R1 R2 R3 (0), and the other vertices are (0) (0)  R3 R4, 

(0) R2 (0)   R4, (0) R2 R3 (0), R1 (0)  (0)   R4, R1 R2 (0)   (0), R1 (0)  R3 (0), 

R1 (0)  (0)   (0), (0) R2 (0)   (0), (0)  (0)  R3  (0), (0)  (0)  (0)   R4. This graph does 

not contain K5. Also, for every three distinct vertices I, J and K of MG(R), there exists at most two 

vertices adjacent to each of I, J and K. Thus MG(R) does not contain K(3, 3). In this case, MG(R) is a 

planar graph.  

4. The Connectivity of MG(R)   
    We start this section with the following result. 

Theorem4.1: Let R be a finite non-local ring with MG(R)) is a non-empty graph. Then every two 

vertices are disconnected if and only if R=R1 R2, where R1 and R2 are fields. 

Proof:  If R=R1 R2 with R1 and R2 are fields, then V(MG(R))={(0) R2, R1 (0)}. Obviously, (0) R2 

and R1 (0) are not adjacent in MG(R). 

Conversely, suppose that every two vertices are disconnected. Since R is a finite non-local ring, then 

R R1 R2   Rn, where (Ri, Pi) is a local ring for every i=1, 2, …, n and n 2. If P1 (0), then 

(P1 R2   Rn)+(P1 P2   Rn)     , which is a contradiction. Hence P1 (0). Similarly, 

P2=P3= =Pn=(0). Thus R1, R2, ..., Rn are fields. If n 3, then (0) R2   Rn and (0) (0) R3   Rn 

are adjacent in MG(R), which is a contradiction. Therefore,  n=2.  

    In the next main result, we investigate the connectivity of MG(R). 

Theorem4.2: If every two distinct maximal ideals of R have a non-zero intersection, then MG(R) is 

connected with diamMG(R) 3. 

Proof: Let K, L V(MG(R)) with K L. If {K, L} E(MG(R)), then they are connected. Suppose that 

{K, L} E(MG(R)). Then either K+L=R or K+L⊂P, for some P   . If K+L⊂P, then by Lemma2.2, 

P2: K, P, L is a path in MG(R). If K+L=R, then at least one of K and L is a maximal ideal and neither 

K⊂L nor L ⊂K. Assume that K   . If L   , again by Lemma2.2, P2ʹ: K, K L, L is a path in 

MG(R). Let L   . Then there exists M    such that L is adjacent to P. If P=K, then K is adjacent 

to L. Let K P. Then  P3: K, K P, P, L is a path in MG(R). From each case, we have shown that K and 

L are connected and d(K, L) 3. Thus MG(R) is connected with diamMG(R) 3. 

   Observe that the graph MG(R) may not be connected, when two distinct maximal ideals of R have a 

zero intersection. 

Example4: Consider the ring z6. Obviously, the following graph is disconnected. 

    

 

 

 

Figure 5- The graph MG (z6) 

 

   Next, we turn to the following result. 

Proposition4.3: If R is a principal ideal ring in which every two distinct maximal ideals of R have a 

non-zero intersection, then diamMG(R)  2. 

Proof: From Theorem4.2, d (P, Q)  2, for every P, Q V (MG(R)) with P Q, except for the 

possibility that P+Q=R and {P, Q} ⊈  . Now, suppose that P+Q=R and P    but Q   . Then 

there exits T    such that Q is adjacent to T. Since R is a principal ideal ring, then Q+ (T P) = 

(Q+T)  (Q+P) = T  R =T. Thus Q is adjacent to T P. Since P is also adjacent to T P, then d (P, Q) 

 2. Finally, diamMG(R)  2. 

    The next result discovers the characterizations of the cut-vertices of MG(R).  

Theorem4.4: Suppose that every two distinct maximal ideals of R have a non-zero intersection. If L is 

a cut-vertex of MG(R), then L=P Q, for some P, Q   . 

Proof: If L   , then by setting M=N=L, the proof will be completed. Now, suppose that L   . Let 

J and K be two vertices in different components of MG(R)-L. We have three cases: 

Case1: If J, K   , then J K N (J)  N (K). Since L is a cut-vertex of MG(R), then L= J K.  

(2) 
 

(3) 
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Case2: If J    and K   , then K N(S), for some S   . Since J S is adjacent to J and S, then     

L= J S.  

Case3: If J, K   , then P N (J)  and Q N (K), for some P, Q    such that P and Q are adjacent to 

J and K, respectively. Since I is a cut-vertex, then P Q. By the same way of Case2, we obtain that 

L=P Q. 

    In the next main result, we find the radius of MG(R). 

Theorem4.6: Let    (0). If |  | 2, then rad (MG(R)) 2. 

Proof: From Lemma2.2, d (  , K) =1, for every K   . Since every vertex I    is adjacent to a 

vertex in  , then d (  , I)  2. Assume that P, Q    with P Q. If PQ is adjacent to  , then 

  +PQ=P, for some P  R. Since JR+PQ⊆P, Q, then P=P=Q. This contradicts that P Q. Therefore, 

PQ is not adjacent toJR.  Thus the eccentrisity of JR is e (JR) =2. If there exists I V (MG(R)) with e (I) 

=1, then I is adjacent to each vertex J  R. Clearly, I  R. Since PQ is not adjacent toJR, for every 

M, Q  R with P Q, then neither I=JR nor I=PQ. Thus I⊈JR. Hence MG(R) contains a P  R which 

is adjacent to I. This contradicts that e(I)=1. Therefore JR  has the minimum eccentricity over all 

vertices of MG(R). So, rad(MG(R))=e(JR) 2. 
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