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Abstract

In this paper, we investigate some methods to solve one of the multi-criteria
machine scheduling problems. The discussed problem is the total completion time
and the total earliness jobs (1//(XC;, X.E;)). To solve this problem, some heuristic
methods are proposed which provided good results. The Branch and Bound (BAB)
method is applied with new suggested upper and lower bounds to solve the
discussed problem, which produced exact results for n < 20 in a reasonable time.

Keywords: Machine Scheduling problem, completion time, earliness, Branch and
Bound.
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1. Introduction

There are many definitions for machine scheduling; scheduling problem is the allocation of
resources over time to perform a collection of tasks. Resources and tasks are called machine and jobs
respectively and both of than can take many forms [1]. The two concepts can take many forms. For
example, we can consider computers as machines and the programs that are to be run on these
computers as jobs.

There are two general constraints in the classical scheduling theory [2]. Each job can be processed
by one machine each time and every machine is processing at most one job each time. A schedule is
called feasible schedule if it satisfies the two main constraints, and if it satisfies many requirements
relating to the discussed problem type. The type of the problem is related to the machine environment,
the job characteristics, and the criterion of optimality.

There are many known exact and approximation solution methods to solve the Machine Scheduling
Problem (MSP). The exact solutions are obtained using the Complete Enumeration Method (CEM),
Branch and Bound (BAB) method, and Dynamic Programming (DP) method [3].
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Multi-criteria optimization depending on conflicting objective functions establishes a set of Pareto
optimal solutions (Efficient solutions), instead of one optimal solution. This set includes one (many)
solution(s) that no other solution(s) is better with respect to objective functions. In the literature, there
are two approaches for multi-criteria scheduling problems:

1. The hierarchical approach: the first criterion is considered as the primary criterion and the
second one is considered as the secondary criterion. The objective is to minimize the primary criterion
while breaking all ties in favor of the schedule which has a minimum secondary criterion value [4].

2. The simultaneous approach: there are, at most, two types; the first one generates all efficient
schedules then selects the one that yields the best composite objective function value of the criteria.
The second one is to find the sum of these objectives [4]. Van Wessenhove and Gelder [5] studied the
efficiency with respect to the criteria of the total completion time and the maximum tardiness in a
single machine problem. A survey on multicriteria one-machine scheduling problems can be found
elsewhere [6].

The most important literature survey for the last five years is that of Mahmood (2014) [7], who
discussed the multicriteria scheduling problems which are studied on a single machine to find a set of
efficient solutions for the general problems 1/F(3.Cj,TmaVma), L/F(Ci> Vi Vi), UIF(G.C,
>V, Tmax), and others. Some efficient algorithms were proposed for solving these problems. Ali (2015)
[3], in his thesis, solved the sum of completion time and sum of tardiness (3C;,>'T;). He proposed a
new BAB, two local search methods, and a Neural Network (NN) to solve this problem. Ali and
Abdul-Kareem (2017) [8], attempted to solve a single MSP to simultaneously minimize the maximum
tardiness, maximum late work, and total late work. They used the exact methods (CEM and BAB),
suggested some heuristic methods for a large humber of jobs, and used the best results as a good upper
bound for BAB. Chachan and Hameed (2019) [9] studied the multiobjective problem, which is the
sum of completion time, the tardiness, the earliness, and the late work (1//(2(6,- + T, +E + Vj)).
They suggested the use of BAB for solving this problem, where four upper bounds and one lower
bound are proposed and a number of dominance rules are considered to reduce the number of branches
in the search tree.

In section two, we will discuss the mathematical formulation of 1//(ZCj,ZEj) problem and its
special cases. Section three introduces some heuristic methods for 1/ /(ZE]-) and our problem, while
in section Four the BAB is applied with a newly suggested upper and lower bound. The practical and
comparative results are introduced in section five. While in section six we present an analysis and
discussion for the results which are introduced in section five. Lastly, in section seven we introduce
the most important conclusions and some recommendations.

1.1 Some Important Notations
There are some notations which are used in this paper:

n : Number of jobs.

pj : Processing time of jobs j.

d; . Due date of jobs j.

Sj : Slacktimeof jobjs.t.s; =d;j —p;.

C; - Completion time of job j, where C; = Z{;ﬂpk.
Ej : Earliness of job j, E; = max{d; — C;, 0}.
xC; . Total completion time.

YEj : Total earliness.

OoP : Optimal Value of Py-problem.

F . Obijective Function of P-problem.

F; : Objective Function of P;-problem.

1.2 Machine Scheduling Problem

In this paper, we need some basic definitions.

Definition(1): Shortest Processing Time (SPT) rule[10]: Jobs are sequenced in a non-decreasing
order of processing times (p;), where this rule is used to solve the problem 1//3.C;.

Definition(2): Earliest Due Date (EDD) rule [11]: Jobs are sequenced in a non-decreasing order of
due date (d;), where this rule is used to minimize the problem 1//T;,4 -
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Definition(3): Minimum Slack Time (MST) rule [12]: Jobs are sequenced in a non-decreasing order
of slack times (s;) s;=d; — p;, where this rule is well known for solving the problem 1//E, .
Definition(4) [11]: The term "optimize" in a multi-criteria resolution-making problem indicates a
solution about which there is no way of developing or improving any objective without worsening the
other objective.

Definition(5) [13]: A schedule S is said to be an efficient schedule if we cannot found another
schedule S” satisfying f;(S") < £;(S),j = 1, ..., k, with at least one of the above holding as a strict
inequality. Another way is that S is said to be dominated by S .

Remark(1): Let S be a set of efficient schedules and let o be a schedule. We use the symbol o ¢ S if
all efficient solutions of S do not dominates o.

1.3 Dominance rule (DR)

Reducing the current sequence may be achieved by using several Dominance Rules (DR's). DR's
usually specify some (all) parts of the path to obtain a good value for objective function so that they
can be useful to determine whether a node in BAB method can be ignored before its lower bound (LB)
is calculated. Clearly, DR's are particularly useful when a node can be ignored although it has a LB
that is less than the optimum solution. The DR's are also useful within the BAB method to cut all
nodes that are dominated by others. These improvements lead to a very large decrease in the number
of nodes to obtain the optimal solution.

Definition(6) [14]: If G is a graph that has n vertices, then the matrix A(G)=[a;], whose i**and j*"
elements are equal to 1 if there is at least one edge between V; and V; whereas they are equal to zero
otherwise, this matrix is called the adjacency matrix of G, where.

0, ifi=jorj»i
a; =141, ifi > j,

Clij and ﬁij, i <—>]
2. Mathematical Formulation for 1//(XC;, 3.E;) Problem
The object can be described as a set of n jobs N={1,2,...,n} on a single machine to find ¢ € S (where
S is the set of all feasible schedules), so they can be fully used to specify whether that minimizes the
multi-criteria (%.C;, XE;). The 1//(%.C;, Y.E;) problem can be written as:

Min {3.C;,YE;} )

Subject to,

C; = pi, j=12,..,n

CJ_CJ o3 . ..(P)
j = (j—1)+pj' ] = 4,9,..,N.

E] = d] - C], ] = 1,2, e, N

E; =20, j=12,..,n

2.1 Sub problems of P-problem
For P-problem, we can deduce two sub problems:
1. The 1//¥C; + Y Ej Problem:

Min{YC; + YE;} )
Subject to,
Ci = pj, j=12,..,n
C.=C =12 ..(Py)
j = (j_1)+pj, ] = L4 ..,n
E] = d] - le ] = 1,2, e, N
E; =0, j=12,..,n )

The aim for the P;- problem is to find a suitable processing order of the jobs on a one single
machine to minimize the sum of completion time and sum of earliness jobs, which is a single object.
Proposition (1): Each optimal solution for P;- problem is an efficient solution for P-problem.

Proof: Let m be an optimal schedule for P;- problem. Suppose that 7 is not an efficient solution for P-
problem, then there is an efficient schedule, say &, for P-problem such that:

2Ci(6) < XCi(m) and Y E;(8) < YE;(m)
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where at least one of the inequalities is strict. This implies that .C;(6) + YE;(8) < X.C;(m) + Y E; (),
then § is a schedule that gives a better solution than & for P;- problem. But r is an optimal schedule,
which is a contradiction with our assumption, then = must be an efficient schedule for P-problem.

2. The 1/ /Lex(¥.C;, XE;) Problem

Min{YE;}

Subject to

Ci = pj, j=12,..,n

Ci=Ci-n +p) j=23..,n} ..(P2)
E; > dj -G, j=12,..,n

E; =0, j=12,..,n

2C; = A,where A= },C;(SPT)

For the P,-problem, the objective }.C; is more important than the other objectives since the multi-
criteria object is Lex(¥.C;, XE;).

2.2 Special Cases For P-problem

Case (1): If d; = d, V], then the sequence o obtained by SPT rule gives an efficient solution for P-
problem.

Proof: Since d; = d and since p; are different, then the sequence o obtained by SPT rule gives an
optimal schedule for }.C;, then the sequence o gives an efficient solution for P-problem.

Case (2): If p; = d;, V), (and automatically for C; = d;), then the sequence o obtained by SPT rule
gives:

1. A unique efficient solution for different p;, such that (min¥.C;(0),0).

2. If there is m similar p; in the schedule, then the SPT rule gives m! optimal solution for }.C;, and
obtains m! efficient solutions for P-problem.

Proof: Since p; = d;, (and automatically C; = d;) V;, then E; =0, Vj, and YE; = 0, then it is
constant.

1. If all p; are different, then o gives an optimal solution for }C;, and gives a unique efficient
solution for P-problem.

2. If pj; is similar to m > 2, then o gives an optimal solution for }.C;, and o gives m! efficient
solutions for P-problem.

Case (3): If d; = Crqy, for some j, then the job j is sequenced last, then we obtain an efficient
solution with SPT rule for other jobs in the schedule for P-problem.

Proof: Since d; = Cpqy, if the job j is sequenced last in some order, then if E;;y = 0, then the
sequence ¢ gives an efficient solution for P-problem.

Theorem (1): In general, there exist efficient solution(s) for P-problem that satisfies the SPT rule.
Proof:

1. First, suppose that all processing times (p;) are different. Then their exists a unique SPT
sequence (SPT") that gives the unique value of minimum of >.C;. Hence, there is no sequence o# SPT”
such that:

271 G(0) < BTy G(SPT*) and T7_, Ei(0) < Xy E;(SPT™) (D)
with at least one strict inequality.
2. If many jobs have equal processing times, then more than one SPT sequence exists. Let SPT"

be one sequence satisfying the SPT rule, and the jobs which have equal processing times are ordered
in EDD rule in order to minimize ZE]-(SPT*). Then we have to prove that each SPT" sequence is
efficient. It is clear that any sequence that do not satisfy the SPT rule cannot dominate an SPT"
sequence, as in relation (1). So if o is an SPT but not SPT" sequence then it cannot dominate SPT"
since:

) Xi=1Ci(0) = ¥j=1 C;(SPT")and Y7, Ej(0) < ¥, Ej(SPT") ..(2)
Hence all SPT sequences give efficient solutions for P-problem.
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3. Heuristic Methods for P and P;-Problems

As most of the scheduling problems are NP-hard and the computational requirement to solve such
problems using BAB or DP methods might require more time, many researchers have developed
heuristic algorithms to solve them in an efficient and effective way.

The heuristic method is defined as follows (Reeves [15]): A heuristic is a technique that seeks a good
(i.e. optimal or near optimal) solution at a reasonable computational cost without guarantee for either
feasibility or optimality, or even in many cases, to state how close this solution is to optimality in a
particular feasible solution?

In the next section, we discuss some heuristic methods for (1//Y.E;), P and Py-problems.

3.1 Heuristic Methods for 1//YE;

The problem 1//¥E; is considered as NP-hard, so we suggested two heuristic methods to solve
this problem that give good results. The first suggested heuristic method is using MST for sum of
earliness (MST-SE). The idea of this method is to arrange the jobs by MST rules and calculate the
objective function, then putting the second job in the first place, while the other jobs are arranged by
the MST rules and the objective function is calculated. We continue this work until obtaining the n
sequences. The main steps of MST-SE (mst rule-sum of earliness) algorithm are as follows:
Algorithm (1): MST_SE Heuristic Method.

Step(1): INPUT n, p; and d;,j = 1,2,3, ..., n.

Step(2): Arrange jobs in MST rule (y,), and calculate F; (y;) = YE;j(y1), lety = ;.
Step(3): FOR i=2,...,n, job i in the first position of y;_,to obtain y;, then calculate F;(y;).
Step(4): If Fi(y;) < F(y) THENy =,

ELSE GO TO Step(3)

END IF.

Step(5): OUTPUT: The options of sequence y with F(y) value.

Step(6): END.

The second method depends on using DR of Sum Earliness (DR-SE).

Remark (2) [16]: For 1//Epqx problem, if p; < p; and s; < s;, then there exists an efficient solution
in which job i is sequenced before job j.

Remark (1) may be useful to obtain a good solution for 1//YE; problem.

Example (1): Let’s have the following data for n=4:

We obtain the following DR: 2—1, 3—1, 4—1, then the adjacency matrix:
0 0 0 o0
1 0 az; ay,
183 0 az
1G4 G34 0O

The optimal solution is Y. E; = 14 with the sequence 4,3,2, 1.
The DR-SE method is summarized by finding a sequence sort with a minimum s; which is not in a
contradiction with DR and then the objective function will be calculated. The main steps of DR-SE
(Dominance rule-sum of earliness) are as follows:
Algorithm (2): DR_SE Heuristic Method.
Step(1): INPUT: n, pjandd;,j =1.2,..,n.
Step(2): Apply remark (2.1) to find adjacency matrix A of DR, let ¢ = @. N = {1,2, ..., n}. Calculate
sj=d; —pj,Vj EN. Let o be
any sequence.
Step(3): For i=1,2,...,n, find a sequence o with minimum s; which is not a contradiction with DR
(matrix A), if 3 is more than one job that breaks the tie arbitrarily.
Step(4): If F;(0;) < F(0), THEN 0 = ¢;

A=
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ELSE GO TO Step(3)
END.
Step(5): OUTPUT: The optioned sequence o with F (o) value.
Step(6): END.
3.2 Heuristic Method for P and P;- problems
The heuristic methods for P and P;-problems are considered as a development of the heuristic methods
for 1//XE; problem.
3.2.1 Heuristic Methods for P-problem

The first heuristic method depends on SPT and MST. Since the SPT rule solves the 1//3C;
problem, we have improved the heuristic method MST-SE by ordering the jobs by the SPT rule and
then calculating the objective function. Then, the second job was put in the first place and the other
jobs were still arranged by SPT rule. The objective function was calculated, and so on until obtaining
the n sequences, The main steps of SPT-MST-SCSE(F) (spt rule-mst-rule-sum of completion time
and sum of earliness for function F) are as follows:
Algorithm (3): SPT_MST_SCSE(F) Heuristic Method.
Step(1): INPUT n,p;and d;,j = 1,2,3,...,n, § = ¢.

Step(2): Arrange jobs in SPT rule (g;) and calculate F;(a;) = (ZCj(al),ZEj (01));

§ =6V {F1(01)}
Step(3): FOR i=2,...,n, put job i in the first position of g;_,t0 obtain o; and calculate F,;(g;) =
(ch (o0, ZEj (Ui)) ;
§ =6 {F;(ap)}.
END;
Step(4): Arrange jobs in MST rule (1r;) and calculate F,, (7;) = (ZCj(nl),ZEj(nl));

§ =6 U {Fy ()}
Step (5): FOR i=2,...,n, put job i in the first position of m;_,to obtain m; and calculate F,;(m;) =
(ch (), YE; (ﬂi)) ;
6 =6V {Fy(my)}.
END;
Step(6): A filter set 6 to obtain a set of efficient solutions of P-problem.
Step(7): OUTPUT The set of efficient solutions §.
Step(8): END.

The idea of the second heuristic method is dependent on the heuristic DR-SE and it is summarized
by finding a sequence sort with minimum p;, d; and s; which is not a contradiction with DR, and
calculating the objective function. The main steps of DR-SCSE(F) (Dominance rule-sum of
completion time and sum of earliness for function F) are as follows:

Algorithm (4): DR_SCSE(F) Heuristic Method.

Step(1): INPUT: n,pjand d;,j = 1,2,...,n.

Step(2): Apply remark(1) to find DR and adjacency matrix A,

oc=0,N={1,2,..,n}

Calculate s; = d; —p;,Vj EN,§ = 0.

Step(3): Find a sequence o; with minimum p; which is not contradiction with DR (matrix A), if 3 is
more than one job that breaks ties arbitrarily, § = 6 U {04}

Step(4): Find a sequence o, with minimum d; which is not contradiction with DR (matrix A), if 3 is
more than one job that breaks ties arbitrarily, 6 = 6§ U {0,}.

Step(5): Find a sequence o3 with minimum s; which is not contradiction with DR (matrix A), if 3 is
more than one job that breaks ties arbitrarily, 6 = § U {03}

Step(6): Find the dominated sequence set 8 from §.

Step(7): Calculate F(6).

Step(5): OUTPUT The set of efficient solution §.

Step(8): END.

3.2.2 Heuristic Methods for P;-problem
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For P;-problem, we can use the same two heuristic methods which are discussed in section 3.2.1.
The Tree Type Heuristic Method (TTHM) can be considered as the 3™ heuristic method for P;-
problem.

Algorithm (5): TTHM(F,)

SmpﬂyINPUT:nJyandde=iLZ"Un.

Step(2): CALL SPT_MST_SCSE(Fy);

Calculate UB =min(Fy;), obtained by a schedule, say 7;. Compute YCj(z;) and }E;(t;) st
UB:ZC](T1)+ZEJ(T1) i=0.

Step(3): i=i+1, for any node in the search tree calculate the lower bound (LB)=cost of sequencing
jobs + cost of unsequencing jobs, where the cost of unsequencing jobs is obtained by ¢=SPT rule.
Step(4): Branch from the minimum node with LB < UB for level i.

Step(5): If i < nthen go to Step(3).

Step(6): At the last level (i=n) we get the best solution (BS).

Step(7): OUTPUT The Best solution (BS).

Step(8): END.

4. Branch and Bound Method for P and P,-problems

BAB method is one of the most effective exact ways to solve scheduling problems, but it is
classically difficult because of the elapsed time.

We notice that P-problem has many similar efficient solutions. This implies when we apply BAB for
P-problem. Many nodes are open and this implies that the BAB may be not efficient to obtain an
accurate solution for large n in a reasonable time. Table-1 describes this problem.

4.1 Branch and Bound Method for P-problem

We tested three models of upper bound (UB); let ;=SPT, 0,=EDD, 0;=MST, then UB,= F(g,), UB,=
F(o5), and UBs= F(a3) UB=min{UB,,UB,,UB3s}. We also tested two models of lower bound (LB); let
y1=SPT and y,=MST, then LB,=F(y;) and LB,=F(y5).

Algorithm (6): BAB(F)

Step(1): INPUT: n,p;and d;,j = 1,2, ..., n.

Step(2): Find the UB=UB by gy, s.t. UB=(}.C;(0y),2> Ej(0%)), (k=1,2,3), i=0.

Step(3): Set the upper bound S={ g}, }.

Step(4): i=i+1, in level i, for any node in the search tree, compute the LB=cost of sequencing jobs
+cost of unsequencing jobs, where the cost of unsequencing jobs is obtained by y,,, (m=1,2) for the P-
problem.

Step(5): Check that the sequence y,, of this node is y, ¢ S if y,, #S, S =S U {y,,}, cancel the
dominated sequence, and branch from this node; else ignore this node.

Step(6): After finishing all nodes of this level, find the efficient solutions s; of S, say S’, such that
s'cs.

Step(7): State that UB={F(s;)}, Vs; € S

Step(8): GO TO Step(3) until finishing checking all levels (i=n).

Step(9): Calculate 0; = F(s;), for s; € S, for i=1, ..., k (k is the number of the efficient points).
Step(10): OUTPUT The set of efficient solution S,

Step(11): END.

4.2 Branch and Bound Method for P;-problem

For the P;-problem, we applied what is known as the classical BAB to obtain optimal sequence
7=SPT since we search about the single objective function. Firstly, UB= Y.C;(7) + XE;(t). Then
calculate the LB for any node which consists of sequence and unsequence parts (obtained by SPT
rule). Repeat these steps until obtaining the optimal solution at the root. The BAB algorithm steps for
P;-problem are as follows:

Algorithm (7): BAB(F,)

Step(1): INPUT: n,pjand d;,j = 1,2,...,n.

Step(2): Find the UB by 7=SPT, obtain schedule say = compute }C;j(r) and YE;(r) then
UB=Y.C;(t)+XE;(1).

Step(3): Set the UB S={z}, when i=0.
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Step(4): i=i+1, for any node in the search tree calculate the LB=cost of sequencing jobs + cost of
unsequencing jobs, where the cost of unsequencing jobs is obtained by o=SPT rule.

Step(5): Branch each node with LB < UB for level i.

Step(6): If i < nthen go to Step(4).

Step(7): At the last level (i=n) we get the optimal solution (OP).

Step(8): OUTPUT The optimal solution (OP).

Step(9): END.

5. Practical Results of P and P;-problems

The values of p; and d; for all example are generated randomly s.t. p; € [1,10] and

[1,30], 1<n<29 .

4 ) (140, 30<n<99 .
7 =11,50], 100 <n <999.
[1,70], otherewise,

under condition d; = pj, for j=1,..,n.
Before showing tables of all the results, we introduce some important abbreviations:

Ex : Example Number.

Av : Average.

NES : Number of efficient Solution.

ANES : Average number of efficient solution.
T/S : Time per second.

AT/S . Average Time per second.

AAE : Average Absolute Error.

MAE : Mean Absolute Error s.t. MAE=|a;-a,|/a;.
AMAE . Average of MAE.

T(AvV) : Total Average.

AE(AvV) : Absolut error (Average).

SOF : Single Objective Function.

ASOF . Average Single Objective Function.
MOF : Multi Objective Function.

AMOF : Average Multi Objective Function.

R : 0 <Real <1.

It is important to mention that the results of applying all solving methods are revered for 5
experiments.

For P-problem, we note that the number of similar feasible and efficient solutions is very large.
This number will be increased as n is increased, because of the function Y E;. Table-1 shows the
number of feasible solutions (NF) as well as the averages and percentages of similar (SS) and different
(DS) feasible solutions, and the number of the similar (NESS) and different (NEDS) efficient solutions
for different n.

Table 1-NF and the averages and percentages of SS, DS, NESS and NEDS for different n

NF AV(SS) | P(SS)% P(DS)% | AV(NESS) | AV(NEDS)
24 0.8 3.3 96.7 0.4 5.6
120 23.8 198 80.2 8.4 142
720 389 54 46 20.4 14.8

5040 37954 75.3 24.7 26.8 21.2
40320 38015.6 94.3 5.7 76.8 26
362880 359262.6 99 1 132.6 29.6
3628800 3622601 99.8 0.2 --- 43.6

Notice that the P(SS) and Av(NESS) are increased as n increased.
Figure-1 Shows the difference between feasible and efficient solutions for n=6, where the curve of the
efficient solutions is approximate to f(x)= -x.
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No. of Solutions is 70

No. of Solutions is 720 55

50 ()

45
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SE
()
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30 (-]

25 ()

20 >
95 55 60 65 70 75 80 85

sC
(@) (b)
Figure 1-(a) All feasible solutions. (b) Efficient solutions for n=6.

5.1 Comparison Results of 1//3E;
Table-2 shows a comparison between the results of the heuristics MST_SE and DR_SE compared
with the CEM method to solve 1//3E; problem, n=4:10.

Table 2-Comparison of the results of MST-SE, DR-SE with CEM for 1//Y.E; problem, n=4:10.

I N CEM MST-SE DR-SE I

n

where the AASE is the average of the averages of SE.

Table-3 shows a comparison of the results between heuristics MST_SE and DR_SE methods to solve
1//%E; problem for n=30,70,100,300,700 and 1000.

Table 3-comparison of the results between MST_SE and DR_SE methods for 1//XE; problem for
n=30,70,100,300,700 and 1000.

5.2 Comparison of the Results of P-problem.
Comeparison of the results between SPT-MST-SCSE(F) and DR-SCSE(F) with efficient results of
CEM(F) for P-problem are shown in Table-4, n=4:10.
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Table 4-Comparison between SPT-MST-SCSE(F), DR-SCSE(F) with CEM(F) for P-problem,
n=4:10.

CEM(F) SPT-MST-SCSE(F) DR-SCSE(F)

AMOF A;—/ AMOF A;—/ A’;E AAE AMOF A;—/ A’;E AAE

(58.6,16.3) | R . (594,17) | R | 48 | (0.01,004) | (58.6,148) | R 26 | (0.0,0.09)
(0.01,0.00
4)
(97.1,16.9) 2.8 | (0.04,0.15)
(146.2,21.
3)
(155.3,24.
6)
(217.7,26.
1)

(0.09,0.11) | (277,26.7) 3 | (0.18,0.22)

(728244) | R 2 | (737256) | R | 7.2 | (0.01,005) | (73.8,245) | R 2
(0.003,0.1

(93.4,19.8) 8 | (93.7,223) 6.8

3)
(13455"24' (140,26 5) 9.4 | (0.04,0.08)
(143.3,27. (148.8,32.
5) 5)
(199.3,28. (215.8,31.
2) ' ' 1
(235.8,34. (256.4,37.
. 7

26 | (0.09,0.13)

9 | (0.04,0.18) 3 | (0.080.11)

11 | (0.08,0.10) 26 | (0.09,0.07)

(0.04,0.10) . (0.07,0.11)

Notice that the Heuristics SPT-MST-SCSE(F) and DR-SCSE(F) yield good results compared with
CEM(F) for P-problem.
The results of applying BAB(F) compared with CEM(F) for P-problem, n=4:10 are shown in Table -5.

Table 5-Comparison between BAB(F) with CEM(F) for P-problem, n=4:10.
CEM(F) BAB(F)

AMOF ATI/S ANES AMOF ATI/S ANES
(58.6,16.3) 5.6 (58.8,16.0) R 5
(72.8,24.4) 14.2 (72.8,24.4) 13.4
(93.4,19.8) 14.8 (93.2,20.1) 14.2

(134.6,24.5) 21.2 (135.6,23.9) 18.2
(143.3,27.5) 26 (144.4,27.0) 22.6
(199.3,28.2) . 29.6 (199.7,28.2) 26.4
(235.8,34.1) . 43.6 (238.7,31.8) 39
TAV 22.1429 19.8286
AE(AV) 0.1045

The comparison of the results of CEM(F) and BAB(F) which are shown in Table-5, for P-problem,
n=4:10, are depicted in Figure-2.

2064



Jawad et al. Iragi Journal of Science, 2020, Vol. 61, No. 8, pp: 2055-2069

250

200

150

(SC,SE)

100

50

Figure 2-Comparison of the results of CEM(F) and BAB(F) for P-problem, n=4:10.

Table-6 shows a comparison of the results of CEM(F) and BAB(F) models NS for P-problem for
n=4:10.
Table 6-Comparison of the results of CEM(F) and BAB(F) methods for NS for P-problem, n=4:10.
AV(NES) AV(NES) using BAB
Using CEM UB=F(SPT) | UB=F(SPT) | UB=min(F(SPT),F(EDD),F(MST))
LB=F(SPT) | LB=F(MST) LB=F(SPT)
5.6 5.0 5.2 5.4
14.2 13.2 12.2 13.0
14.8 13.6 10.6 14.2
21.2 15.0 13.2 17.6
26.0 17.0 14.0 21.8
29.6 19.0 12.4 26.4
43.6 33.0 8.0 41.2
16.543 10.8 19.943
0.253 0.512 0.099

From the above table, we conclude that the best model is UB=min{F(SPT), followed by F(EDD),
F(MST)}, then LB=F(SPT).

In Table-7, we compare the results obtained from heuristic SPT-MST-SCSE(F), DR-SCSE(F) and
BAB(F) for P-problem, n=11:16.
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Table 7-Results of the comparison of BAB(F), SPT-MST-SCSE(F) and DR-SCSE(F) for (P),

n=11:20.

BAB(F)

SPT-MST-SCSE(F)

DR-SCSE(F)

AMOF

AMOF AT/S

AMOF

AT/S

(286,28.2)

)

(312,33.5)

(329.2,25.5)

)

(366.2,18.1)

(386.8,26.4)

(408.1,17.3)

(441.3,28.9)

(487.4,34.2)

(525.5,22.1)

(452,29.9)

(519.2,33.8)

(556.3,25.7)

(531.7,33.2)

(581.4,38.9)

(636,25.7)

(660.4,24.9)

(732.6,30.4)

(766.3,22.4)

(657,37.7)

(766.3,41.8)

(823.7,28.1)

(729,36.8)

(829.2,44.2)

(871.3,32.9)

(855.5,30.6)

(0|00 WO O|D

(980.9,35.01)

(1030.5,25.7)

(0 |XW|O|WV|AO|O|O

(919.9,31)

(1062.2,37.8)

)

(1127.6,26.2)

)

Table-8 shows a comparison of the results between heuristics methods SPT-MST-SCSE(F) and

DR-SCSE(F) to solve P-problem for n=30,70,100,300,700 and 1000.

Table 8-Comparison of the
P-problem for different n.

SPT-MST-SCSE(F)
AMOF AT/S
(2343.8,56.2) 0.2
(11985.8,96.5) 0.3
(24316.2,155.01) 0.3
(241361.9,123.1) 1
(1286395.7,98.9) 6.7
(2681881.1,160.8) 16.8
5.3 Comparison of the Results of P;-problem

In Table-9, we show a comparison between the optimal results of CEM(F;) and the results of the
heuristics SPT-MST-SCSE(F,), DR-SCSE(F,) and TREE(F;) n=4:10 for P,-problem.

results between SPT-MST-SCSE(F) and DR-SCSE(F) for

DR-SCSE(F)
AMOF

(2569.9,36.9)

(12673.4,68.9)

(25484.2,109)
(235964.5,129.7)
(1221127.3,24.7)
(2544587.7,26.9)

Table 9-Comparison between CEM(F,) and SPT-MST-SCSE(F;), DR-SCSE(F;) and Tree(F;) for P;-
problem, n=4:10.

CEM(F,) | SPT-MST-SCSE(F,)
ASOF ASOF | AT/S | AAE
73 734 | R | o001
95.6 96.8 0.01
110.4 113.2 0.03
156 160.8 0.03
166.8 1718 0.03
224.4 231.4 0.03
10 267.4 271.2 0.01
AE(AV) | 156.229 159.8 0.02

DR-SCSE(F,)
ASOF | AT/S | AAE
734 | R | 001
96.6 0.01
112.6 0.02
161 0.03
172.8 0.04
231.6 0.03
274.2 0.03
160.31 0.02

TREE(F))
ASOF | AT/S
734 | R
96.8
112.4
160.2
171.8
229.6
271
159.31

AAE
0.01
0.01
0.02
0.03
0.03
0.02
0.01
0.02
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Notice that the heuristics Tree (Fy), SPT-MST-SCSE(F;) and DR-SCSE(F;) produced good results
compared with CEM(F,), and this is obvious from AAE, for P;-problem.
Table-10 shows the results of CEM(F;) for P;-problem compared with those of BAB(F;) and
Tree(F;) methods for P;-problem, n=4:10.
Table 10-Comparison of the results of BAB(F;), Tree(F;) with CEM(F,) for (P;), n=4:10.
CEM(Fy) BAB(F,) TREE(F))
ASOF AT/S ASOF ATI/S ASOF ATI/S
73 73 73.4
95.6 95.6 96.8
110.4 110.4 112.4
156 156 160.2
166.8 166.8 171.8
224.2 224.2 . 229.6
267.4 267.4 : 271
156.2 156.2 159.31

Where TAV is the total average.
The results of applying BAB(F,) and the three heuristics for P;-problem, n=11:15, which are given in

a reasonable CPU time (Time < 600 seconds), are described in Table-11.

OO|N|O|O1| =]

=
o

_|
>
<

Table 11-The results of the comparison of BAB(F,), with three heuristics for (P,),
for n=11:15.

BAB(F,) TREE(F)) SPT-MST-SCSE(F,) DR-SCSE(Fy)
ASOF | AT/S | ASOF | ATI/S ASOF AT/S ASOF | ATI/S
309.4 0.4 313.2 316.2 318.8
379 1.2 384.6 387.6 390.6
465.4 6.6 468.8 473.6 475.8
476.6 45.4 481.2 485 486.6
559 66.2 564.8 567.2 571.8
437.88 442,52 445,92 448.72

Figure-3 shows the comparison of the results of BAB(F,), Tree(F;) and SPT-MST-SCSE(F;) which
are obtained from Table-11 for P;-problem, for n=4:15.

600

—— BAB

500 | |—©— SPT-MST 4

400

300

SC+SE

200

100

4 6 8 10 12 14 16
n

Figure 3-Comparison of the results of BAB(F,), Tree(F;) and SPT-MST-SCSE(F,) for n=4:15.
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Table-12 describes the average of the efficient solution for Ps-problem for n=20:10:100;200:100:1000,
using Tree(F,), compared with the heuristic methods SPT-MST-SCSE(F;) and DR-SCSE(F,).

Table 12-Results of the comparison of Tree(F;) with SPT-MST-SCSE(F,) and DR-SCSE(F,) for (P,),
n=20:10:100;200:100:1000.

TREE(F) SPT-MST-SCSE(F,) DR-SCSE(Fy)
ASOF AT/S ASOF AT/S ASOF AT/S
950.6 959 959
2065.4 2079.4 2083.6
3269.2 3297.4 3299.8
4803.8 4836 4828.6

7192 7225.2 7220.8
10007.4 10043.8 10038.6
133114 13349 13345.8

16617 16659.6 16644
19929.8 20006.2 19995.4
78921.4 79030.2 . 78989.8
180740.2 180888.2 . 180842.8
306064 306284 . 306119.6
482286 482609.4 . 4823114
703009 703309.6 . 703043.2
921031.6 921374 . 921031.6
1243269 1243590.8 1243269
1583756 1584086.2 . 1583756

1934981.8 1935622.4 . 1934981.8

A |0|0|A0|0|Q| 0|0

~|70|70|0|0|0|00|0 |0

N[
SIE | o™ o|o | 0| 0| 0| 0| B 0| 0| WD

6. Analysis and Discussion of Results

1. For 1//XE; problem, we noticed that MST-SE is better than DR-SE for n < 1000, both in

accuracy and CPU-time (see Tables-2 and 3).

2. For P-problem:

a. The SPT-MST-SCSE (F) is better than DR-SCSE(F) in accuracy and CPU-time (see Tables-4,7

and 8) for all n.

b. We notice that BAB(F) has a good accuracy in a reasonable time for n < 20 (see Tables-10 and

11).

3. For P;-problem:

a. Inaccuracy, we ensure that TTHM(F,) is the best method, but SPT-MST-SCSE(F,) is better than

DR-SCSE(Fy) for n <40 . DR-SCSE(Fy) is better for

40 < n < 1000, while it is the best as related to CPU-time (see Tables-9, 11 and 12).

b. Forn < 15, the BAB(F,) gives accurate results in a reasonable time (see Tables-10 and 11).

7. Conclusions

From this paper, we obtained the following conclusions:

1. New different heuristics are suggested to solve 1//X E; problem for one machine, where the
experimental results proved that the MST-SE and DR-SE methods produced good results.

2. We develop the heuristic methods of 1// ¥, E; for convenient 1//(X C;, ¥ E;) and we obtained two
new heuristics, SPT-MST-SCSE and DR-SCSE, with good performance.

3. For P;-problem, we used SPT-MST-SCSE(F;) and DR-SCSE(F;) and suggest the use of the 3"
heuristic method (TTHM) which gives good results for n < 1000.

4. For some examples, when the solving methods are applied, there are some extreme CPU times,
especially when applying BAB for P1-problem. This is because of the similarity in pi or/and di
which causes a large number of nodes that must be branched.

5. As a future work, we suggest the use of local search methods (such as simulated annealing,
particle swarm optimization, genetic algorithm, Bees algorithm,..., etc.) to find efficient
approximation solutions for P and P, problem for n > 100.
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