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Abstract

In this paper, we introduce and study the notion of the maximal ideal graph of a
commutative ring with identity. Let R be a commutative ring with identity. The
maximal ideal graph of R, denoted by MG(R), is the undirected graph with vertex
set, the set of non-trivial ideals of R, where two vertices I, and |, are adjacent if
I;#1, and I,+1, is a maximal ideal of R. We explore some of the properties and
characterizations of the graph.
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1. Introduction

The graphs assigned to a commutative ring have been studied by many mathematicians. The zero
divisor graph of commutative rings was first introduced by Beck in [1]. After that, many
mathematicians studied such graphs [2- 5].

Throughout this paper, R will be a commutative ring with identity. We introduce and investigate
the notion of maximal ideal graph of a commutative ring R with identity, which is denoted by MG(R).
It is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I, and I,
are adjacent if 1;#1, and I;+1, are maximal ideals of R. First, we explore some of the properties and
characterizations of these graphs. For instance, the rings R, for which the graph MG(R) is star or
complete bipartite, are characterized. Next, we study the planarity as well as the connectivity of
MG(R). It is shown that MG(R) is a connected graph and diam (AG) (R) < 3.

We recall some definitions in graph theory which are needed in our work [6, 7].

The neighborhood of a vertex v in the graph G, denoted by N (v), is the set of vertices adjacent to v.
The degree of a vertex v of the graph G, denoted by degg(V), is the number of edges incident to v. A
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graph G is a complete graph if every two of its vertices are adjacent. A complete graph of order n is
denoted by K. A graph G is n- partite, n>1, if it is possible to partition V(G) into n subsets V, ,V,,
...,Vn( called partite sets) such that every element of E(G) joins a vertex of V; to a vertex of V;j, i#. A
complete bipartite graph with exactly two partitions of size m and n is denoted by K, ,. A graph G is
said to be star if G= K;,. Two vertices u and v of a graph G are said to be connected in G if there
exists a path between them. A graph G is called connected if all pairs of its vertices are connected. Let
G be a connected graph. The distance between a pair of vertices u and v of G, denoted by d(u, v), is
the length of the shortest u-v path in G. The diameter, eccentricity, and radius of a connected graph G
are defined by diamG=Max{d(u, v): u, veV(G)}, e(v)=Max{d(u, v): for all ueV(G)} and
rad(G)=Min{e(v): veV(G)}, respectively. A vertex v of a connected graph G is a cut-vertex if the
components of G-v are more than the components of G. The girth of a graph G is the length of the
shortest cycle in G. A k-coloring of a graph G is a function C:V(G)—{1,2,....k} such that C(u)#C(v)
whenever u is adjacent to v. If a k-coloring of G exists, then G is k-colorable. The chromatic number
of G is defined by y(G)=min{k; G is k-colorable}. A complete sub-graph K, of a graph G is called a
clique, and ®(G) is the clique number of G, which is the greatest integer r> 1 such that K.€G. A
graph G is called a planar graph if it can be drawn on a plane in such a way that any two of its edges
either meet only at their end vertices or do not meet at all. A graph G is perfect if every induced
subgraph H of G satisfies y(H) = w(H). A graph is a split graph if it can be partition in an independent
set and a clique.

Throughout this work, we use Jg, Iz, mg and My to denote the Jacobson radical, the set of non-
trivial ideals, the set of minimal and maximal ideals of a ring R, respectively.
2. The Maximal Ideal Graph of R

In this section, we introduce the notion of the maximal ideal graph of a commutative ring with
identity. We illustrate this concept by examples and remarks and give some of its properties and
characterizations.
Definition2.1: Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by
MG(R), is the undirected graph with vertex set, the set of all non-trivial ideals of R, where two
vertices I; and I, are adjacent if I,#1, and I, +l, are maximal ideals of R.

We begin with the following easy result which may be needed in the sequel.
Lemma?2.2:
1. Every non-maximal ideal is adjacent to at least one maximal ideal in MG(R).
2. If Py, Py, ..., Py € Mg such that NjL, P, € Mg U{(0)}, then the ideal N]-, P; is adjacent to every
Pe Mg in MG(R).
Proof:
1. LetJEV(MG(R))\ Mg. Then JcQ, for some Q€ Mg. Obviously, 1+Q=Q. Thus I is adjacent to Q.
2. The proof follows from the first part of the Lemma2.2.
Examplel: Consider the ring zg. The graph MG(ze) is:

(2)

(10)
Figure 1-The graph MG(zg)
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It is obvious from Figure-1 that every non- maximal ideal is adjacent to a maximal ideal.
Remark2.3: The co-maximal ideals of R are not adjacent in MG(R).

The next main result shows the adjacency between ideal vertices of MG(R).
Theorem2.4: Let I, J and P be three distinct vertices of MG(R) with P€ Mg. Then:
1. PeN () nN (J) & PeN (1+J), where 1+J+P, R.
2. lc Jg = PeN(I)
3. e AJegM = 1€N(J)
4. 1eN (JL)= IeN (JNL) NN (J), for every vertices L in which LJ#(0).
Proof:
1. Let I+J#P. If PEN(I)NN(J), then by Lemma2.2, I, JcP. This means that 1+JcP. Thus PEN(I+J]).
Similarly, PEN(I+J) leads to PEN(I)NN(J).
2. Letlc Jg. Then Icl+ Jg =Jg €P. By Lemma2.2, PEN(]).

Similarly, we can show the other parts of Theorem2.4.
Proposition2.5: If {l, J}eE(MG(R)) with |, J& Mg, then there exists a unique M€ Mg such that
MeN()NN(J).
Proof: Suppose that M;, M,€ Mg and each of | and J are adjacent to both M; and M, in MG(R). Then
by Lemma2.2, I, JcM;NM,. Since I+J€ Mg, then M=1+J= M.

The next result shows that the degree of maximal ideals determines the finiteness of MG(R).
Proposition2.6: Let R be Artinian. If degl<co, for every € Mg, then MG(R) is a finite graph.
Proof: Since R is Artinian ([8], Theorem8.7), then R is isomorphic to Ry X RyX -- X Ry, where (R;, P;)
is a local Artinian ring. The maximally of | gives that I=R;X RyX -+ X Ri1XP;iX Rz X -+ X Ry, where
1<i<n. Since degl is finite, then I, is finite. Thus MG(R) is a finite graph.

The next result gives the conditions on MG(R) for which R is a local ring.
Poposition2.7: If MG(R)=K, or MG(R)=K(n, 1), where neZ", then R is local.
Proof: If MG(R)=K,, then by Remark2.4, R is local. Let MG(R) be a star with center I. If MG(R)
consists of only one edge, then it refers to completeness case. Assume that [MG(R)| =3. If I¢Mg, then
by Lemma2.2, V(MG(R))\{I}=Mg. Thus I=]Jg #(0). Now, suppose that P, S€ My with P=+S.
Obviously, (0)#PS¢Mg. Thus PS=I=]Jg. This contradicts that [MG(R)| =3. Therefore, 1€ My. Again
by Lemma2.2, Mg={l}. Thus the proof is completed.

The converse of Proposition2.7 will be true if V(MG(R)) is a totally ordered set. We illustrate it in
the following result.
Proposition2.8: If V(MG(R)) is a totally ordered set, then MG(R) is a star.
Proof: Since V(MG(R)) is a totally ordered set, then MG(R) contains a vertex | which is adjacent to
each other vertex. If J#I and P=1 are two distinct vertices of MG(R), then either PcJ or JcP. For both
cases, J and K are not adjacent vertices. Thus MG(R) is a star with center I.
Corollary2.9: For any prime number p, the graph MG(zn) is star.
Proof: It follows from Proposition2.8.

Now, we give the condition for which MG(R) be a complete bipartite, as follows.
Theorem2.10: Let Jg¢{(0)}uU Mg. Then MG(R)= K, »; m, n€Z" if and only if I — Mg € Ji.
Proof: Let Ig — My C Jg. Choose V;=Mg and V,={leV(MG(R)): IS]z}. From Lemma2.2, every two
vertices in V, are independent with respect to the graph MG(R). Since [IMG(R)| #1, then Jg & Mp.
Thus 1+J&Mpy, for every |, JEV,. This means that every two vertices in V, are independent with respect
to the graph MG(R). On the other hand, Theorem2.4 mentions that every 1€V, is adjacent to each
JEV,. This ends the proof.
Conversely, if MG(R) is a complete bipartite with partite sets W; and W,, we can prove that W;=Mg
and W={1IeV(MG(R)): IS]r}, for i, j=1, 2 with i=#j. This completes the proof.
Corollary2.11: Let Jg¢Mgr U{(0)}. If MG(R) is not a complete bipartite, then MG(R) is a 3-partite
graph.
Proof: Since MG(R) is not a complete bipartite, then by Theorem2.10, 1£]R, for some IEMG(R)\ M.
We set V=Mg, V,=={leV(MG(R)): IS]r} and V3=V(MG(R))\(V1UV,). It is not difficult to show that
every two vertices in V; are independent, for i=1, 2, 3. Thus MG(R) is a 3-partite graph.
Example2: The graph MG(zs) is a 3-partite graph, as the following figure shows:
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(3) (4)

)
(2)

6) (12) (18)
Figure 2- The graph MG(z)

Now we are at the position of the following main result.
Theorem2.12: Letmg # 0. If V (MG(R)) =mg U Mg, then:
1. The graph MG(R) is split.
2. The graph MG(R) is perfect.
3. The clique number of MG(R) is ®(MG(R)) = max {|mg|,|mg| + 1}.
Proof:
1. Let A be the induced subgraph of MG(R) bymg. Let S, TeE mg with S#T. Obviously, S+T=R. If
we assume that S+T€ mg, then S=S+T=T, which is a contradiction. Therefore, S+TEMG(R). Thus A
is a complete graph. From Remark2.3, the vertices in Mg are independent. Hence MG(R) is a split
graph.
2. LetC:ly, 15, -+ lpgeg, |1 be an induced cycle in MG(R) with n>2. If C does not contain any maximal
ideal vertex, then by the first part of Theorem2.12, {l;, I;}€E(MG(R)), which is a contradiction. Let
I,€ Mg. Obviously, l».1, 1,& Mg. Then they are adjacent in MG(R), which is a contradiction. Now,
assume that C is an induced odd cycle in MG(R) of length n= 5. Then C’ contains at least P, Qe My
with P=Q such that they are not adjacent in C'. From Lemma2.2, P and Q are adjacent in MG(R). This
contradics Lemma2.2. Hence, by the strong perfect graph theorem in [9], MG(R) is a perfect graph.
3. The proof follows from the first part of Theorem2.12.[10]
Example3: Consider the ring z,,. The following graph shows that MG(z,,) is a split and perfect
graph. Also ®(MG(z;5))= |mg| + 1=3.

(3) (2)

(6) (4)
Figure 3- The graph MG(zy,)

In the next result, we find the girth of MG(R).

Theorem2.13: Let Jg #(0). The girth g(MG(R)) is either 3, 4, or .

Proof: If MG(R) contains an edge {S, T} with S, T&Mg, then S, T#S+T€ Mg. Thus S+T is adjacent
to both S and T. This means that C: S, T, S+T, S is a cycle in MG(R). In this case, g(MG(R))=3.
Suppose that for every {I, J}eE(MG(R)), either 1€ My or Je My. If MG(R) does not possess any
cycle, then g(MG(R))=c0. Now, suppose that Cy: Iy, I, ..., I, I; is a cycle in MG(R) of length n. Since
the maximal ideals are not adjacent in MG(R), the vertices of C are alternatively maximal and non-
maximal ideals. Consequently, Jg € Mg. Let I,€ Mi. From Lemma2.2, ] is adjacent to each of Iy, I3
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and ls. If 1,=]g, then C: I, I3, I, Is I, is a cycle in MG(R). If Jg #l,, then C™: Jg, Iy, I, I3, Jg is a cycle
in MG(R). From both cases, we have shown that g(MG(R)) is either 3 or 4.

The next result shows the upper bound of clique number of MG(R).
Proposition2.14: The clique of MG(R) contains in an its induced subgraph by {IeV(MG(R)): ISP},
for exactly one Pe Mg.
Proof: Let G be the clique of MG(R). Since the co-maximal ideals are not adjacent in MG(R), G has
at most one maximal ideal. The adjacency of every two vertices of G and Proposition2.5 illustrates
that there exists exactly one Pe My for which G is a subgraph of the graph induced by {leV(MG(R)):
ICP}.
3. The Planarity of MG(R)

First, we find the clique number of MG(R).
Proposition3.1: If the subgraph induced by {leV(MG(R)): ISP}is planar, for every Pe Mg, then
®o(MG(R)) is either 2 or 3 or 4.
Proof: The proof follows from Proposition2.14 and Koratowsky theorem [6].

In the next result, we show that MG(R) is a planar graph under a certain condition on vertex set of
MG(R).
Theorem3.2: If V(MG(R))=mg U My is finite and |mg| <3, then the graph MG(R) is planar.
Proof: To show that MG(R) is planar, we refer to Koratowsky theorem. Since |mg| <3, then any
subgraph of MG(R) induced by five vertices is not complete. This means that MG(R) does not contain
any complete subgraph Ks. If we assume that MG(R) contains a Ks 3 with partite sets Vi={ly, I, I3}
and V,={J;, J,, J3}, then by Lemma2.2 either VS Mg or V,E Mg. Assume that V;S Mg. Then
V,C mg. From Proposition2.5, any two of L, M and N are independent. This contradicts that every
minimal ideal are adjacent in MG(R). Therefore, MG(R) is a planar graph.

The next result demonstrates that the planarity of MG(R) limits the order of Mg.
Proposition3.3: Let Jg #(0). If MG(R) is planar graph, then |[My| <4.
Proof: Let MG(R) be a planar graph. Assume by contrary that MG(R) has at least five distinct
maximal ideals, say M, N, P, Q and S. Obviously, any one of the vertices MNP, MNPQ and MNPQS
are non-zero ideals and adjacent to each of ideals M, N and P in MG(R). Thus MG(R) contains a
complete bipartite graph Ks 3. This contradicts the Koratowsky theorem. Therefore |My| <4.

Before closing this section, we give the following main result.
Theorem3.4: Let R=R;XRyX -+ XR,, with Ry, Ry,--, R, are distinct fields. Then MG(R) is planar
graph if and only if n<4.
Proof: Let MG(R) be a planar graph. Assume that n>4. Obviously, (0)XR,x --- XR,€ Mg and the sum
of every two of ideals (0) xR, X xR, (0)X (0) XR3X xRy, (0)XRyX (0) XRyX -+ XR,y,
(0)XR2%xR3Xx (0) XRs X -+ XR;,, (0)XRyxR3xRyx (0) X -+ XR,, is equal to (0)xR,X -+ xR,. Then
MG(R) contains a complete sub-graph of order 5. This contradicts the planarity of MG(R). Therefore,
n<4.
Conversely, let n<4. Clearly, E(MG(R))=0, when ne{1, 2}. Now, suppose that n=3. Then V(MG(R))
consists of 1;=R;x (0) x(0), 1,=(0)xR,x(0), 15=(0)x (0) XR;3 1,=R;xR,%(0), Is=R;x (0) XR; and
Is=(0)xR,%R3, and the graph MG(R) is:

Iy
15 I4-

Figure 4- The graph MG(R;XR,XR5)
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Obviously, MG(R) is planar graph, when n=3.

Now, suppose that n=4. The maximal ideal vertices of MG(R) are (0) xR, X R3x R4, R1Xx
(0) XxR3XxRy, RiXR,x(0)xR, and R;xR,;xR3x(0), and the other vertices are (0)x (0) XR3XRy,
(0)xRy%x (0) X Ry, (0)xRy;xR3x(0), Ryx (0) X (0) X Rs, RiXRyx (0) X (0), Ryx (0) xR3x(0),
R:1x (0) x (0) x (0), (0)xRyx (0) x (0), (0) x (0) xRsx (0), (0) x (0) x (0) X R4. This graph does
not contain Ks. Also, for every three distinct vertices I, J and K of MG(R), there exists at most two
vertices adjacent to each of I, J and K. Thus MG(R) does not contain K(3, 3). In this case, MG(R) is a
planar graph.

4. The Connectivity of MG(R)

We start this section with the following result.

Theorem4.1: Let R be a finite non-local ring with MG(R)) is a non-empty graph. Then every two
vertices are disconnected if and only if R=R;xR,, where R; and R; are fields.

Proof: If R=R;xR; with R; and R; are fields, then V(MG(R))={(0)xR;, R;x(0)}. Obviously, (0)xR;
and R;x(0) are not adjacent in MG(R).

Conversely, suppose that every two vertices are disconnected. Since R is a finite non-local ring, then
R=R;xR,X --- xR, where (R;, P;) is a local ring for every i=1, 2, ..., n and n=2. If P;#(0), then
(P1XRyX -+ X R)+(Py X P, % -+ XR,)) € Mg, which is a contradiction. Hence P;=(0). Similarly,
P,=P;=---=P,=(0). Thus Ry, R,, ..., R, are fields. If n>3, then (0)xXR,X --- XR, and (0)x(0)xRzX -+ XR,
are adjacent in MG(R), which is a contradiction. Therefore, n=2.

In the next main result, we investigate the connectivity of MG(R).

Theorem4.2: If every two distinct maximal ideals of R have a non-zero intersection, then MG(R) is
connected with diamMG(R)<3.

Proof: Let K, LEV(MG(R)) with K=L. If {K, L}eE(MG(R)), then they are connected. Suppose that
{K, L}¢E(MG(R)). Then either K+L=R or K+LcP, for some Pe Mg. If K+LcP, then by Lemma2.2,
P,: K, P, L is a path in MG(R). If K+L=R, then at least one of K and L is a maximal ideal and neither
KcL nor L cK. Assume that K€ Mg. If L€ Mg, again by Lemma2.2, P,": K, KNL, L is a path in
MG(R). Let L¢ Mg. Then there exists M€ Mg such that L is adjacent to P. If P=K, then K is adjacent
to L. Let K#P. Then Ps: K, KNP, P, L is a path in MG(R). From each case, we have shown that K and
L are connected and d(K, L)<3. Thus MG(R) is connected with diamMG(R)<3.

Observe that the graph MG(R) may not be connected, when two distinct maximal ideals of R have a
zero intersection.

Example4: Consider the ring z¢. Obviously, the following graph is disconnected.

(2) (3)
([ J { ]
Figure 5- The graph MG (z)

Next, we turn to the following result.
Proposition4.3: If R is a principal ideal ring in which every two distinct maximal ideals of R have a
non-zero intersection, then diamMG(R) <2.
Proof: From Theorem4.2, d (P, Q) <2, for every P, QeV (MG(R)) with P=Q, except for the
possibility that P+Q=R and {P, Q} €Mg. Now, suppose that P+Q=R and P€ My but Q¢ Mg. Then
there exits Te Mg such that Q is adjacent to T. Since R is a principal ideal ring, then Q+ (TNP) =
(Q+T) N(Q+P) = Tn R =T. Thus Q is adjacent to TNP. Since P is also adjacent to TNP, then d (P, Q)
<2. Finally, diamMG(R) <2.

The next result discovers the characterizations of the cut-vertices of MG(R).
Theorem4.4: Suppose that every two distinct maximal ideals of R have a non-zero intersection. If L is
a cut-vertex of MG(R), then L=PNQ, for some P, Q€ Mp.
Proof: If Le Mg, then by setting M=N=L, the proof will be completed. Now, suppose that L¢ Mg. Let
J and K be two vertices in different components of MG(R)-L. We have three cases:
Casel: If J, KE Mg, then JNKeN (J) NN (K). Since L is a cut-vertex of MG(R), then L= JnK.
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Case2: If Je My and K¢ Mg, then KeEN(S), for some Se Mg. Since JNS is adjacent to J and S, then
L=JnS.
Case3: If J, K& Mg, then PEN (J) and QeN (K), for some P, Q€ My such that P and Q are adjacent to
J and K, respectively. Since | is a cut-vertex, then P=Q. By the same way of Case2, we obtain that
L=PNQ.

In the next main result, we find the radius of MG(R).
Theorem4.6: Let Jg #(0). If [Mg|>2, then rad (MG(R))= 2.
Proof: From Lemma2.2, d (Jg, K) =1, for every Ke M. Since every vertex I¢ Mg is adjacent to a
vertex inMg, then d (Jr, 1) <2. Assume that P, Qe My with P=Q. If PQ is adjacent to]g, then
Jr+PQ=P, for some Pe My. Since Jx+PQCP, Q, then P=P=Q. This contradicts that P=Q. Therefore,
PQ is not adjacent toJg. Thus the eccentrisity of Ji is e (Jg) =2. If there exists IeV (MG(R)) with e (1)
=1, then | is adjacent to each vertex JE€ M. Clearly, I¢ My. Since PQ is not adjacent toJg, for every
M, Q€ My with P#Q, then neither I=Ji nor I=PQ. Thus I€Ji. Hence MG(R) contains a PE My which
is adjacent to I. This contradicts that e(l)=1. Therefore J has the minimum eccentricity over all
vertices of MG(R). So, rad(MG(R))=e(Jg)= 2.
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