

ISSN: 0067-2904

## Quasi J-Regular Modules

Rafid M. AL - Shaiban Nuhad S. AL-Mothafar<br>Department of Mathematic, College of Science, University of Baghdad, Baghdad, Iraq

Received: 17/9/2019
Accepted: 31/10/2019


#### Abstract

Throughout this note, R is commutative ring with identity and M is a unitary R module. In this paper, we introduce the concept of quasi J-pure submodules as a generalization of quasi-pure submodules and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an Rmodule M is called quasi J -regular module if every submodule of M is quasi J -pure. Many results about this concept are proved.


Keywords: J-pure submodules, quasi J-pure submodules, J-regular modules and quasi J-regular modules.

$$
\begin{aligned}
& \text { J- المقاسات شبه المنتظمة من النمط } \\
& \text { رافد مالك عظية"، نهاد سالم عبد الكريم } \\
& \text { قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق } \\
& \text { الخلاصة } \\
& \text { ليكن M مقاسا ايمن على حلقة R ذات محايد. في هذا البحث قدمنا مفهوم المقاسات الجزئية شبه النقية } \\
& \text { من النمط J- كتعميم لمفهوم المقاسات الجزئية شبه النقية. وباستخدام المفهوم هذا نعرف المقاسات شبه } \\
& \text { المنتظمة من النمط - J إذ يقال ان المقاس M على الحقة R بأنه شبه منتظم من النمط -J اذا كان كل } \\
& \text { مقاس جزئي منة يكون شبه نقياً من النمط -J. أعطينا العديد من النتائج حول المفهوم هزا. }
\end{aligned}
$$

## 1. Introduction

M is viewed as a right module over an arbitrary ring with identity. A submodule N of an R -module $M$ is called pure in $M$ if $I N=N \cap I M$ for every ideal $I$ of $R[1]$. An $R$-module $M$ is a regular module if every submodule of M is pure [2]. A submodule N of an R -module M is called a J -pure if N is pure in $J(M)$, i.e. for each ideal $I$ of $R, I J(M) N=I N$, where $J(M)$ is the Jacobson radical of $M$. An Rmodule M is said to be J -regular module if every submodule of M is J -pure submodule. Equivalently, an R-module M is said to be J -regular module if for each $m \in \mathrm{~J}(\mathrm{M}), r \in \mathrm{R}$, there exists $t \in$ Rsuch that $r m=r t r$ [3].

First, recall that a submodule N of an R -module M is called a quasi - pure if, for each $x \in \mathrm{M}$ and $x \notin \mathrm{~N}$, there exists a pure submodule L of M such that $\mathrm{N} \subseteq \mathrm{L}$ and $\quad x \notin \mathrm{~L}$, and an R -module M is called quasi - regular module if every submodule of $M$ is quasi - pure [4]. This paper is structured in two sections. In section one we introduce a comprehensive study of J-pure submodules. Some results are analogous to the properties of pure submodules. In section two, we study the concept of quasi Jregular modules.

## 2. Quasi J-pure Submodules

In this section we introduce the concept of quasi J-pure submodule. We investigate the basic properties of these types of submodules which are analogous to the properties of J-pure submodules.

[^0]
## Definition (2.1):

Let M be an R-module. A submodule N of M is called a quasi J -pure submodule of M if for each $x \in \mathrm{M}$ and $x \notin \mathrm{~N}$, there exists a J-pure submodule L of M such that $\mathrm{N} \subseteq \mathrm{L}$ and $x \notin \mathrm{~L}$.

## Remarks and Examples (2.2)

(1) It is clear that every J-pure submodule is quasi J-pure. But the converse is not true in general. For example, let $\mathrm{M}=Z_{8} \oplus Z_{2}$ be a Z-module, and $\mathrm{N}=\langle(\overline{4}, \overline{0})\rangle=\{(\overline{0}, \overline{0}),(\overline{4}, \overline{0})\}$. It is easily checked that N is quasi J-pure submodule of M , since for each $x \in \mathrm{M}$ and $x \notin \mathrm{~N}$, there exists a J-pure submodule L of M containing N and $x \notin \mathrm{~L}$. But N is not J -pure submodule of M , since $(\overline{4}, \overline{0})=$ $2(\overline{2}, \overline{0}) \in 2 \mathrm{~J}\left(Z_{8} \oplus Z_{2}\right) \cap N$, but $(\overline{4}, \overline{0}) \notin 2 . N=\{(\overline{0}, \overline{0})\}$.
(2) In any R -module M , the submodule $\langle 0\rangle$ is always quasi J -pure.
(3) It is clear that every quasi -pure is quasi J-pure but the converse is not true. For example, the submodule $\{\overline{0}, \overline{2}\}$ in the Z -module $Z_{4}$ is quasi J-pure. Since it is J-pure, but $\{\overline{0}, \overline{2}\}$ is not quasi - pure. Since there exists no pure submodule that contains $\{\overline{0}, \overline{2}\}$.

Recall that an R-module M is called J-pure simple if M and $\langle 0\rangle$ are the only J-pure submodules of M .
(4) Every J-pure simple R-module M does not contain quasi J -pure submodule except $<0>$ and M . For example, the Z -modules $\mathrm{Q}, \mathrm{Z}_{\mathrm{P}} \infty$. Q as Z -module is J -pure simple, hence Q does not have J -pure submodule except $\langle 0>$ and Q . Since $\mathrm{Q} \cap \mathrm{IJ}(\mathrm{Q})=\mathrm{Q} \cap \mathrm{IQ}=\mathrm{IQ}$, then Q is quasi J -pure since it is J pure.
(5) If $\mathrm{N}_{1}$ and $\mathrm{N}_{2}$ are quasi J-pure submodules of an R -module M , then $\mathrm{N}_{1} \cap \mathrm{~N}_{2}$ is quasi Jpure submodule of M . To show this, let $x \in \mathrm{M}$ and $x \notin \mathrm{~N}_{1} \cap \mathrm{~N}_{2}$, then either $x \notin \mathrm{~N}_{1}$ or $x \notin \mathrm{~N}_{2}$. If $x \notin \mathrm{~N}_{1}$, since $\mathrm{N}_{1}$ is quasi J-pure in M , then there exists a J-pure submodule L of M such that $\mathrm{N}_{1} \subseteq \mathrm{~L}$ and $x \notin \mathrm{~L}$. Hence $\mathrm{N}_{1} \cap \mathrm{~N}_{2} \subseteq \mathrm{~L}$. Similarly if $x \notin \mathrm{~N}_{2}$.
(6) The sum of two quasi J-pure submodules may not be quasi J-pure. For example, consider the Zmodule $\mathrm{M}=Z_{8} \oplus Z_{2}$. Let $\mathrm{N}=\langle(\overline{4}, \overline{1})\rangle$ and $\mathrm{L}=\langle(\overline{2}, \overline{0})\rangle$. It is easy to see that N and L are quasi pure submodules in M . But $\mathrm{N}+\mathrm{L}=\{(\overline{0}, \overline{0}),(\overline{2}, \overline{0}),(\overline{4}, \overline{0}),(\overline{6}, \overline{0}),(\overline{4}, \overline{1})\}$ is not quasi J-pure submodule in M.
The following propositions give some properties of quasi J-pure submodules.

## Proposition (2.3)

Let M be an R -module and N be a J -pure submodule of M . If B is a quasi J -pure submodule of N , then B is a quasi J -pure submodule of M .

## Proof

Let $x \in \mathrm{M}$ with $x \notin \mathrm{~B}$, then either $x \in \mathrm{~N}$ or $x \notin \mathrm{~N}$. Assume that $x \in \mathrm{~N}$, but B is a quasi J-pure submodule in N , so there exists a J -pure submodule L in N such that $\mathrm{B} \subseteq \mathrm{L}$ and $x \notin \mathrm{~L}$. Thus we have L is J -pure in N and N is J -pure in M , so by 3 , remark 2.3 , L is J -pure in M . Therefore, B is quasi J pure submodule of M . Now, if $x \notin \mathrm{~N}$, then there is nothing to prove, since N is a J -pure submodule in M containing B and $x \notin \mathrm{~N}$.

## Proposition (2.4)

Let R be a good ring, M be an R -module and N be a J -pure submodule of M . If B is a submodule of M containing N , then N is a quasi J -pure submodule of B .

## Proof

Since N is J -pure submodule of M and $\mathrm{N} \subseteq \mathrm{B}$, since R is a good ring. So, as previously shown [3, proposition 2.4], N is a J -pure submodule of B , which implies that N is quasi J -pure submodule of B .

Recall that the A submodule $N$ of an $R$ - module M is called a small submodule of M (notation $N \ll \mathrm{M}$ ), if for any submodule $A$ of M such that $\mathrm{M}=N+A$, then $A=\mathrm{M}$ [5].

## Proposition (2.5)

Let M be an R -module and N be a quasi J -pure submodule of M . If H is a small submodule of N , then $\frac{\mathrm{N}}{\mathrm{H}}$ is a quasi J-pure submodule of $\frac{\mathrm{M}}{\mathrm{H}}$. Proof

Let $x+\mathrm{H} \in \frac{\mathrm{M}}{\mathrm{H}}$ with $x+\mathrm{H} \notin \frac{\mathrm{N}}{\mathrm{H}}$. Then $x \notin \mathrm{~N}$ and $x \in \mathrm{M}$. But N is quasi J-pure in M . So there exists a J-pure submodule L of M such that $\mathrm{N} \subseteq \mathrm{L}$ and $x \notin \mathrm{~L}$. This implies that $\frac{\mathrm{N}}{\mathrm{H}} \subseteq \frac{\mathrm{L}}{\mathrm{H}}$ and $x+\mathrm{H} \notin$
$\frac{\mathrm{L}}{\mathrm{H}}$. But L is J-pure submodule in M , hence by 3 , proposition $2.5, \frac{\mathrm{~L}}{\mathrm{H}}$ is J-pure submodule in $\frac{\mathrm{M}}{\mathrm{H}}$. Therefore, $\frac{\mathrm{N}}{\mathrm{H}}$ is a quasi J-pure submodule in $\frac{\mathrm{M}}{\mathrm{H}}$.
The following proposition gives a characterization of quasi J-pure submodules.

## Proposition (2.6)

Let M be an R - module and N be asubmodule of M . Then N is a quasi J -pure submodule of M if and only if there exists a collection of submodules $\left\{\mathrm{N}_{\alpha}\right\}_{\alpha \in_{\Lambda}}$, where $\Lambda$ is an index set, such that for each $\alpha \in \Lambda, N_{\alpha}$ are J-pure submodules of $M$ and $N=\cap_{\alpha \in \Lambda} N_{\alpha}$.

## Proof

Assume that N is a quasi J -pure submodule of M . If N is a J -pure submodule of M then there is nothing to prove. If $N$ is not $J$-pure submodule of $M$, Since $N$ is quasi $J$-pure submodule of $M$, then there exists a collection of J-pure submodules $\left\{\mathrm{N}_{\alpha}\right\}_{\alpha \in \Lambda}$ such that $\mathrm{N} \subseteq \cap_{\alpha \in \Lambda} \mathrm{N}_{\alpha}$, where $\Lambda$ is an index set. To show that $\cap_{\alpha \in \Lambda} N_{\alpha} \subseteq \mathrm{N}$, let $x \in \cap_{\alpha \in \Lambda} \mathrm{N}_{\alpha}$, then $x \in \mathrm{~N}_{\alpha}$ for each $\alpha \in \Lambda$. Suppose that $x \notin \mathrm{~N}$. Since N is quasi J-pure submodule of M , then $x$ is not contained in any J-pure submodule that contains N . So, $x \notin \mathrm{~N}_{\alpha}$, which is a contradiction. Therefore, $x \in \mathrm{~N}$ and hence $\cap_{\alpha \in \Lambda} \mathrm{N}_{\alpha} \subseteq \mathrm{N}$. That is, $\cap_{\alpha \in \Lambda} \mathrm{N}_{\alpha}=\mathrm{N}$.

Conversely, suppose that $\mathrm{N}=\cap_{\alpha \in \Lambda} \mathrm{N}_{\alpha}$, where $\mathrm{N}_{\alpha}$ is a J-pure submodule of M for each $\alpha \in \Lambda$ and $\mathrm{N}_{\alpha}$ containing N . Let $x \in \mathrm{M}$ and $x \notin \mathrm{~N}$. Since $\mathrm{N}=\cap_{\alpha \in_{\Lambda}} \mathrm{N}_{\alpha}$, so there exists $\beta \in \Lambda$ such that $x \notin \mathrm{~N}_{\beta}$. Thus $\mathrm{N} \subseteq \mathrm{N}_{\beta}$ and $x \notin \mathrm{~N}_{\beta}$. That is, N is quasi J-pure submodule in M .

## Proposition (2.7)

Let $M_{1}$ and $M_{2}$ be two R-modules. If $A$ is quasi $J$-pure submodule of $M_{1}$ and $B$ is quasi $J$-pure submodule of $M_{2}$, then $A \oplus B$ is quasi $J$-pure submodule of $M=M_{1} \oplus M_{2}$.

## Proof

Let $\left(x_{1}, x_{2}\right) \in \mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ with $\left(x_{1}, x_{2}\right) \notin \mathrm{A} \oplus \mathrm{B}$, then either $x_{1} \notin \mathrm{~A}$ or $x_{2} \notin \mathrm{~B}$. Assume that $x_{1} \notin \mathrm{~A}$, since A is quasi J -pure in M , so there exists a J-pure submodule $\mathrm{L}_{1}$ in $\mathrm{M}_{1}$ such that $\mathrm{L}_{1}$ containing A and $x_{1} \notin \mathrm{~L}_{1}$. But $\mathrm{L}_{1}$ is J-pure in $\mathrm{M}_{1}$, so by 3 , proposition $2.6, \mathrm{~L}_{1} \oplus \mathrm{M}_{2}$ is J-pure in M . Also $\mathrm{L}_{1} \oplus \mathrm{M}_{2}$ containing A $\oplus \mathrm{B}$ and $\left(x_{1}, x_{2}\right) \notin \mathrm{L}_{1} \oplus \mathrm{M}_{2}$.
Similarly, if $x_{2} \notin \mathrm{~B}$, then there exists a J-pure submodule in M containing $\mathrm{A} \oplus \mathrm{B}$ and does not contain $\left(x_{1}, x_{2}\right)$. Therefore, $\mathrm{A} \oplus \mathrm{B}$ is quasi J -pure submodule in M .

The converse of proposition (2.7) is true under certain conditions, as in the following:

## Proposition (2.8)

Let $M_{1}$ and $M_{2}$ be R-modules, $N$ be a submodule in $M_{1}$, and $K$ be a submodule in $M_{2}$ such that $\operatorname{ann}_{R}\left(M_{1}\right)+\operatorname{ann}_{R}\left(M_{2}\right)=R$. If $N \oplus K$ is quasi $J$-pure submodule in $M=M_{1} \oplus M_{2}$, then $N$ is quasi $J$ pure in $M_{1}$ and $K$ is quasi $J$-pure submodule in $M_{2}$.

## Proof

To show that N is quasi J-pure in $\mathrm{M}_{1}$, let $x \in \mathrm{M}_{1}$ and $x \notin \mathrm{~N}$. Then $(x, 0) \notin \mathrm{N} \oplus \mathrm{K}$. Since $\mathrm{N} \oplus \mathrm{K}$ is quasi $J$-pure submodule in $M$, so there exists a J-pure submodule $H$ in $M$ such that $N \oplus K \subseteq H$ and $(x, 0) \notin H$. Since $\operatorname{ann}_{R}\left(M_{1}\right)+\operatorname{ann}_{R}\left(M_{2}\right)=R$, then by a part of the proof of a previous work [6, Proposition (4.2), CH.1], any submodule of $M=M_{1} \oplus M_{2}$ can be written as a direct sum of two submodule of $M_{1}$ and $M_{2}$. Thus $H=A \oplus B$ for some submodules $A$ and $B$ of $M_{1}$ and $M_{2}$, respectively. It follows, by remark and example (2.2) in an earlier study [3], that A is J-pure submodule in $M_{1}$ and $B$ is J-pure submodule in $M_{2}$. Since $N \oplus K \subseteq A \oplus B$, so $N \subseteq A$ and $K \subseteq B$. But $(x, 0) \notin H=$ $\mathrm{A} \oplus \mathrm{B}$, then $x \in A$. Therefore, N is J -pure submodule in $\mathrm{M}_{1}$. Similarly, K is quasi J -pure submodule in $\mathrm{M}_{1}$.

## Remark (2.9)

The condition $\operatorname{ann}_{R}\left(M_{1}\right)+\operatorname{ann}_{R}\left(M_{2}\right)=R$ is necessary in proposition (2.8). For example, the module $\mathrm{Z}_{8} \oplus \mathrm{Z}_{2}$ is a Z-module. Clearly, $\quad \operatorname{ann}_{\mathrm{z}}\left(\mathrm{Z}_{8}\right)+\mathrm{ann}_{\mathrm{Z}}\left(\mathrm{Z}_{2}\right)=2 \mathrm{Z} \neq \mathrm{Z}$. As we have seen in remark and example (2.2), the submodule $<(\overline{4}, \overline{0})>=<\overline{4}>\bigoplus<\overline{0}>$ is quasi J-pure submodule in $\mathrm{Z}_{8} \oplus \mathrm{Z}_{2}$. But $<\overline{4}>$ is not quasi J -pure submodule in $\mathrm{Z}_{8}$. Because $2 \in \mathrm{Z}_{8}, 2 \notin<\overline{4}>$, there exists no J-pure submodule L of $\mathrm{Z}_{8}$ containing $\mathrm{N}=<\overline{4}>$ and $2 \notin \mathrm{~L}$.

Recall that an $R$-module M is called a multiplication module if for each submodule N of M there exists an ideal $I$ of $R$ such that $\mathrm{N}=\mathrm{IM}$ [7].

## Proposition (2.10)

Let M be a faithful finitely J-generated multiplication R-module and let N be a submodule of M . The following statements are equivalent:
(1) N is a quasi J -pure submodule of M .
(2) $\left[N::_{R} M\right]$ is a quasi $J$-pure ideal of $R$.

## Proof

(1) $\Rightarrow$ (2) Let $\mathrm{r} \in \mathrm{R}$ and $\mathrm{r} \notin\left[\mathrm{N}:_{\mathrm{R}} \mathrm{M}\right]$. Then $r \mathrm{M} \nsubseteq \mathrm{N}$, so there exists $x \in \mathrm{M}$, such that $r x \notin \mathrm{~N}$. But N is a quasi $J$-pure submodule in $M$, then there exists a $J$-pure submodule $K$ of $M$ such that $N \subseteq K$ and $r x \notin \mathrm{~K}$. Since M is faithful finitely generated J -multiplication, so it is clear that if K is J -pure submodule in M , then $\left[\mathrm{K}:_{\mathrm{R}} \mathrm{M}\right]$ is J -pure ideal of R . Also $r x \notin \mathrm{~K}$ for each $x \in \mathrm{M}$, then $r \notin\left[K:_{\mathrm{R}} \mathrm{M}\right]$. Hence $\left[K:_{R} \mathrm{M}\right]$ is J -pure ideal of R such that $\left[\mathrm{N}::_{\mathrm{R}} \mathrm{M}\right] \subseteq\left[\mathrm{K}:_{\mathrm{R}} \mathrm{M}\right]$ and $r \notin\left[\mathrm{~K}:_{\mathrm{R}} \mathrm{M}\right]$. That is, $\left[\mathrm{N}::_{\mathrm{R}} \mathrm{M}\right]$ is quasi J-pure ideal of $R$.

## 3. Basic Results for Quasi J-regular modules

In this section, we introduce and study the class of quasi J-regular modules.

## Definition (3.1)

An R-module M is called quasi J -regular module if every submodule of M is quasi J -pure.
Recall that an R-module M is called F-regular if each submodule of M is pure. Equivalently, an Rmodule M is said to be F -regular R - module if for each $m \in \mathrm{M}, r \in \mathrm{R}$, there exists $t \in \mathrm{R}$ such that $r m=r \operatorname{trm} .[8,9]$
Remarks and Examples (3.2):
(1) It is clear that every J-regular R-module is quasi J-regular module. But the converse is not true in general.
(2) If M is J -pure simple R-module, then M is not quasi J -regular. For example, the Z -modules Q , $\mathrm{Z}_{\mathrm{P}}$.
(3) It is clear that every F-regular R-module is quasi J-regular, but the converse is not true in general. For example, if $\mathrm{M}=\mathrm{Z}_{4}$ as Z -module. M is quasi J -regular since it is J-regular, but it is not F -regular, by remarks and examples (3.3) in an earlier work [3].

Recall that an $R$-epimorphism $\varphi: M \rightarrow M^{\prime}$ is called small epimorphism if $\operatorname{Ker} \varphi \ll M$ [5].

## Proposition (3.3)

Let $M$ be an R-module. Then $M$ is quasi $J$-regular if and only if $\frac{M}{N}$ is quasi $J$-regular for every small submodule N of M .

## Proof

Let N be a small submodule of M and K be any submodule of M containing N . Since M is quasi J regular then $K$ is quasi J-pure in M. So, by proposition (2.5), $\frac{K}{N}$ is quasi J-pure in $\frac{\mathrm{M}}{\mathrm{N}}$. Therefore, $\frac{\mathrm{M}}{\mathrm{N}}$ is quasi J-regular.

The converse is clear by taking $\mathrm{N}=\langle 0\rangle$.

## Corollary (3.4)

Let M and $\mathrm{M}^{\prime}$ be two R -modules and $f: \mathrm{M} \longrightarrow \mathrm{M}^{\prime}$ be a small epimorphism. If M is quasi J regular, then $\frac{\mathrm{M}}{\text { Kerf }}$ is quasi J-regular.

## Proof

Since $f: M \longrightarrow M^{\prime}$ is an epimorphism and $\operatorname{Ker} f \ll M$ and $M$ are quasi J -regular, then $\frac{\mathrm{M}}{\operatorname{Kerf}}$ is quasi J -regular by proposition (3.3).

Recall that a non-zero R-module $M$ is called a hollow if every proper submodule of $M$ is a small [10].

## Corollary (3.5)

Let M be a hollow R -module and $\mathrm{M}^{\prime}$ be any R -module. If $f: \mathrm{M} \longrightarrow \mathrm{M}^{\prime}$ is an epimorphism, then $\frac{\mathrm{M}}{\text { Kerf }}$ is quasi J -regular.
Proof: It is clear.
Corollary (3.6)
Let $M_{1}$ and $M_{2}$ be R-modules such that $\operatorname{ann}_{R}\left(M_{1}\right)+\operatorname{ann}_{R}\left(M_{2}\right)=R$. Then $M=M_{1} \oplus M_{2}$ is quasi $J$-regular if and only if $M_{1}$ and $M_{2}$ are quasi $J$-regular.

## Proof

Assume that $M=M_{1} \oplus M_{2}$ is quasi J-regular and let $N_{1}$ be a submodule of $M_{1}$, then we have to show that $\mathrm{N}_{1}$ is quasi J -pure in $\mathrm{M}_{1}$. Let $x \in \mathrm{M}_{1}$ and $x \notin \mathrm{~N}_{1}$, then there exists $\mathrm{N}_{1} \subseteq \mathrm{~L}_{1}$ such that $x \notin \mathrm{~L}_{1} .(x, 0) \in \mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2},(x, 0) \notin \mathrm{N}=\mathrm{N}_{1} \oplus \mathrm{~N}_{2}$. Since M is quasi J -regular, then $\mathrm{N}=\mathrm{N}_{1} \oplus \mathrm{~N}_{2}$ is quasi J-pure. Then there exists a J -pure submodule L of M such that $\mathrm{N} \subseteq \mathrm{L}$ and $(x, 0) \notin \mathrm{L}$. Since $\operatorname{ann}_{\mathrm{R}}\left(\mathrm{M}_{1}\right)+\mathrm{ann}_{\mathrm{R}}\left(\mathrm{M}_{2}\right)=\mathrm{R}$, then $\mathrm{L}=\mathrm{L}_{1} \oplus \mathrm{~L}_{2}$ where $\mathrm{L}_{1}$ and $\mathrm{L}_{2}$ are submodules in $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$, respectively, by remarks and examples (2.2) in the above mentioned study [3]. $\mathrm{N}_{1} \subseteq$ $\mathrm{L}_{1}$ and $x \notin \mathrm{~L}_{1}$. Thus $\mathrm{M}_{1}$ is quasi J -regular.
Similarly $\mathrm{M}_{2}$ is quasi J-regular.
Conversely, assume that $M_{1}$ and $M_{2}$ are quasi $J$-regular and $M=M_{1} \oplus M_{2}$. Let $N$ be a submodule of $M=M_{1} \oplus M_{2}$. Since $\operatorname{ann}_{R}\left(M_{1}\right)+\operatorname{ann}_{R}\left(M_{2}\right)=R$, then $N=N_{1} \oplus N_{2}$ where $N_{1}$ is a submodule in $M_{1}$ and $N_{2}$ is a submodule of $M_{2}$. Since $M_{1}$ and $M_{2}$ are quasi $J$-regular, then $N_{1}$ and $N_{2}$ are quasi $J$ pure, hence by proposition (2.8), $\mathrm{N}_{1} \oplus \mathrm{~N}_{2}$ is quasi J-pure. Therefore, $\mathrm{N}=\mathrm{N}_{1} \oplus \mathrm{~N}_{2}$ is quasi J-pure. Thus M is quasi J -regular.

Recall that a ring R is called a quasi -regular ring if every ideal in R is quasi -pure [4].

## Definition (3.7)

Let R be a ring, then R is called a quasi J -regular ring if every ideal in R is quasi J -pure.

## Remarks and Examples (3.8)

(1) It is clear that every J-regular ring is quasi J-regular ring. But the converse is not true in general. We have no example.
(2) Every regular ring is quasi J-regular, but the converse is not true in general. For example, $\mathrm{Z}_{9}$ is quasi J-regular ring but not regular.
(3) Let $R$ be an integral domain. If $R$ is quasi $J$-regular, then $R$ is a field.

## Proof

Since $R$ is quasi J-regular, then every ideal $I$ of $R$ is quasi $J$-pure. So by proposition (2.6), there exists a collection of J-pure ideals $\left\{\mathrm{I}_{\alpha}\right\}_{\alpha \in \Lambda}$ where $\Lambda$ is some index set, such that $\mathrm{I}=\mathrm{n}_{\alpha \in \Lambda} \mathrm{I}_{\alpha}$. Since R is integral domain, so by a previous study [11, proposition 2.5], R is J-pure simple. Thus R has no J-pure ideals, except $<0>$ and $R$. That is, $\cap_{\alpha \in \Lambda} \mathrm{I}_{\alpha}=<0>$ or R , and hence $\mathrm{I}=\langle 0\rangle$ or $\mathrm{I}=\mathrm{R}$. Therefore, $R$ is a field.
Recall that a submodule $N$ of an $R$ - module $M$ is called a maximal submodule of $M$, if whenever $K$ is a submodule of $M$ with $K \supsetneq N$, then $K=M$ [5].
(4) If R is quasi J -regular ring, then every prime ideal of R that contain in JI where JI intersection of all maximal ideals.

## Proof

Let P be a prime ideal in the ring R. Since R is quasi J -regular and $\mathrm{P} \subseteq \mathrm{J}(R)$, then by a previous study [11, proposition 2.5], $\frac{R}{P}$ is quasi J-regular. But $\frac{R}{P}$ is an integral domain, thus $\frac{R}{P}$ is a field by the above remark (3). Therefore, P is maximal.
(5) Let R be a quasi J -regular ring. If $\mathrm{JI}=\langle 0\rangle$, then R is regular.

## Proof

Since R is quasi J -regular, then by remark (4), every prime ideal of R is maximal. But $\mathrm{J} \mathrm{I}=\langle 0\rangle$, so by an earlier work [12], R is regular.
Recall that a proper ideal $I$ of a ring $R$ is said to be a prime ideal if for each $a, b \in R$ such that $a . b \in$ $I$, then either $a \in I$ or $b \in I[5]$.
(6) Every quasi J-regular ring is nearly regular, where a ring $R$ is called nearly ring if $R / J I$ is regular ring [13].

## Proof

Let R be a quasi J -regular ring. Then $\mathrm{R} / \mathrm{JI}$ is quasi J -regular by the above mentioned study [11, proposition 2.5]. So by the above remark (4), every prime ideal of $R / J$ is maximal ideal, and since $J(R / J(R))=0$, therefore by an earlier work [13], R/JI is regular. Thus $R$ is nearly regular.
(7) The converse of Remark (6) is not true in general. For example, the Z -module $\mathrm{Z}_{8}$ is nearly regular but not quasi J-regular ring.

## Theorem (3.9)

Let M be a faithful finitely generated multiplication R -module. Then M is quasi J -regular module if and only if R is quasi J -regular ring.

## Proof

Let N be a submodule of M . Since M is a multiplication R-module, then $\mathrm{N}=\mathrm{I} M$ for some ideal in R. Since R is quasi J-regular, then $I=\cap_{\alpha \in_{\Lambda}} I_{\alpha}$ by Proposition (2.6), where $I_{\alpha}$ is a J-pure ideal of $R$ containing I. Thus $N=\left(\cap_{\alpha \in \Lambda} I_{\alpha}\right) M$. Since $M$ is faithful multiplication, then $\left(\cap_{\alpha \in \Lambda} I_{\alpha}\right) M=$ $\cap_{\alpha \in_{\Lambda}}\left(\mathrm{I}_{\alpha} \mathrm{M}\right)_{\alpha}[14]$.
Claim: I M is J-pure in M. Since I is J-pure in R, then

$$
\begin{aligned}
& \text { IJ (M) } \cap \mathrm{N}=\mathrm{IJ}(\mathrm{M}) \cap \mathrm{KM} \text { for some ideal K of R } \\
& =(I \cap K) M \quad \text { since } M \text { is faithful multiplication. } \\
& =(\mathrm{I} K) \mathrm{M} \quad \text { since } \mathrm{R} \text { is quasi } \mathrm{J} \text {-regular ring. } \\
& =I(\mathrm{~K} \mathrm{M}) \\
& \text { IJ (M) } \cap \mathrm{N}=\mathrm{I} \mathrm{~N}
\end{aligned}
$$

Thus $\mathrm{N}=\mathrm{K} \mathrm{M}$ is J -pure in M and M is quasi J -regular.
Conversely, let I be an ideal of the ring R. We have to show that I is quasi J-pure. I M is a submodule of $M$. Since $M$ is quasi J-regular, then by proposition (2.6) I $M=\cap_{\alpha \in_{\Lambda}} L_{\alpha}$ where $L_{\alpha}$ is $J$ pure submodules of $M$ containing $I M$ for each $\alpha \in \Lambda$. Put $L_{\alpha}=I_{\alpha} M$. Thus $I M=\cap_{\alpha \in_{\Lambda}} L_{\alpha}=$ $\cap_{\alpha \in \Lambda} I_{\alpha} M$, since $M$ is faithful finitely generated, by the $\frac{1}{2}$ cancellation property [12]. Then, $I=\cap_{\alpha \in \Lambda} I_{\alpha}$. Claim: $\mathrm{I}_{\alpha}$ is J -pure in R and $\mathrm{I} \subseteq \mathrm{I}_{\alpha}$. Let $\mathrm{K} \subsetneq \mathrm{J}(R)$ be an ideal of R .

$$
\begin{aligned}
& \qquad \begin{aligned}
\left(I_{\alpha} \cap K\right) M & =I_{\alpha} M \cap K M \quad \text { Since } M \text { is faithful multiplication. } \\
& =L_{\alpha} \cap K M
\end{aligned} \\
& \begin{array}{c}
\left(I_{\alpha} \cap K\right) M
\end{array}=I_{\alpha} K M \\
& \text { Thus } I_{\alpha} \cap K
\end{aligned}=I_{\alpha} K[8], \text { which implies that } I_{\alpha} \text { is } J \text {-pure in } R \text {. Also, since } I_{\alpha} M=I M \subseteq L_{\alpha} \text {, thus } I \subseteq
$$

## References

1. Anderson, E.W. and K.R. 1992. "Ring and categories of module", Spring- New York.
2. Fieldhouse, D.J 1969. "Pure Theories", h. Ann. 184: 1-18.
3. Shaibani, R. M. and AL-Mothafar, N. S. 2019. "Properties of J-Regular modules",Iraqi Journal of Science, 60(3): 647-652. DOI: 10.24996/ijs. 60.3.23.
4. AL- Mothafar, N.S. 2002. "Sums and Intersection of Submodules", Ph.D. Thesis University of Baghdad, Baghdad, Iraq.
5. Kasch, F. 1982. "Modules and Rings," London Mathematical Society Monographs, Vol.17, New York; Academic Press.
6. Abbas, M.S. 1991. "On fully stable module", Ph.D. Thesis, University of Baghdad, Baghdad, Iraq.
7. Smith, P.F.1981. "Some Remarks on Multiplication Modules", Arch Math. 50,223-235.
8. Inaam M.A. H. 2013. "Coregular Modules", Iraqi Journal of Science. 54(3): 836-841.
9. Chatham T.J and Enoch's E.E. 1981."Regular modules", Math. Japonica, 26: 9-12
10. Fieldhouse D.J. 1970. Pure Simple and Indecomposable Ring, Can. Math. Bull. 13: 77-78.
11. 11. Shaibani, R. M. and AL-Mothafar, N. S. 2019." Modules With The J-Pure Intersection (Sum) Property", There is appear.
1. AL-Baharaany, B.H. 2000. Module with the Pure Intersection Property, Ph.D. Thesis, University of Baghdad, Baghdad, Iraq.
2. EI-Bast Z.A. and Smith, P.F. 1988. Multiplication Modules, Comm. Algebra, 16(4): 775-779.
3. Ansari H. Toroghy and Farshadifar. 2009."Strongly Comultiplication Modules", CMUJ.Nat.Sci. 8(1): 105-113.

[^0]:    *Email: rafidmath22880@gmail.com

