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Abstract 

     In this paper, we investigate some methods to solve one of the multi-criteria 

machine scheduling problems. The discussed problem is the total completion time 

and the total earliness jobs                 To solve this problem, some heuristic 

methods are proposed which provided good results. The Branch and Bound (BAB) 

method is applied with new suggested upper and lower bounds to solve the 

discussed problem, which produced exact results for      in a reasonable time.  

 

Keywords: Machine Scheduling problem, completion time, earliness, Branch and 

Bound. 

 

الماكنة متعددة المعايير استخدام الطرق التقريبية وطريقة التفرع والتقييد لحل مدألة جدولة  
 

 

، وفاء سيد حدنينفائز حدن عمي ، *اسيل عبود جواد  
 بغجاد, العخاق. كمية العمهم، الجامعو الطستظصخيو، قسم الخياضيات,  

 الخلاصه
في ىحا البحث سظتظاول بعض الظخق لحل واحجة من مسائل ججولة الطاكظة متعجدة الطعاييخ. ان الطسألة الطخاد 

. لحل ىحه الطسألة, تم               مظاقشتيا ىي مسألة وقت الاتطام الكمي ووقت التبكيخ الكمي 
م تظبيق طخيقة التفخع والتقيج الطقتخحة لحل الطسألة اقتخاح بعض الظخق التقخيبية التي اعظت نتائج جيجة. وقج ت

 ضمن وقت مقبول.        مضبهطة لوالتي اعظت نتائج 

 

1. Introduction 

     There are many definitions for machine scheduling; scheduling problem is the allocation of 

resources over time to perform a collection of tasks. Resources and tasks are called machine and jobs 

respectively and both of than can take many forms [1]. The two concepts can take many forms. For 

example, we can consider computers as machines and the programs that are to be run on these 

computers as jobs. 

     There are two general constraints in the classical scheduling theory [2]. Each job can be processed 

by one machine each time and every machine is processing at most one job each time. A schedule is 

called feasible schedule if it satisfies the two main constraints, and if it satisfies many requirements 

relating to the discussed problem type. The type of the problem is related to the machine environment, 

the job characteristics, and the criterion of optimality. 

There are many known exact and approximation solution methods to solve the Machine Scheduling 

Problem (MSP). The exact solutions are obtained using the Complete Enumeration Method (CEM), 

Branch and Bound (BAB) method, and Dynamic Programming (DP) method [3]. 
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Multi-criteria optimization depending on conflicting objective functions establishes a set of Pareto 

optimal solutions (Efficient solutions), instead of one optimal solution. This set includes one (many) 

solution(s) that no other solution(s) is better with respect to objective functions. In the literature, there 

are two approaches for multi-criteria scheduling problems: 

1. The hierarchical approach: the first criterion is considered as the primary criterion and the 

second one is considered as the secondary criterion. The objective is to minimize the primary criterion 

while breaking all ties in favor of the schedule which has a minimum secondary criterion value [4]. 

2. The simultaneous approach: there are, at most, two types; the first one generates all efficient 

schedules then selects the one that yields the best composite objective function value of the criteria.      

The second one is to find the sum of these objectives [4]. Van Wessenhove and Gelder [5] studied the 

efficiency with respect to the criteria of the total completion time and the maximum tardiness in a 

single machine problem. A survey on multicriteria one-machine scheduling problems can be found 

elsewhere [6].  

     The most important literature survey for the last five years is that of Mahmood (2014) [7], who 

discussed the multicriteria scheduling problems which are studied on a single machine to find a set of 

efficient solutions for the general problems 1//F(∑Cj,Tmax,Vmax), 1//F(∑Cj,∑Vj,Vmax), 1//F(∑Cj, 

∑Vj,Tmax), and others. Some efficient algorithms were proposed for solving these problems. Ali (2015) 

[3], in his thesis, solved the sum of completion time and sum of tardiness (∑Cj,∑Tj). He proposed a 

new BAB, two local search methods, and a Neural Network (NN) to solve this problem. Ali and 

Abdul-Kareem (2017) [8], attempted to solve a single MSP to simultaneously minimize the maximum 

tardiness, maximum late work, and total late work. They used the exact methods (CEM and BAB), 

suggested some heuristic methods for a large number of jobs, and used the best results as a good upper 

bound for BAB. Chachan and Hameed (2019) [9] studied the multiobjective problem, which is the 

sum of completion time, the tardiness, the earliness, and the late work (   (             )).    

They suggested the use of BAB for solving this problem, where four upper bounds and one lower 

bound are proposed and a number of dominance rules are considered to reduce the number of branches 

in the search tree. 

      In section two, we will discuss the mathematical formulation of    (       ) problem and its 

special cases. Section three introduces some heuristic methods for    (   ) and our problem, while 

in section Four the BAB is applied with a newly suggested upper and lower bound. The practical and 

comparative results are introduced in section five. While in section six we present an analysis and 

discussion for the results which are introduced in section five. Lastly, in section seven we introduce 

the most important conclusions and some recommendations. 

1.1 Some Important Notations 

There are some notations which are used in this paper: 

n : Number of jobs. 

   : Processing time of jobs j. 

   : Due date of jobs j. 

   : Slack time of job j s.t.         . 

   : Completion time of job j, where       
 
   . 

   : Earliness of job j,                 . 

    : Total completion time. 

    : Total earliness. 

OP : Optimal Value of P1-problem. 

F : Objective Function of P-problem. 

   : Objective Function of   -problem. 

1.2 Machine Scheduling Problem 

In this paper, we need some basic definitions. 

Definition(1): Shortest Processing Time (SPT) rule[10]: Jobs are sequenced in a non-decreasing 

order of processing times (  ), where this rule is used to solve the problem       . 

Definition(2): Earliest Due Date (EDD) rule [11]: Jobs are sequenced in a non-decreasing order of 

due date (  ), where this rule is used to minimize the problem         . 



Jawad et al.                                              Iraqi Journal of Science, 2020, Vol. 61, No. 8, pp: 2055-2069 

 

2057 

Definition(3): Minimum Slack Time (MST) rule [12]: Jobs are sequenced in a non-decreasing order 

of slack times (  )   =     , where this rule is well known for solving the problem        . 

Definition(4) [11]: The term "optimize" in a multi-criteria resolution-making problem indicates a      

solution about which there is no way of developing or improving any objective without worsening the 

other objective. 

Definition(5) [13]: A schedule S is said to be an efficient schedule if we cannot found another 

schedule    satisfying   ( 
 )               , with at least one of the above holding as a strict 

inequality. Another way is that S is said to be dominated by   . 

Remark(1): Let S be a set of efficient schedules and let   be a schedule. We use the symbol     if 

all efficient solutions of S do not dominates  . 

1.3 Dominance rule (DR) 

     Reducing the current sequence may be achieved by using several Dominance Rules (DR's). DR's 

usually specify some (all) parts of the path to obtain a good value for objective function  so that they 

can be useful to determine whether a node in BAB method can be ignored before its lower bound (LB) 

is calculated. Clearly, DR's are particularly useful when a node can be ignored although it has a LB 

that is less than the optimum solution. The DR's are also useful within the BAB method to cut all 

nodes that are dominated by others. These improvements lead to a very large decrease in the number 

of nodes to obtain the optimal solution. 

Definition(6) [14]: If G is a graph that has n vertices, then the matrix A(G)=[aij], whose            

elements are equal to 1 if there is at least one edge between Vi and Vj whereas they are equal to zero 

otherwise, this matrix is called the adjacency matrix of G, where. 

    {

                    
                           
         ̅           

 

2. Mathematical Formulation for     (       ) Problem 

The object can be described as a set of n jobs N={1,2,…,n} on a single machine  to find     (where 

S is the set of all feasible schedules), so they can be fully used to specify whether that minimizes the 

multi-criteria (       ). The    (       ) problem can be written as: 

    {       }                                   

                                                     
                                        

                               

                                  

                                        

 

}
  
 

  
 

      …(P) 

 

2.1 Sub problems of P-problem 
For P-problem, we can deduce two sub problems: 

1. The            Problem: 

   {       }                                       

                                                         
                                            

                                   

                                     

                                           }
  
 

  
 

     ...(P1) 

     The aim for the   - problem is to find a suitable processing order of the jobs on a one single 

machine to minimize the sum of completion time and sum of earliness jobs, which is a single object. 

Proposition (1): Each optimal solution for   - problem is an efficient solution for P-problem. 

Proof: Let   be an optimal schedule for   - problem. Suppose that   is not an efficient solution for P-

problem, then there is an efficient schedule, say    for P-problem such that: 

               and               
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where at least one of the inequalities is strict. This implies that                              

then   is a schedule that gives a better solution than   for   - problem. But   is an optimal schedule, 

which is a contradiction with our assumption, then   must be an efficient schedule for P-problem. 

2. The        (       ) Problem 

   {   }                                                    

                                                             
                                                

                                      

                                        

                                              

                                  }
 
 
 

 
 
 

     …(P2) 

 

For the P2-problem, the objective     is more important than the other objectives since the multi-

criteria object is    (       ). 

2.2 Special Cases For P-problem 

Case (1): If     ,  j, then the sequence   obtained by SPT rule gives an efficient solution for P-

problem. 

Proof: Since      and since    are different, then the sequence   obtained by SPT rule gives an 

optimal schedule for    , then the sequence   gives an efficient solution for P-problem.  

Case (2): If            (and automatically for       ), then the sequence   obtained by SPT rule 

gives: 

1. A unique efficient solution for different     such that (           ). 

2. If there is m similar    in the schedule, then the SPT rule gives     optimal solution for    , and 

obtains    efficient solutions for P-problem. 

Proof: Since         (and automatically       )     then     ,   , and      , then it is 

constant. 

1. If all    are different, then   gives an optimal solution for     , and gives a unique efficient 

solution for P-problem.          

2. If    is similar to m   , then   gives an optimal solution for    , and   gives    efficient 

solutions for P-problem.           

Case (3): If        , for some j, then the job j is sequenced last, then we obtain an efficient 

solution with SPT rule for other jobs in the schedule for P-problem. 

Proof: Since        , if the job j is sequenced last in some order, then if           then the 

sequence   gives an efficient solution for P-problem.    

Theorem (1): In general, there exist efficient solution(s) for P-problem that satisfies the SPT rule. 

Proof: 

1. First, suppose that all processing times (  ) are different. Then their exists a unique SPT 

sequence (SPT
*
) that gives the unique value of minimum of ∑    Hence, there is no sequence  SPT

*
 

such that: 

                                      
   

 
   

 
   

 
             …(1) 

with at least one strict inequality. 

2. If many jobs have equal processing times, then more than one SPT sequence exists. Let SPT
*
 

be one sequence satisfying the SPT rule, and the jobs which have equal processing times are ordered 

in EDD rule in order to minimize ∑  (SPT
*
). Then we have to prove that each SPT

*
 sequence is 

efficient. It is clear that any sequence that do not satisfy the SPT rule cannot dominate an SPT
*
 

sequence, as in relation (1). So if  is an SPT but not SPT
*
 sequence then it cannot dominate SPT

*
 

since: 

                           
   

 
   

 
              

               …(2) 

Hence all SPT
*
 sequences give efficient solutions for P-problem.         
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3. Heuristic Methods for P and P1-Problems 

     As most of the scheduling problems are NP-hard and the computational requirement to solve such 

problems using BAB or DP methods might require more time, many researchers have developed 

heuristic algorithms to solve them in an efficient and effective way.  

The heuristic method is defined as follows (Reeves [15]): A heuristic is a technique that seeks a good 

(i.e.  optimal or near optimal) solution at a reasonable computational cost without guarantee for either 

feasibility or optimality, or even in many cases, to state how close this solution is to optimality in a 

particular feasible solution? 

In the next section, we discuss some heuristic methods for (      ), P and P1-problems. 

3.1 Heuristic Methods for        

     The problem        is considered as NP-hard, so we suggested two heuristic methods to solve 

this problem that give good results. The first suggested heuristic method is using MST for sum of 

earliness (MST-SE). The idea of this method is to arrange the jobs by MST rules and calculate the 

objective function, then putting the second job in the first place, while the other jobs are arranged by 

the MST rules and the objective function is calculated. We continue this work until obtaining the n 

sequences. The main steps of MST-SE (mst rule-sum of earliness) algorithm are as follows: 

Algorithm (1): MST_SE Heuristic Method. 

Step(1): INPUT n,                        

Step(2): Arrange jobs in MST rule (   , and calculate                 let       
Step(3): FOR i=2,…,n, job i in the first position of     to obtain   , then calculate       . 

Step(4): If             THEN      

ELSE GO TO Step(3) 

END IF. 

Step(5): OUTPUT: The options of sequence   with      value. 

Step(6): END. 

The second method depends on using DR of Sum Earliness (DR-SE). 

Remark (2) [16]: For         problem, if       and      , then there exists an efficient solution 

in which job i is sequenced before job j.  

Remark (1) may be useful to obtain a good solution for         problem. 

 

Example (1): Let’s have the following data for n=4: 

n 1 2 3 4 

pi 6 1 3 4 

di 25 7 8 6 

si 19 6 5 2 

We obtain the following DR: 21, 31, 41, then the adjacency matrix: 

  [

 
 
 
 

     
     
   ̅  

   ̅  

     
     

     
    ̅  

    
     

     

     

] 

     The optimal solution is        with the sequence 4 , 3 , 2 , 1. 

The DR-SE method is summarized by finding a sequence sort with a minimum    which is not in a 

contradiction with DR and then the objective function will be calculated. The main steps of DR-SE 

(Dominance rule-sum of earliness) are as follows: 

Algorithm (2): DR_SE Heuristic Method. 

Step(1): INPUT:                        

Step(2): Apply remark (2.1) to find adjacency matrix A of DR, let    .            . Calculate 

             . Let      

any sequence. 

Step(3): For i=1,2,…,n, find a sequence   with minimum    which is not a contradiction with DR 

(matrix A), if   is more than one job that breaks the tie arbitrarily. 

Step(4): If            , THEN      
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ELSE GO TO Step(3) 

END. 

Step(5): OUTPUT: The optioned sequence   with      value. 

Step(6): END. 

3.2 Heuristic Method for P and P1- problems 

The heuristic methods for P and P1-problems are considered as a development of the heuristic methods 

for        problem. 

3.2.1 Heuristic Methods for P-problem 

     The first heuristic method depends on SPT and MST. Since the SPT rule solves the        

problem, we have improved the heuristic method MST-SE by ordering the jobs by the SPT rule and 

then calculating the objective function. Then, the second job was put in the first place and the other 

jobs were still arranged by SPT rule. The objective function was calculated, and so on until obtaining 

the n sequences, The main steps of SPT-MST-SCSE(F) (spt rule-mst-rule-sum of completion time 

and sum of earliness for function F) are as follows: 

Algorithm (3): SPT_MST_SCSE(F) Heuristic Method. 

Step(1): INPUT n,                          . 

Step(2): Arrange jobs in SPT rule (    and calculate         (               )   

             . 
Step(3): FOR i=2,…,n, put job i in the first position of     to obtain    and calculate         

(               )   

             . 
  END; 

Step(4): Arrange jobs in MST rule (    and calculate         (               )   

             . 
Step (5): FOR i=2,…,n, put job i in the first position of     to obtain    and calculate         

(               )    

              . 
   END; 

Step(6): A filter set   to obtain a set of efficient solutions of  P-problem. 

Step(7): OUTPUT The set of efficient solutions  . 

Step(8): END. 

     The idea of the second heuristic method is dependent on the heuristic DR-SE and it is summarized 

by finding a sequence sort with minimum   ,    and    which is not a contradiction with DR, and 

calculating the objective function. The main steps of DR-SCSE(F) (Dominance rule-sum of 

completion time and sum of earliness for function F) are as follows: 

Algorithm (4): DR_SCSE(F) Heuristic Method. 

Step(1): INPUT:                        

Step(2): Apply remark(1) to find DR and adjacency matrix A; 

                  
Calculate                  . 

Step(3): Find a sequence    with minimum    which is not contradiction with DR (matrix A), if   is 

more than one job that breaks ties arbitrarily,         . 
Step(4): Find a sequence    with minimum    which is not contradiction with DR (matrix A), if   is 

more than one job that breaks ties arbitrarily,         . 
Step(5): Find a sequence    with minimum    which is not contradiction with DR (matrix A), if   is 

more than one job that breaks ties arbitrarily,         . 
Step(6): Find the dominated sequence set    from  . 

Step(7): Calculate     . 

Step(5): OUTPUT The set of efficient solution  . 

Step(8): END. 

3.2.2 Heuristic Methods for P1-problem 
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     For P1-problem, we can use the same two heuristic methods which are  discussed in section 3.2.1. 

The Tree Type Heuristic Method (TTHM) can be considered as the 3
rd

 heuristic method for P1-

problem. 

Algorithm (5): TTHM(F1) 

Step(1): INPUT:                        
Step(2): CALL SPT_MST_SCSE(F1); 

 Calculate UB =min(F1i), obtained by a schedule, say   . Compute         and ∑       s.t. 

UB=       +∑      . i=0. 

Step(3): i=i+1, for any node in the search tree calculate the lower bound (LB)=cost of sequencing 

jobs + cost of unsequencing jobs, where the cost of unsequencing jobs is obtained by  =SPT rule. 

Step(4): Branch from the minimum node with LB   UB for level i. 

Step(5): If  i < n then go to Step(3). 

Step(6): At the last level (i=n) we get the best solution (BS). 

Step(7): OUTPUT The Best solution (BS). 

Step(8): END. 

4. Branch and Bound Method for P and P1-problems 
     BAB method is one of the most effective exact ways to solve scheduling problems, but it is  

classically difficult because of the elapsed time. 

We notice that P-problem has many similar efficient solutions. This implies when we apply BAB for 

P-problem. Many nodes are open and this implies that the BAB may be not efficient to obtain an 

accurate solution for large n in a reasonable time. Table-1 describes this problem. 

4.1 Branch and Bound Method for P-problem 

We tested three models of upper bound (UB); let   =SPT,   =EDD,   =MST, then UB1= F(  ), UB2= 

F(   , and UB3= F(    UB=min{UB1,UB2,UB3}. We also tested two models of lower bound (LB); let 

  =SPT and   =MST, then LB1=F(  ) and LB2=F(  ). 

Algorithm (6): BAB(F) 

Step(1): INPUT:                        

Step(2): Find the UB=UBk by    s.t. UB=(∑       ∑      ), (k=1,2,3), i=0. 

Step(3): Set the upper bound S={    }. 

Step(4): i=i+1, in level i, for any node in the search tree, compute the LB=cost of sequencing jobs 

+cost of unsequencing jobs, where the cost of unsequencing jobs is obtained by   , (m=1,2) for the P-

problem. 

Step(5): Check that the sequence    of this node is      if    S,           cancel the 

dominated sequence, and branch from this node; else ignore this node. 

Step(6): After finishing all nodes of this level, find the efficient solutions    of S, say   , such that 

    . 

Step(7): State that UB={             . 

Step(8): GO TO Step(3) until finishing checking all levels (i=n). 

Step(9): Calculate           for      , for i=1,…, k (k is the number of the efficient points). 

Step(10): OUTPUT The set of efficient solution   . 

Step(11): END. 

4.2 Branch and Bound Method for P1-problem 

     For the P1-problem, we applied what is known as the classical BAB to obtain optimal sequence 

 =SPT since we search about the single objective function. Firstly, UB              . Then 

calculate the LB for any node which consists of sequence and unsequence parts (obtained by SPT 

rule). Repeat these steps until obtaining the optimal solution at the root. The BAB algorithm steps for 

P1-problem are as follows: 

Algorithm (7): BAB(F1) 

Step(1): INPUT:                        

Step(2): Find the UB by  =SPT, obtain schedule say   compute        and ∑      then 

UB=      +∑     . 

Step(3): Set the UB S={ },  when i=0. 
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Step(4): i=i+1, for any node in the search tree calculate the LB=cost of sequencing jobs + cost of 

unsequencing jobs, where the cost of unsequencing jobs is obtained by  =SPT rule. 

Step(5): Branch each node with LB   UB for level i. 

Step(6): If  i < n then go to Step(4). 

Step(7): At the last level (i=n) we get the optimal solution (OP). 

Step(8): OUTPUT The optimal solution (OP). 

Step(9): END. 

5. Practical Results of P and P1-problems 

The values of pj and dj for all example are generated randomly s.t.     [1,10] and 

    {

[    ]                            
[    ]                          
[    ]                        
[    ]                                

 

 under condition        for j=1,..,n. 

Before showing tables of all the results, we introduce some important abbreviations: 

Ex : Example Number. 

Av : Average. 

NES : Number of efficient Solution. 

ANES : Average number of efficient solution. 

T/S : Time per second. 

AT/S : Average Time per second. 

AAE : Average Absolute Error. 

MAE : Mean Absolute Error s.t. MAE=|a1-a2|/a1. 

AMAE : Average of MAE. 

T(Av) : Total Average. 

AE(Av) : Absolut error (Average). 

SOF : Single Objective Function. 

ASOF : Average Single Objective Function. 

MOF : Multi Objective Function. 

AMOF : Average Multi Objective Function. 

R : 0 < Real < 1. 

 

     It is important to mention that the results of applying all solving methods are revered for 5 

experiments. 

     For P-problem, we note that the number of similar feasible and efficient solutions is very large. 

This number will be increased as n is increased, because of the function    . Table-1 shows the 

number of feasible solutions (NF) as well as the averages and percentages of similar (SS) and different 

(DS) feasible solutions, and the number of the similar (NESS) and different (NEDS) efficient solutions 

for different n. 

Table 1-NF and the averages and percentages of SS, DS, NESS and NEDS for different n 

n NF Av(SS) P(SS)% Av(DS) P(DS)% Av(NESS) Av(NEDS) 

4 24 0.8 3.3 23.2 96.7 0.4 5.6 

5 120 23.8 19.8 96.2 80.2 8.4 14.2 

6 720 389 54 331 46 20.4 14.8 

7 5040 3795.4 75.3 1244.6 24.7 26.8 21.2 

8 40320 38015.6 94.3 2304.4 5.7 76.8 26 

9 362880 359262.6 99 3617.4 1 132.6 29.6 

10 3628800 3622601 99.8 6199 0.2 --- 43.6 

 

Notice that the P(SS) and Av(NESS) are increased as n increased. 

Figure-1 Shows the difference between feasible and efficient solutions for n=6, where the curve of the 

efficient solutions is approximate to f(x)= -x. 
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(a)       (b) 

Figure 1-(a) All feasible solutions. (b) Efficient solutions for n=6. 

 

5.1 Comparison Results of        

     Table-2 shows a comparison between the results of the heuristics MST_SE and DR_SE compared 

with the CEM method to solve        problem, n=4:10. 

 

Table 2-Comparison of the results of MST-SE, DR-SE with CEM for        problem, n=4:10. 

Nn 
CEM MST-SE DR-SE 

ASOF AT/S ASOF AT/S AAE ASOF AT/S AAE 

4 14.6 R 8.6 R 0.41 8.8 R 0.39 

5 27 R 11.8 R 0.56 11.8 R 0.56 

6 25.6 R 6.4 R 0.75 7.2 R 0.72 

7 21.6 R 7.4 R 0.66 9.2 R 0.57 

8 40.2 1.5 6.2 R 0.85 6.4 R 0.84 

9 30 12.04 5.6 R 0.81 5.8 R 0.81 

10 28 124.6 4 R 0.86 12.4 R 0.56 

Av 26.71  7.14  0.70 8.8  0.64 

 

where the AASE is the average of the averages of SE. 

Table-3 shows a comparison of the results between heuristics MST_SE and DR_SE methods to solve 

       problem for n=30,70,100,300,700 and 1000. 

Table 3-comparison of the results between MST_SE and DR_SE methods for        problem for 

n=30,70,100,300,700 and 1000. 

n 
MST-SE DR-SE 

ASOF AT/S ASOF AT/S 

30 2 R 2.6 R 

70 1.2 R 1.2 1 

100 1.4 R 2.2 2 

300 1 1.2 1.6 14 

700 0 5.6 1.6 71 

1000 0 11.11 1.4 148 

  

5.2 Comparison of the Results of P-problem. 

     Comparison of the results between SPT-MST-SCSE(F) and DR-SCSE(F) with efficient results of 

CEM(F) for P-problem are shown in Table-4, n=4:10. 
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Table 4-Comparison between SPT-MST-SCSE(F), DR-SCSE(F) with CEM(F) for P-problem, 

n=4:10. 

n 

CEM(F) SPT-MST-SCSE(F) DR-SCSE(F) 

AMOF 
AT/

S 

ANE

S 
AMOF 

AT/

S 

ANE

S 
AAE AMOF 

AT/

S 

ANE

S 
AAE 

4 (58.6,16.3) R 5.6 (59.4,17) R 4.8 (0.01,0.04) (58.6,14.8) R 2.6 (0.0,0.09) 

5 (72.8,24.4) R 14.2 (73.7,25.6) R 7.2 (0.01,0.05) (73.8,24.5) R 2 
(0.01,0.00

4) 

6 (93.4,19.8) R 14.8 (93.7,22.3) R 6.8 
(0.003,0.1

3) 
(97.1,16.9) R 2.8 (0.04,0.15) 

7 
(134.6,24.

5) 
R 21.2 (140,26.5) R 9.4 (0.04,0.08) 

(146.2,21.

3) 
R 2.6 (0.09,0.13) 

8 
(143.3,27.

5) 
R 26 

(148.8,32.

5) 
R 9 (0.04,0.18) 

(155.3,24.

6) 
R 3 (0.08,0.11) 

9 
(199.3,28.

2) 
4.4 29.6 

(215.8,31.

1) 
R 11 (0.08,0.10) 

(217.7,26.

1) 
R 2.6 (0.09,0.07) 

1

0 

(235.8,34.

1) 
43.1 43.6 

(256.4,37.

7) 
R 12.2 (0.09,0.11) (277,26.7) R 3 (0.18,0.22) 

 AE(AV) 
22.14

3 
  8.628 (0.04,0.10)  R 2.66 (0.07,0.11) 

    Notice that the Heuristics SPT-MST-SCSE(F) and DR-SCSE(F) yield good results compared with 

CEM(F) for P-problem. 

The results of applying BAB(F) compared with CEM(F) for P-problem, n=4:10 are shown in Table -5. 

 

Table 5-Comparison between BAB(F) with CEM(F) for P-problem, n=4:10. 

n 
CEM(F) BAB(F) 

AMOF AT/S ANES AMOF AT/S ANES 

4 (58.6,16.3) R 5.6 (58.8,16.0) R 5 

5 (72.8,24.4) R 14.2 (72.8,24.4) R 13.4 

6 (93.4,19.8) R 14.8 (93.2,20.1) R 14.2 

7 (134.6,24.5) R 21.2 (135.6,23.9) R 18.2 

8 (143.3,27.5) R 26 (144.4,27.0) R 22.6 

9 (199.3,28.2) 4.4 29.6 (199.7,28.2) R 26.4 

10 (235.8,34.1) 43.1 43.6 (238.7,31.8) R 39 

TAV 22.1429   19.8286 

AE(AV) -----   0.1045 

     The comparison of the results of CEM(F) and BAB(F) which are shown in Table-5, for P-problem, 

n=4:10, are depicted in Figure-2. 
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Figure 2-Comparison of the results of CEM(F) and BAB(F) for P-problem, n=4:10. 

 

Table-6 shows a comparison of the results of CEM(F) and BAB(F) models NS for P-problem for 

n=4:10. 

Table 6-Comparison of the results of CEM(F) and BAB(F) methods for NS for P-problem, n=4:10. 

n 
AV(NES) 

Using CEM 

AV(NES) using BAB 

UB=F(SPT) 

LB=F(SPT) 

UB=F(SPT) 

LB=F(MST) 

UB=min(F(SPT),F(EDD),F(MST)) 

LB=F(SPT) 

4 5.6 5.0 5.2 5.4 

5 14.2 13.2 12.2 13.0 

6 14.8 13.6 10.6 14.2 

7 21.2 15.0 13.2 17.6 

8 26.0 17.0 14.0 21.8 

9 29.6 19.0 12.4 26.4 

10 43.6 33.0 8.0 41.2 

TAV 22.143 16.543 10.8 19.943 

AE(AV) -------- 0.253 0.512 0.099 

From the above table, we conclude that the best model is UB=min{F(SPT), followed by F(EDD), 

F(MST)}, then LB=F(SPT). 

In Table-7, we compare the results obtained from heuristic SPT-MST-SCSE(F), DR-SCSE(F) and 

BAB(F) for P-problem, n=11:16. 
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Table 7-Results of the comparison of BAB(F), SPT-MST-SCSE(F) and DR-SCSE(F) for (P), 

n=11:20. 

n 
BAB(F) SPT-MST-SCSE(F) DR-SCSE(F) 

AMOF AT/S AMOF AT/S AMOF AT/S 

11 (286,28.2) 0.7 (312,33.5) R (329.2,25.5) R 

12 (366.2,18.1) 0.4 (386.8,26.4) R (408.1,17.3) R 

13 (441.3,28.9) 1 (487.4,34.2) R (525.5,22.1) R 

14 (452,29.9) 0.9 (519.2,33.8) R (556.3,25.7) R 

15 (531.7,33.2) 6.3 (581.4,38.9) R (636,25.7) R 

16 (660.4,24.9) 11.4 (732.6,30.4) R (766.3,22.4) R 

17 (657,37.7) 21.5 (766.3,41.8) R (823.7,28.1) R 

18 (729,36.8) 56.4 (829.2,44.2) R (871.3,32.9) R 

19 (855.5,30.6) 128.5 (980.9,35.01) R (1030.5,25.7) R 

20 (919.9,31) 211.5 (1062.2,37.8) R (1127.6,26.2) R 

     Table-8 shows a comparison of the results between heuristics methods SPT-MST-SCSE(F) and 

DR-SCSE(F) to solve P-problem for n=30,70,100,300,700 and 1000. 

 

Table 8-Comparison of the results between SPT-MST-SCSE(F) and DR-SCSE(F) for 

 P-problem for different n. 

n 
SPT-MST-SCSE(F) DR-SCSE(F) 

AMOF AT/S AMOF AT/S 

30 (2343.8,56.2) 0.2 (2569.9,36.9) 0.3 

70 (11985.8,96.5) 0.3 (12673.4,68.9) 0.3 

100 (24316.2,155.01) 0.3 (25484.2,109) 0.3 

300 (241361.9,123.1) 1 (235964.5,129.7) 0.7 

700 (1286395.7,98.9) 6.7 (1221127.3,24.7) 3.5 

1000 (2681881.1,160.8) 16.8 (2544587.7,26.9) 7.7 

5.3 Comparison of the Results of P1-problem 

In Table-9, we show a comparison between the optimal results of CEM(F1) and the results of the 

heuristics SPT-MST-SCSE(F1), DR-SCSE(F1) and TREE(F1)  n=4:10 for P1-problem. 

 

Table 9-Comparison between CEM(F1) and SPT-MST-SCSE(F1), DR-SCSE(F1) and Tree(F1) for P1-

problem, n=4:10. 

n 
CEM(F1) SPT-MST-SCSE(F1) DR-SCSE(F1) TREE(F1) 

ASOF AT/S ASOF AT/S AAE ASOF AT/S AAE ASOF AT/S AAE 

4 73 R 73.4 R 0.01 73.4 R 0.01 73.4 R 0.01 

5 95.6 R 96.8 R 0.01 96.6 R 0.01 96.8 R 0.01 

6 110.4 R 113.2 R 0.03 112.6 R 0.02 112.4 R 0.02 

7 156 R 160.8 R 0.03 161 R 0.03 160.2 R 0.03 

8 166.8 R 171.8 R 0.03 172.8 R 0.04 171.8 R 0.03 

9 224.4 4.5 231.4 R 0.03 231.6 R 0.03 229.6 R 0.02 

10 267.4 46.2 271.2 R 0.01 274.2 R 0.03 271 R 0.01 

AE(AV) 156.229  159.8  0.02 160.31  0.02 159.31  0.02 
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     Notice that the heuristics Tree (F1), SPT-MST-SCSE(F1) and DR-SCSE(F1) produced good results 

compared with CEM(F1), and this is obvious from AAE, for P1-problem. 

     Table-10 shows the results of CEM(F1) for P1-problem compared with those of BAB(F1) and 

Tree(F1) methods for P1-problem, n=4:10. 

Table 10-Comparison of the results of BAB(F1), Tree(F1) with CEM(F1) for (P1), n=4:10. 

n 
CEM(F1) BAB(F1) TREE(F1) 

ASOF AT/S ASOF AT/S ASOF AT/S 

4 73 R 73 R 73.4 R 

5 95.6 R 95.6 R 96.8 R 

6 110.4 R 110.4 R 112.4 R 

7 156 R 156 R 160.2 R 

8 166.8 R 166.8 R 171.8 R 

9 224.2 4.5 224.2 1.3 229.6 R 

10 267.4 46.2 267.4 2.8 271 R 

TAV 156.2  156.2  159.31  

Where TAV is the total average. 

The results of applying BAB(F1) and the three heuristics for P1-problem, n=11:15, which are given in 

a reasonable CPU time (Time  600 seconds), are described in Table-11. 

 

Table 11-The results of the comparison of BAB(F1), with three heuristics for (P1),  

for n=11:15. 

n 
BAB(F1) TREE(F1) SPT-MST-SCSE(F1) DR-SCSE(F1) 

ASOF AT/S ASOF AT/S ASOF AT/S ASOF AT/S 

11 309.4 0.4 313.2 R 316.2 R 318.8 R 

12 379 1.2 384.6 R 387.6 R 390.6 R 

13 465.4 6.6 468.8 R 473.6 R 475.8 R 

14 476.6 45.4 481.2 R 485 R 486.6 R 

15 559 66.2 564.8 R 567.2 R 571.8 R 

TAV 437.88  442.52  445.92  448.72  

     Figure-3 shows the comparison of the results of BAB(F1), Tree(F1) and SPT-MST-SCSE(F1) which 

are obtained from Table-11 for P1-problem, for n=4:15. 

 
Figure 3-Comparison of the results of BAB(F1), Tree(F1) and SPT-MST-SCSE(F1) for n=4:15. 
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Table-12 describes the average of the efficient solution for P1-problem for n=20:10:100;200:100:1000, 

using Tree(F1), compared with the heuristic methods SPT-MST-SCSE(F1) and DR-SCSE(F1). 

 

Table 12-Results of the comparison of Tree(F1) with SPT-MST-SCSE(F1) and DR-SCSE(F1) for (P1), 

n=20:10:100;200:100:1000. 

n 
TREE(F1) SPT-MST-SCSE(F1) DR-SCSE(F1) 

ASOF AT/S ASOF AT/S ASOF AT/S 

20 950.6 R 959 R 959 R 

30 2065.4 R 2079.4 R 2083.6 R 

40 3269.2 R 3297.4 R 3299.8 R 

50 4803.8 R 4836 R 4828.6 R 

60 7192 R 7225.2 R 7220.8 R 

70 10007.4 R 10043.8 R 10038.6 R 

80 13311.4 R 13349 R 13345.8 R 

90 16617 R 16659.6 R 16644 R 

100 19929.8 R 20006.2 R 19995.4 R 

200 78921.4 4 79030.2 0.5 78989.8 R 

300 180740.2 11.4 180888.2 0.8 180842.8 R 

400 306064 19.1 306284 0.9 306119.6 R 

500 482286 37.9 482609.4 1.2 482311.4 R 

600 703009 58.5 703309.6 1.3 703043.2 R 

700 921031.6 81.4 921374 1.7 921031.6 R 

800 1243269 120.7 1243590.8 2 1243269 1.3 

900 1583756 175.8 1584086.2 2.3 1583756 1.7 

1000 1934981.8 234.4 1935622.4 2.8 1934981.8 2.3 

 

6. Analysis and Discussion of Results 

1. For        problem, we noticed that MST-SE is better than DR-SE for             in 

accuracy and CPU-time (see Tables-2 and 3). 

2. For P-problem: 

a. The SPT-MST-SCSE (F) is better than DR-SCSE(F) in accuracy and CPU-time (see Tables-4,7 

and 8) for all n. 

b. We notice that BAB(F) has a good accuracy in a reasonable time for      (see Tables-10 and 

11). 

3. For P1-problem: 

a. In accuracy, we ensure that TTHM(F1) is the best method, but SPT-MST-SCSE(F1) is better than 

DR-SCSE(F1) for      . DR-SCSE(F1) is better for  

         , while it is the best as related to CPU-time (see Tables-9, 11 and 12). 

b. For     , the BAB(F1) gives accurate results in a reasonable time (see Tables-10 and 11). 

7. Conclusions  

From this paper, we obtained the following conclusions: 

1. New different heuristics are suggested to solve        problem for one machine, where the 

experimental results proved that the MST-SE and DR-SE methods produced good results. 

2. We develop the heuristic methods of        for convenient              and we obtained two 

new heuristics, SPT-MST-SCSE and DR-SCSE, with good performance. 

3. For P1-problem, we used SPT-MST-SCSE(F1) and DR-SCSE(F1) and suggest the use of the 3
rd

 

heuristic method (TTHM) which gives good results for           
4. For some examples, when the solving methods are applied, there are some extreme CPU times, 

especially when applying BAB for P1-problem. This is because of the similarity in pi or/and di 

which causes a large number of nodes that must be branched. 

5. As a future work, we suggest the use of local search methods (such as simulated annealing, 

particle swarm optimization, genetic algorithm, Bees algorithm,…, etc.) to find efficient 

approximation solutions for P and P1 problem for      . 



Jawad et al.                                              Iraqi Journal of Science, 2020, Vol. 61, No. 8, pp: 2055-2069 

 

2069 

References 

1. Hoogeven, J. A. 2005. "Invited Review Multicriteria Scheduling", European Journal of Operation 

Research, 167: 592-623. 

2. Blazewics, J., K.H.P. Ecker, E.Esch, G.Schmidt and J.Weglarz, 1996. "Scheduling Computer and 

Manufacture Processes", Spring Verlag Berlin. Heidelberg. 

3. Faez H. Ali, 2015. “Improving Exact and Local Search Algorithms for Solving Some 

Combinatorial Optimization Problems”, Ph. D., Thesis, Mustansiriyah University, College of 

Science, Dept. of Mathematics. 

4. Tariq, S., Abdul-Razaq and Faez H. 2013. "Algorithm for Scheduling a Single Machine to 

Minimize Total Completion Time and Total Tardiness", The 2
nd

 International Conference on 

Mathematical Sciences-ICMA, 23-24. 

5. Van Wassenhove, L.N. and Gelders, F. 1988. "Solving a Bi-Criteria Scheduling   Problem", 

European Journal of Operation Research, 4/1: 42-48. 

6. Hoogeveen, J.A. 1992. "Single-machine bi-criteria scheduling", Ph. D.  Dissertation, Center for 

mathematics and Computer science, Amsterdam. The Netherlands. 

7. Mahmood A. A. 2014. "Multicriteria Scheduling: Mathematical Models, Exact and Approximation 

Algorithms", Ph.D. Thesis, University of Al-Mustansiriyah, College of Science, Dept. of 

Mathematics. 

8. Faez H. and Shrmeen B. 2017. "Scheduling a Single Machine to Minimize Max Tardiness, Max 

Late Work and Total Late Work". Mathematics and Statistics Journal, 3(1): 1-17. 

9. Hanan A. and Alaa S. 2019. “Exact Methods for Solving Multi-Objective Problem on Single 

Machine Scheduling”, Iraqi Journal of Science, 2019, 60(8): 1802-1813, DOI: 

10.24996/ijs.2019.60.8.17. 

10. Smith W.E. 1956. "Various Optimizers for Single Stage Production", Naval Research Logistics 

Quarterly, 3/1: 59-66. 

11. Jouni L. 2000. "Multi-Objective Nonlinear Pareto-Optimization" Lappeenranta University of 

Technology. 

12. Hoogeveen J.A. 1991. "Minimizing maximum earliness and maximum lateness on a single 

machine", Center for Mathematics and Computer science, P.O. Box 4079, 1009 AB Amsterdam, 

The Netherland. 

13. Hoogeveen J. A. 1996. "Single Machine Scheduling to Minimize a Function of Two or Three 

Maximum Cost Criteria", Journal of Algorithms, 21: 415-433. 

14. Kolman, B. 1988. "Introductory Linear Algebra with Applications", Macmillan Publishing 

company. 

15. Reeves C. R. 1993. "Modern Heuristic Techniques for Combinatorial Problems", John Wiley and 

sons, New York. 

16. Tariq, S. and Sally A. 2016. "A Comparison of Local Search Algorithm for Multicriteria 

Scheduling Problems", M.Sc. thesis, University of Al-Mustansiriyah, College of Science, Dept. of 

Mathematics. 

 

 


