

ISSN: 0067-2904

Maximal Ideal Graph of Commutative Rings

F. H. Abdulqadr
Department of Mathematics, College of Education, University of Salahaddin, Erbil, Iraq

Received: 18/9/2019
Accepted: 19/11/2019

Abstract

In this paper, we introduce and study the notion of the maximal ideal graph of a commutative ring with identity. Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by $\mathrm{MG}(\mathrm{R})$, is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I_{1} and I_{2} are adjacent if $\mathrm{I}_{1} \neq \mathrm{I}_{2}$ and $\mathrm{I}_{1}+\mathrm{I}_{2}$ is a maximal ideal of R . We explore some of the properties and characterizations of the graph.

Keywords: The maximal ideal graph of a commutative ring R, maximal ideals and connected graphs.

$$
\begin{aligned}
& \text { بيان (المثاليات الأعظمية للحلقات الابدالية } \\
& \text { فرياد حصين عبدالثقادر } \\
& \text { قسم الرياضيات، كلية التربية، جامعة صلاح الدين، اربيل ، العراق. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الخلاصة } \\
& \text { في هذا البحث نقوم بدراسة فكرة بيان الدثاليات الأعظمية للحقات الابدالية بالعنصر الـحايد. لتكن R R R R }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 部 }
\end{aligned}
$$

1. Introduction

The graphs assigned to a commutative ring have been studied by many mathematicians. The zero divisor graph of commutative rings was first introduced by Beck in [1]. After that, many mathematicians studied such graphs [2-5].

Throughout this paper, R will be a commutative ring with identity. We introduce and investigate the notion of maximal ideal graph of a commutative ring R with identity, which is denoted by $\operatorname{MG}(\mathrm{R})$. It is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I_{1} and I_{2} are adjacent if $I_{1} \neq I_{2}$ and $I_{1}+I_{2}$ are maximal ideals of R. First, we explore some of the properties and characterizations of these graphs. For instance, the rings R, for which the graph $\operatorname{MG}(\mathrm{R})$ is star or complete bipartite, are characterized. Next, we study the planarity as well as the connectivity of $M G(R)$. It is shown that $M G(R)$ is a connected graph and diam (AG) $(R) \leq 3$.

We recall some definitions in graph theory which are needed in our work [6, 7].
The neighborhood of a vertex v in the graph G , denoted by $\mathrm{N}(\mathrm{v})$, is the set of vertices adjacent to v . The degree of a vertex v of the graph G , denoted by $\operatorname{deg}_{\mathrm{G}}(\mathrm{v})$, is the number of edges incident to v . A
graph G is a complete graph if every two of its vertices are adjacent. A complete graph of order n is denoted by K_{n}. A graph G is n - partite, $n \geq 1$, if it is possible to partition $V(G)$ into n subsets V_{1}, V_{2}, $\ldots, \mathrm{V}_{\mathrm{n}}$ (called partite sets) such that every element of $\mathrm{E}(\mathrm{G})$ joins a vertex of V_{i} to a vertex of $\mathrm{V}_{\mathrm{j}}, \mathrm{i} \neq \mathrm{j}$. A complete bipartite graph with exactly two partitions of size m and n is denoted by $K_{m, n}$. A graph G is said to be star if $G=K_{1, n}$. Two vertices u and v of a graph G are said to be connected in G if there exists a path between them. A graph G is called connected if all pairs of its vertices are connected. Let G be a connected graph. The distance between a pair of vertices u and v of G, denoted by $d(u, v)$, is the length of the shortest u-v path in G . The diameter, eccentricity, and radius of a connected graph G are defined by $\operatorname{diamG}=\operatorname{Max}\{\mathrm{d}(\mathrm{u}, \mathrm{v}): \mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})\}, \quad \mathrm{e}(\mathrm{v})=\operatorname{Max}\{\mathrm{d}(\mathrm{u}, \mathrm{v})$: for all $\mathrm{u} \in \mathrm{V}(\mathrm{G})\}$ and $\operatorname{rad}(\mathrm{G})=\operatorname{Min}\{\mathrm{e}(\mathrm{v}): \mathrm{v} \in \mathrm{V}(\mathrm{G})\}$, respectively. A vertex v of a connected graph G is a cut-vertex if the components of G-v are more than the components of G. The girth of a graph G is the length of the shortest cycle in G. A k-coloring of a graph G is a function $\mathrm{C}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{k}\}$ such that $\mathrm{C}(\mathrm{u}) \neq \mathrm{C}(\mathrm{v})$ whenever u is adjacent to v. If a k-coloring of G exists, then G is k-colorable. The chromatic number of G is defined by $\chi(G)=\min \{k ; G$ is k-colorable $\}$. A complete sub-graph K_{n} of a graph G is called a clique, and $\omega(\mathrm{G})$ is the clique number of G, which is the greatest integer $r \geq 1$ such that $K_{r} \subseteq G$. A graph G is called a planar graph if it can be drawn on a plane in such a way that any two of its edges either meet only at their end vertices or do not meet at all. A graph G is perfect if every induced subgraph H of G satisfies $\chi(\mathrm{H})=\omega(\mathrm{H})$. A graph is a split graph if it can be partition in an independent set and a clique.

Throughout this work, we use $\mathrm{J}_{\mathrm{R}}, \mathrm{I}_{\mathrm{R}}, \mathrm{m}_{\mathrm{R}}$ and M_{R} to denote the Jacobson radical, the set of nontrivial ideals, the set of minimal and maximal ideals of a ring R , respectively.

2. The Maximal Ideal Graph of \mathbf{R}

In this section, we introduce the notion of the maximal ideal graph of a commutative ring with identity. We illustrate this concept by examples and remarks and give some of its properties and characterizations.
Definition2.1: Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by $\operatorname{MG}(\mathrm{R})$, is the undirected graph with vertex set, the set of all non-trivial ideals of R, where two vertices I_{1} and I_{2} are adjacent if $I_{1} \neq I_{2}$ and $I_{1}+I_{2}$ are maximal ideals of R.

We begin with the following easy result which may be needed in the sequel.

Lemma2.2:

1. Every non-maximal ideal is adjacent to at least one maximal ideal in $\mathrm{MG}(\mathrm{R})$.
2. If $P_{1}, P_{2}, \ldots, P_{n} \in M_{R}$ such that $\bigcap_{i=1}^{n} P_{i} \notin M_{R} \cup\{(0)\}$, then the ideal $\bigcap_{i=1}^{n} P_{i}$ is adjacent to every $P \in M_{R}$ in $M G(R)$.

Proof:

1. Let $\mathrm{J} \in \mathrm{V}(\mathrm{MG}(\mathrm{R})) \backslash \mathrm{M}_{\mathrm{R}}$. Then $\mathrm{J} \subset \mathrm{Q}$, for some $\mathrm{Q} \in \mathrm{M}_{\mathrm{R}}$. Obviously, $\mathrm{I}+\mathrm{Q}=\mathrm{Q}$. Thus I is adjacent to Q .
2. The proof follows from the first part of the Lemma2.2.

Example1: Consider the ring z_{60}. The graph $\operatorname{MG}\left(\mathrm{z}_{60}\right)$ is:

Figure 1-The graph $\operatorname{MG}\left(\mathrm{z}_{60}\right)$

It is obvious from Figure-1 that every non- maximal ideal is adjacent to a maximal ideal.
Remark2.3: The co-maximal ideals of R are not adjacent in $\mathrm{MG}(\mathrm{R})$.
The next main result shows the adjacency between ideal vertices of $M G(R)$.
Theorem2.4: Let I, J and P be three distinct vertices of $M G(R)$ with $P \in M_{R}$. Then:

1. $P \in N(I) \cap N(J) \Leftrightarrow P \in N(I+J)$, where $I+J \neq P$, R.
2. $\mathrm{I} \subset \mathrm{J}_{\mathrm{R}} \Rightarrow \mathrm{P} \in \mathrm{N}(\mathrm{I})$
3. $\mathrm{I} \subset \mathrm{J} \wedge \mathrm{J} \notin \mathrm{M} \Rightarrow \mathrm{I} \notin \mathrm{N}(\mathrm{J})$
4. $I \in N(J L) \Rightarrow I \in N(J \cap L) \cap N(J)$, for every vertices L in which $L J \neq(0)$.

Proof:

1. Let $\mathrm{I}+\mathrm{J} \neq \mathrm{P}$. If $\mathrm{P} \in \mathrm{N}(\mathrm{I}) \cap \mathrm{N}(\mathrm{J})$, then by Lemma2.2, $\mathrm{I}, \mathrm{J} \subset \mathrm{P}$. This means that $\mathrm{I}+\mathrm{J} \subset \mathrm{P}$. Thus $\mathrm{P} \in \mathrm{N}(\mathrm{I}+\mathrm{J})$. Similarly, $P \in N(I+J)$ leads to $P \in N(I) \cap N(J)$.
2. Let $\mathrm{I} \subset \mathrm{J}_{\mathrm{R}}$. Then $\mathrm{I} \subset \mathrm{I}+\mathrm{J}_{\mathrm{R}}=\mathrm{J}_{\mathrm{R}} \subseteq \mathrm{P}$. By Lemma2.2, $\mathrm{P} \in \mathrm{N}(\mathrm{I})$.

Similarly, we can show the other parts of Theorem2.4.
Proposition2.5: If $\{I, J\} \in E(M G(R))$ with $I, J \notin M_{R}$, then there exists a unique $M \in M_{R}$ such that $\mathrm{M} \in \mathrm{N}(\mathrm{I}) \cap \mathrm{N}(\mathrm{J})$.
Proof: Suppose that $M_{1}, M_{2} \in M_{R}$ and each of I and J are adjacent to both M_{1} and M_{2} in $M G(R)$. Then by Lemma2.2, $I, J \subset M_{1} \cap M_{2}$. Since $I+J \in M_{R}$, then $M_{1}=I+J=M_{2}$.

The next result shows that the degree of maximal ideals determines the finiteness of $M G(R)$.
Proposition2.6: Let R be Artinian. If $\operatorname{deg} I<\infty$, for every $I \in M_{R}$, then $M G(R)$ is a finite graph.
Proof: Since R is Artinian ([8], Theorem8.7), then R is isomorphic to $R_{1} \times R_{2} \times \cdots \times R_{n}$, where $\left(R_{i}, P_{i}\right)$ is a local Artinian ring. The maximally of I gives that $I=R_{1} \times R_{2} \times \cdots \times R_{i-1} \times P_{i} \times R_{i+1} \times \cdots \times R_{n}$, where $1 \leq i \leq n$. Since degI is finite, then $I_{R_{i}}$ is finite. Thus $M G(R)$ is a finite graph.

The next result gives the conditions on $\operatorname{MG}(\mathrm{R})$ for which R is a local ring.
Poposition2.7: If $M G(R) \cong K_{n}$ or $M G(R) \cong K(n, 1)$, where $n \in Z^{+}$, then R is local.
Proof: If $M G(R) \cong K_{n}$, then by Remark2.4, R is local. Let $M G(R)$ be a star with center I. If $M G(R)$ consists of only one edge, then it refers to completeness case. Assume that $|M G(R)| \geq 3$. If $I \notin M_{R}$, then by Lemma2.2, $V(M G(R)) \backslash\{I\}=M_{R}$. Thus $I=J_{R} \neq(0)$. Now, suppose that $P, S \in M_{R}$ with $P \neq S$. Obviously, $(0) \neq P S \notin M_{R}$. Thus $\mathrm{PS}=\mathrm{I}=\mathrm{J}_{\mathrm{R}}$. This contradicts that $|\mathrm{MG}(\mathrm{R})| \geq 3$. Therefore, $\mathrm{I} \in \mathrm{M}_{\mathrm{R}}$. Again by Lemma2.2, $\mathrm{M}_{\mathrm{R}}=\{\mathrm{I}\}$. Thus the proof is completed.

The converse of Proposition 2.7 will be true if $\mathrm{V}(\operatorname{MG}(\mathrm{R}))$ is a totally ordered set. We illustrate it in the following result.
Proposition2.8: If $V(M G(R))$ is a totally ordered set, then $M G(R)$ is a star.
Proof: Since $V(M G(R))$ is a totally ordered set, then $M G(R)$ contains a vertex I which is adjacent to each other vertex. If $\mathrm{J} \neq \mathrm{I}$ and $\mathrm{P} \neq \mathrm{I}$ are two distinct vertices of $\mathrm{MG}(\mathrm{R})$, then either $\mathrm{P} \subset \mathrm{J}$ or $\mathrm{J} \subset \mathrm{P}$. For both cases, J and K are not adjacent vertices. Thus $M G(R)$ is a star with center I.
Corollary 2.9: For any prime number p, the graph $\left.M G\left(z_{p}\right)\right)$ is star.
Proof: It follows from Proposition2.8.
Now, we give the condition for which $\operatorname{MG}(\mathrm{R})$ be a complete bipartite, as follows.
Theorem2.10: Let $J_{R} \notin\{(0)\} \cup M_{R}$. Then $M G(R) \cong K_{m, n} ; m, n \in Z^{+}$if and only if $I_{R}-M_{R} \subseteq J_{R}$.
Proof: Let $I_{R}-M_{R} \subseteq J_{R}$. Choose $V_{1}=M_{R}$ and $V_{2}=\left\{I \in V(M G(R))\right.$: $\left.I \subseteq J_{R}\right\}$. From Lemma2.2, every two vertices in V_{1} are independent with respect to the graph $M G(R)$. Since $|M G(R)| \neq 1$, then $J_{R} \notin M_{R}$. Thus $\mathrm{I}+\mathrm{J} \notin \mathrm{M}_{\mathrm{R}}$ for every $\mathrm{I}, \mathrm{J} \in \mathrm{V}_{2}$. This means that every two vertices in V_{2} are independent with respect to the graph $\operatorname{MG}(\mathrm{R})$. On the other hand, Theorem2.4 mentions that every $\mathrm{I} \in \mathrm{V}_{1}$ is adjacent to each $\mathrm{J} \in \mathrm{V}_{2}$. This ends the proof.
Conversely, if $\operatorname{MG}(\mathrm{R})$ is a complete bipartite with partite sets W_{1} and W_{2}, we can prove that $\mathrm{W}_{\mathrm{i}}=\mathrm{M}_{\mathrm{R}}$ and $W_{j}=\left\{I \in V(M G(R)): I \subseteq J_{R}\right\}$, for $\mathrm{i}, \mathrm{j}=1,2$ with $\mathrm{i} \neq \mathrm{j}$. This completes the proof.
Corollary2.11: Let $J_{R} \notin M_{R} \cup\{(0)\}$. If $M G(R)$ is not a complete bipartite, then $M G(R)$ is a 3-partite graph.
Proof: Since $M G(R)$ is not a complete bipartite, then by Theorem $2.10, I \nsubseteq J_{R}$, for some $I \in M G(R) \backslash M_{R}$. We set $V_{1}=M_{R}, V_{2}==\left\{I \in V(M G(R))\right.$: $\left.I \subseteq J_{R}\right\}$ and $V_{3}=V(M G(R)) \backslash\left(V_{1} \cup V_{2}\right)$. It is not difficult to show that every two vertices in V_{i} are independent, for $i=1,2,3$. Thus $M G(R)$ is a 3-partite graph.
Example2: The graph $\mathrm{MG}\left(\mathrm{z}_{36}\right)$ is a 3-partite graph, as the following figure shows:

Figure 2- The graph $\operatorname{MG}\left(\mathrm{z}_{36}\right)$
Now we are at the position of the following main result.
Theorem2.12: $\operatorname{Letm}_{R} \neq \emptyset$. If $V(M G(R))=m_{R} \cup M_{R}$, then:

1. The graph $M G(R)$ is split.
2. The graph $M G(R)$ is perfect.
3. The clique number of $M G(R)$ is $\omega(M G(R))=\max \left\{\left|m_{R}\right|,\left|m_{R}\right|+1\right\}$.

Proof:

1. Let A be the induced subgraph of $M G(R)$ bym $_{R}$. Let $S, T \in m_{R}$ with $S \neq T$. Obviously, $S+T \neq R$. If we assume that $S+T \in m_{R}$, then $S=S+T=T$, which is a contradiction. Therefore, $S+T \in M G(R)$. Thus A is a complete graph. From Remark2.3, the vertices in M_{R} are independent. Hence $M G(R)$ is a split graph.
2. Let $C: I_{1}, I_{2}, \cdots I_{2 n+1}$, I_{1} be an induced cycle in $M G(R)$ with $n \geq 2$. If C does not contain any maximal ideal vertex, then by the first part of Theorem $2.12,\left\{I_{1}, I_{3}\right\} \in E(M G(R))$, which is a contradiction. Let $I_{1} \in M_{R}$. Obviously, $I_{2 n+1}, I_{2} \notin M_{R}$. Then they are adjacent in $M G(R)$, which is a contradiction. Now, assume that C^{\prime} is an induced odd cycle in $\overline{M G(R)}$ of length $n \geq 5$. Then C^{\prime} contains at least $P, Q \in M_{R}$ with $\mathrm{P} \neq \mathrm{Q}$ such that they are not adjacent in C^{\prime}. From Lemma2.2, P and Q are adjacent in $\overline{M G(R)}$. This contradics Lemma2.2. Hence, by the strong perfect graph theorem in [9], $\operatorname{MG}(\mathrm{R})$ is a perfect graph.
3. The proof follows from the first part of Theorem2.12.[10]

Example3: Consider the ring z_{12}. The following graph shows that $\operatorname{MG}\left(\mathrm{z}_{12}\right)$ is a split and perfect graph. Also $\omega\left(\mathrm{MG}\left(\mathrm{z}_{12}\right)\right)=\left|\mathrm{m}_{\mathrm{R}}\right|+1=3$.

(6)
(4)

Figure 3- The graph $\operatorname{MG}\left(\mathrm{z}_{12}\right)$
In the next result, we find the girth of $\operatorname{MG}(\mathrm{R})$.
Theorem2.13: Let $J_{R} \neq(0)$. The girth $g(M G(R))$ is either 3, 4, or ∞.
Proof: If $M G(R)$ contains an edge $\{S, T\}$ with $S, T \notin M_{R}$, then $S, T \neq S+T \in M_{R}$. Thus $S+T$ is adjacent to both S and T. This means that C : $S, T, S+T, S$ is a cycle in $M G(R)$. In this case, $g(M G(R))=3$. Suppose that for every $\{I, J\} \in E(M G(R))$, either $I \in M_{R}$ or $J \in M_{R}$. If $M G(R)$ does not possess any cycle, then $g(M G(R))=\infty$. Now, suppose that $C_{n}: I_{1}, I_{2}, \ldots, I_{n}, I_{1}$ is a cycle in $M G(R)$ of length n. Since the maximal ideals are not adjacent in $\operatorname{MG}(\mathrm{R})$, the vertices of C are alternatively maximal and nonmaximal ideals. Consequently, $J_{R} \notin M_{R}$. Let $I_{1} \in M_{R}$. From Lemma2.2, J_{R} is adjacent to each of I_{1}, I_{3}
and I_{5}. If $I_{2}=J_{R}$, then $C^{\prime}: I_{2}, I_{3}, I_{4}, I_{5}, I_{2}$ is a cycle in $\operatorname{MG}(R)$. If $J_{R} \neq I_{2}$, then $C^{\prime \prime}: J_{R}, I_{1}, I_{2}, I_{3}, J_{R}$ is a cycle in $\mathrm{MG}(\mathrm{R})$. From both cases, we have shown that $g(\mathrm{MG}(\mathrm{R}))$ is either 3 or 4 .

The next result shows the upper bound of clique number of $M G(R)$.
Proposition2.14: The clique of $\mathrm{MG}(\mathrm{R})$ contains in an its induced subgraph by $\{\mathrm{I} \in \mathrm{V}(\mathrm{MG}(\mathrm{R}))$: $\mathrm{I} \subseteq \mathrm{P}\}$, for exactly one $P \in M_{R}$.
Proof: Let G be the clique of $M G(R)$. Since the co-maximal ideals are not adjacent in $M G(R)$, G has at most one maximal ideal. The adjacency of every two vertices of G and Proposition 2.5 illustrates that there exists exactly one $P \in M_{R}$ for which G is a subgraph of the graph induced by $\{I \in V(M G(R))$: $\mathrm{I} \subseteq \mathrm{P}\}$.
3. The Planarity of $\operatorname{MG}(\mathbf{R})$

First, we find the clique number of $\mathrm{MG}(\mathrm{R})$.
Proposition3.1: If the subgraph induced by $\{I \in V(M G(R))$: $I \subseteq P\}$ is planar, for every $P \in M_{R}$, then $\omega(\mathrm{MG}(\mathrm{R}))$ is either 2 or 3 or 4 .
Proof: The proof follows from Proposition2.14 and Koratowsky theorem [6].
In the next result, we show that $\mathrm{MG}(\mathrm{R})$ is a planar graph under a certain condition on vertex set of MG(R).
Theorem3.2: If $V(\operatorname{MG}(R))=m_{R} \cup M_{R}$ is finite and $\left|m_{R}\right| \leq 3$, then the graph $M G(R)$ is planar.
Proof: To show that $M G(R)$ is planar, we refer to Koratowsky theorem. Since $\left|m_{R}\right| \leq 3$, then any subgraph of $\mathrm{MG}(\mathrm{R})$ induced by five vertices is not complete. This means that $\mathrm{MG}(\mathrm{R})$ does not contain any complete subgraph K_{5}. If we assume that $\mathrm{MG}(\mathrm{R})$ contains a $\mathrm{K}_{3.3}$ with partite sets $\mathrm{V}_{1}=\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\right\}$ and $V_{2}=\left\{\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}\right\}$, then by Lemma2.2 either $\mathrm{V}_{1} \subseteq \mathrm{M}_{\mathrm{R}}$ or $\mathrm{V}_{2} \subseteq \mathrm{M}_{\mathrm{R}}$. Assume that $\mathrm{V}_{1} \subseteq \mathrm{M}_{\mathrm{R}}$. Then $\mathrm{V}_{2} \subseteq \mathrm{~m}_{\mathrm{R}}$. From Proposition2.5, any two of L, M and N are independent. This contradicts that every minimal ideal are adjacent in $M G(R)$. Therefore, $M G(R)$ is a planar graph.

The next result demonstrates that the planarity of $\mathrm{MG}(\mathrm{R})$ limits the order of M_{R}.
Proposition3.3: Let $J_{R} \neq(0)$. If $\mathrm{MG}(\mathrm{R})$ is planar graph, then $\left|\mathrm{M}_{\mathrm{R}}\right| \leq 4$.
Proof: Let $M G(R)$ be a planar graph. Assume by contrary that $M G(R)$ has at least five distinct maximal ideals, say M, N, P, Q and S. Obviously, any one of the vertices MNP, MNPQ and MNPQS are non-zero ideals and adjacent to each of ideals M, N and P in $M G(R)$. Thus $M G(R)$ contains a complete bipartite graph $\mathrm{K}_{3,3}$. This contradicts the Koratowsky theorem. Therefore $\left|\mathrm{M}_{\mathrm{R}}\right| \leq 4$.

Before closing this section, we give the following main result.
Theorem3.4: Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, with $R_{1}, R_{2}, \cdots, R_{n}$ are distinct fields. Then $M G(R)$ is planar graph if and only if $n \leq 4$.
Proof: Let $M G(R)$ be a planar graph. Assume that $n>4$. Obviously, $(0) \times R_{2} \times \cdots \times R_{n} \in M_{R}$ and the sum of every two of ideals (0) $\times \mathrm{R}_{2} \times \cdots \times R_{n}$, (0) $\times(0) \times R_{3} \times \cdots \times R_{n},(0) \times R_{2} \times(0) \times R_{4} \times \cdots \times R_{n}$, $(0) \times R_{2} \times R_{3} \times(0) \times R_{5} \times \cdots \times R_{n},(0) \times R_{2} \times R_{3} \times R_{4} \times(0) \times \cdots \times R_{n}$ is equal to $(0) \times R_{2} \times \cdots \times R_{n}$. Then $M G(R)$ contains a complete sub-graph of order 5 . This contradicts the planarity of $M G(R)$. Therefore, $\mathrm{n} \leq 4$.
Conversely, let $n \leq 4$. Clearly, $\mathrm{E}(\mathrm{MG}(\mathrm{R}))=\emptyset$, when $\mathrm{n} \in\{1,2\}$. Now, suppose that $\mathrm{n}=3$. Then $\mathrm{V}(\mathrm{MG}(\mathrm{R}))$ consists of $I_{1}=R_{1} \times(0) \times(0), I_{2}=(0) \times R_{2} \times(0), I_{3}=(0) \times(0) \times R_{3} I_{4}=R_{1} \times R_{2} \times(0), I_{5}=R_{1} \times(0) \times R_{3}$ and $\mathrm{I}_{6}=(0) \times \mathrm{R}_{2} \times \mathrm{R}_{3}$, and the graph $\mathrm{MG}(\mathrm{R})$ is:

Figure 4- The graph $\operatorname{MG}\left(\mathrm{R}_{1} \times \mathrm{R}_{2} \times \mathrm{R}_{3}\right)$

Obviously, $\operatorname{MG}(\mathrm{R})$ is planar graph, when $\mathrm{n}=3$.
Now, suppose that $n=4$. The maximal ideal vertices of $M G(R)$ are $(0) \times R_{2} \times R_{3} \times R 4, R 1 \times$ (0) $\times R_{3} \times R_{4}, R_{1} \times R_{2} \times(0) \times R_{4}$ and $R_{1} \times R_{2} \times R_{3} \times(0)$, and the other vertices are $(0) \times(0) \times R_{3} \times R_{4}$, $(0) \times R_{2} \times(0) \times R_{4},(0) \times R_{2} \times R_{3} \times(0), R_{1} \times(0) \times(0) \times R_{4}, R_{1} \times R_{2} \times(0) \times(0), R_{1} \times(0) \times R_{3} \times(0)$, $\mathrm{R}_{1} \times(0) \times(0) \times(0),(0) \times \mathrm{R}_{2} \times(0) \times(0),(0) \times(0) \times \mathrm{R}_{3} \times(0),(0) \times(0) \times(0) \times \mathrm{R}_{4}$. This graph does not contain K_{5}. Also, for every three distinct vertices I, J and K of $M G(R)$, there exists at most two vertices adjacent to each of I, J and K . Thus $\mathrm{MG}(\mathrm{R})$ does not contain $\mathrm{K}(3,3)$. In this case, $\mathrm{MG}(\mathrm{R})$ is a planar graph.

4. The Connectivity of MG(R)

We start this section with the following result.
Theorem4.1: Let R be a finite non-local ring with $\mathrm{MG}(\mathrm{R})$) is a non-empty graph. Then every two vertices are disconnected if and only if $R=R_{1} \times R_{2}$, where R_{1} and R_{2} are fields.
Proof: If $R=R_{1} \times R_{2}$ with R_{1} and R_{2} are fields, then $V(M G(R))=\left\{(0) \times R_{2}, R_{1} \times(0)\right\}$. Obviously, (0$) \times R_{2}$ and $R_{1} \times(0)$ are not adjacent in $M G(R)$.
Conversely, suppose that every two vertices are disconnected. Since R is a finite non-local ring, then $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where (R_{i}, P_{i}) is a local ring for every $i=1,2, \ldots, n$ and $n \geq 2$. If $P_{1} \neq(0)$, then $\left(P_{1} \times R_{2} \times \cdots \times R_{n}\right)+\left(P_{1} \times P_{2} \times \cdots \times R_{n}\right) \in M_{R}$, which is a contradiction. Hence $P_{1}=(0)$. Similarly, $P_{2}=P_{3}=\cdots=P_{n}=(0)$. Thus $R_{1}, R_{2}, \ldots, R_{n}$ are fields. If $n \geq 3$, then $(0) \times R_{2} \times \cdots \times R_{n}$ and $(0) \times(0) \times R_{3} \times \cdots \times R_{n}$ are adjacent in $\operatorname{MG}(\mathrm{R})$, which is a contradiction. Therefore, $\mathrm{n}=2$.

In the next main result, we investigate the connectivity of $\mathrm{MG}(\mathrm{R})$.
Theorem4.2: If every two distinct maximal ideals of R have a non-zero intersection, then $\operatorname{MG}(\mathrm{R})$ is connected with $\operatorname{diamMG}(\mathrm{R}) \leq 3$.
Proof: Let $K, L \in V(M G(R))$ with $K \neq L$. If $\{K, L\} \in E(M G(R))$, then they are connected. Suppose that $\{K, L\} \notin E(M G(R))$. Then either $K+L=R$ or $K+L \subset P$, for some $P \in M_{R}$. If $K+L \subset P$, then by Lemma2.2, $P_{2}: K, P, L$ is a path in $M G(R)$. If $K+L=R$, then at least one of K and L is a maximal ideal and neither $K \subset L$ nor $L \subset K$. Assume that $K \in M_{R}$. If $L \in M_{R}$, again by Lemma2.2, $P_{2}{ }^{\prime}: K, K \cap L, L$ is a path in $M G(R)$. Let $L \notin M_{R}$. Then there exists $M \in M_{R}$ such that L is adjacent to P. If $P=K$, then K is adjacent to L. Let $K \neq P$. Then $P_{3}: K, K \cap P, P, L$ is a path in $M G(R)$. From each case, we have shown that K and L are connected and $d(K, L) \leq 3$. Thus $M G(R)$ is connected with diamMG(R) ≤ 3.
Observe that the graph $\operatorname{MG}(\mathrm{R})$ may not be connected, when two distinct maximal ideals of R have a zero intersection.
Example4: Consider the ring Z_{6}. Obviously, the following graph is disconnected.

Figure 5- The graph MG (\mathbf{z}_{6})
Next, we turn to the following result.
Proposition4.3: If R is a principal ideal ring in which every two distinct maximal ideals of R have a non-zero intersection, then $\operatorname{diamMG}(\mathrm{R}) \leq 2$.
Proof: From Theorem4.2, d $(P, Q) \leq 2$, for every $P, Q \in V(M G(R))$ with $P \neq \mathrm{Q}$, except for the possibility that $P+Q=R$ and $\{P, Q\} \nsubseteq M_{R}$. Now, suppose that $P+Q=R$ and $P \in M_{R}$ but $Q \notin M_{R}$. Then there exits $T \in M_{R}$ such that Q is adjacent to T. Since R is a principal ideal ring, then $Q+(T \cap P)=$ $(\mathrm{Q}+\mathrm{T}) \cap(\mathrm{Q}+\mathrm{P})=\mathrm{T} \cap \mathrm{R}=\mathrm{T}$. Thus Q is adjacent to $\mathrm{T} \cap \mathrm{P}$. Since P is also adjacent to $\mathrm{T} \cap \mathrm{P}$, then $\mathrm{d}(\mathrm{P}, \mathrm{Q})$ ≤ 2. Finally, $\operatorname{diamMG}(\mathrm{R}) \leq 2$.

The next result discovers the characterizations of the cut-vertices of $\mathrm{MG}(\mathrm{R})$.
Theorem4.4: Suppose that every two distinct maximal ideals of R have a non-zero intersection. If L is a cut-vertex of $M G(R)$, then $L=P \cap Q$, for some $P, Q \in M_{R}$.
Proof: If $L \in M_{R}$, then by setting $M=N=L$, the proof will be completed. Now, suppose that $L \notin M_{R}$. Let J and K be two vertices in different components of $M G(R)$-L. We have three cases:
Case1: If $J, K \in M_{R}$, then $J \cap K \in N(J) \cap N(K)$. Since L is a cut-vertex of $M G(R)$, then $L=J \cap K$.

Case2: If $J \in M_{R}$ and $K \notin M_{R}$, then $K \in N(S)$, for some $S \in M_{R}$. Since $J \cap S$ is adjacent to J and S, then $\mathrm{L}=\mathrm{J} \cap \mathrm{S}$.
Case3: If $J, K \notin M_{R}$, then $P \in N(J)$ and $Q \in N(K)$, for some $P, Q \in M_{R}$ such that P and Q are adjacent to J and K, respectively. Since I is a cut-vertex, then $P \neq Q$. By the same way of Case2, we obtain that $\mathrm{L}=\mathrm{P} \cap \mathrm{Q}$.

In the next main result, we find the radius of $\mathrm{MG}(\mathrm{R})$.
Theorem4.6: Let $\mathrm{J}_{\mathrm{R}} \neq(0)$. If $\left|\mathrm{M}_{\mathrm{R}}\right| \geq 2$, then $\operatorname{rad}(\mathrm{MG}(\mathrm{R}))=2$.
Proof: From Lemma2.2, $d\left(J_{R}, K\right)=1$, for every $K \in M_{R}$. Since every vertex $I \notin M_{R}$ is adjacent to a vertex inM_{R}, then $\mathrm{d}\left(\mathrm{J}_{\mathrm{R}}, \mathrm{I}\right) \leq 2$. Assume that $\mathrm{P}, \mathrm{Q} \in \mathrm{M}_{\mathrm{R}}$ with $\mathrm{P} \neq \mathrm{Q}$. If PQ is adjacent to J_{R}, then $J_{R}+P Q=P$, for some $P \in M_{R}$. Since $J_{R}+P Q \subseteq P, Q$, then $P=P=Q$. This contradicts that $P \neq Q$. Therefore, $P Q$ is not adjacent toJ J_{R}. Thus the eccentrisity of J_{R} is $e\left(J_{R}\right)=2$. If there exists $I \in V(M G(R))$ with $e(I)$ $=1$, then I is adjacent to each vertex $J \in M_{R}$. Clearly, $I \notin M_{R}$. Since $P Q$ is not adjacent toJ J_{R}, for every $M, Q \in M_{R}$ with $P \neq Q$, then neither $I=J_{R}$ nor $I=P Q$. Thus $I \nsubseteq J_{R}$. Hence $M G(R)$ contains a $P \in M_{R}$ which is adjacent to I. This contradicts that $e(I)=1$. Therefore J_{R} has the minimum eccentricity over all vertices of $\operatorname{MG}(\mathrm{R})$. $\mathrm{So}, \operatorname{rad}(\mathrm{MG}(\mathrm{R}))=e\left(\mathrm{~J}_{\mathrm{R}}\right)=2$.

References

1. Beck, I. 1988. Coloring of Commutative ring. J. of Algebra, 116(1): 208-226.
2. Salehifar, S., Khashyarmanish, K. and Afkhami, M. 2017. On the annihilator-ideal graph of commutative rings, J. of Algebraic Com., 66(2): 431-447.
3. Gupta, R, Sen, S. M. K. and Ghosh, S. 2015. A variation of zero-divisor graphs, Discuss. Math. Gen. Algebra Appl, 35(2): 159-176.
4. Yu, H. Y. and Wu, T. 2015. Commutative rings R whose $\mathrm{C}(\mathrm{AG}(\mathrm{R})$ consists only of triangles. J. of Comm. Algebra, 43(3): 1076-1097.
5. Pirzada, S. and Raja, R. 2016. On the metric dimension of a zero-divisor graph, J. of Comm. Algebra, 45(4): 1399-1408.
6. Gary, C. and Linda, L. 1986. Graphs and Digraphs, 2nd ed., Wadsworth and Brook/ Cole , California.
7. Foldes, S. and Hammer, P.L. 1977. Split graphs, Proceedings of the 8th South-Eastern Conference on Combinatorics: Graph Theory and Computing, pp. 311-315.
8. Atiyah, M. F. and Macdonald, I. G. 1969. Introduction to Commutative Algebra. London: Addison-Wesley Publishing Co; Don Mills, Ont.
9. Berge, C. 1961. Farbung von Graphen deren sämtliche beziehungsweise deren ungerade Kreise Starr Sind, Wissenschaftliche Zeitschrift, Martin Luther Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe, 114-115,
10. David, S. and Richard, M. 1991. Abstract Algebra. U. S. A.: Prentice-Hall Inc.
