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Abstract

In this paper, the asymptotic behavior of all solutions of impulsive neutral
differential equations with positive and negative coefficients and with impulsive
integral term was investigated. Some sufficient conditions were obtained to ensure
that all nonoscillatory solutions converge to zero. lllustrative examples were given
for the main results.
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Introduction

The differential equations with impulses effect describe the process of evolution that rapidly
changes its state at certain moments. Therefore, this type of differential equations is suitable for the
mathematical simulation of the evolutionary process in which the parameters are subject to relatively
long periods of smooth variation followed by a rapid short-term change, and this is a jump in their
values. The wide possibility of applications determines the increasing interest in impulsive differential
equations. The importance of the need to study differential equations with impulsive effect is due to
the fact that these equations are more comprehensive in their use of mathematical modeling, where
gaps in the model can be addressed by limiting these gaps in specific points called the points of
impulses effect. They were appeared in many real processes and phenomena, such as control theory,
biology, mechanics, medicine, electronic, economic, etc.
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For instance, their applications include neural networks [1-3], control theory [4], economics [5, 6],
communication security [7, 8], population dynamics [9] and medicine [10]. As a result, many papers
were published for numerous impulsive neutral differential equations [11-13].

Guan and Shen [14] investigated the asymptotic criteria for the impulsive neutral differential equation
of Euler form, as follows:

@ - POYEO] + S 2y@ =0, t2

tk Q u }

y(t#) = y(ty) — (1 —cx) #y(u)du, keZ+)
aty

Pandian and Balachandran [15] studied the following differential equation with impulsive condition:

ly(® +P(t)g (y(‘r(t)))] + @f(y( ©®)) ——f(y(a(t))) b, k=12, |

tk o l(u Lk a l(u }
Yt = eyt + (1 - ck>< [ H O spea- [ LD ))da)
oty U a(t) )
Under some sufficient conditions, they showed that all solutions of this equation tend to constant or to
zero.
The aim of this paper is to obtain some sufficient conditions to guarantee the convergence of all
solutions of neutral differential equation with positive and negative coefficients and impulsive integral
term of the form:

[y(®) — POY(r(®)] + QOy(a(®) = ROy(a(®)) =0, t#t, k=12,.. )
y(t) = @ y(t) = (1= ) f ) QY@ =t k=12, f 4D
“a(ty)
(® = POYE®)] +0Wy(e®) - ROy(a®) = fB.t £, k=12,..)
o~ (a(ty)) (12)

y(t$) = ary(t) + (1 —ay) (f Q(u)y(a(u))du),t =t, k=12,..
tk

where a; are positive real numbers and t, are the moments of impulses effect. Let P €
PC([tg,); R*), where PC(X;Y) = {h: X - Y:h(t) is continuous for t € X and t # t,. We assume
that h(ty) lim,_,,+ h(t;) and
h(ti) = lime; h(t) exsistwith h(t;) = h(tx)}. Let QR € C([tg,©);RY), k=12,.. , and
T,0,a <t are continuous strictly increasing functions with lim;_ 7(t) = oo,lim;_, a(t) = o,
lim,., o(t) = . The functions 771(t),0 1(t),a 1(t) are the inverse of the functions
T(t), a(t), o(t), respectively,

We define the initial function y(t) = w(t),t € [p(ty), tol, p(t) = min{z(t), a(t),o(t)}, t =t,,
where w(t) € PC(p(ty), R).

A function y(t) is said to be a solution of (1.1) which satisfies the initial condition if
H1: y(t) = w(t) for p(ty) <t <tyandy(t)iscontinuousfort>tyandt # ty, k =1,2,...
H2:y(t) — P(t)y(z(t)) is continuously differentiable t>t, and t#t,, t#171(ty), t+#
o~ (t), t = a”1(t,) k = 1,2, ..., which satisfies the first equation.
H3: y(t7) and y(t;) exist with y(t;) = y(t) and satisfy the impulsive differential equation in (1.1)
or (1.2), where

y(t) =lim e y(ti) and y(t;) = limeep ¥ ().
2. Asymptotic behavior of INDEPNC (1.1)

In this section, some sufficient conditions are obtained to ensure that all the solutions of impulsive
neutral differential equations with positive and negative coefficients (INDEPNC) in the form of
Eq.(1.1) converge to zero.

Theorem 2.1

Assume that 0 < P(t) <p; <1, P(tf) =P(ty),0<a, <1, and 7(t;) is not an impulsive

point, let
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t

W) =y@®) - POy(z(®)) + f QWy(o)du, tE€ (ttsl (21

o (a(t)
where ¢, <o~ (a(t)) < t < ty4q, in addition to:

Q (7 (a(®)) (@M (a®) = RE 20, t € (te ticsa]- (2.2)
t
lim Q(w)du = 0. (2.3)

= Jo-1(a(®)
Then every nonoscillatory solution of Eq.(1.1) converges to zero as t — oo.

Proof
Suppose that Eq.(1.1) has a nonoscillatory impulsive solution y(t) > 0,y(z(t)) > 0,y(a(t)) >
0, y(a(t)) >0, t € (ty,tx+1], Kk =1,2,.... Differentiate (2.1) for every interval (ty,txs1] ,

k =1,2,...and using Eq.(1.1) we get
W'(®) = [y(®) - POYE®)] + Q@®y(e®) = @ (o7 (a(®))) y(a®)) (o (a(®)))’
= —Q®y(e(®) + R®Y(@(®) + 0Oy (a(®) - @ (074 (a(®))) y(a(®)) (6 (a(®)))’

=— <Q (c7*(a®)) (a-l(a(t)))' - R(t)> y(a®) < 0. (2.4)

Hence W (t) is nonincreasing for t;, <t < ty41, k=12,....
Next, we aim at W(t{) < W(t,) fork=12,.. We have 0<a, <landz(ty) #t, i<k=
1,2, ... then:

W) = y(t}) — Py (e(t) + j Qwy(ow)du

“(a(tr)

tk
< apy(t) — (1—ay) f 0y (o0)du = Py (rw) + f oy 2PN
o a(t

o (a(ty) (tx)

tk

- @) ta | 0y(o)d Pay(x(0) < W e
o~ Ha(tg
Hence W (t) is nonincreasing on [ty, ). Hence —oo < lim;_,,, W (t) < oo. We claim that y(t) is
bounded, and —o0 < %imW(t) < o0,
If y(t) is unbounded then there exists a sequence {t, } such that lim,,_,, t, = ©, lim,_., y(t,) = «,
y(t,) = max{y(s), t(ty) <s < t,}. Then by (2.1) it follows that:
W(tn) = y(tn) — p1y(tn) = (1 — p)y(tn) (2.5)
Asn — oo, we get lim,,_,.,, W(t,,) = o, which is a contradiction. Hence y(t) is bounded. It follows
that W (t) is bounded.
Ifw(t) <0,
02 W(t) 2y(t) - P@y(r(®)) > y(t) —y(z(t), t € (ti, tis1]
y(®) <y(z(®), t€ (tptysl
Hence y(t) is bounded and decreasing on every interval (ty, t;4]. Let %im y(t) =1 = 0. We claim

that I = 0, otherwise [ > 0, hence

W(t) = y(t) = POy (z(@©)W () = y(t) — p1y(z(t))
lim W(t)=1l—pl=(1-py)! >0, which is a contradiction. Thus %im W) = }im y(t)=0.

However, in this case W (t) — 0 is impossible since W (t) is negative and nonincreasing.
If W(t)=0,lety(t) <M, lim W(t) =L =0, W(t)= L.We claimthat L = 0, otherwise L > 0.

Using (2.3) in (2.1) we get
t
W(t) = y(t) — POy(e(®) + f iy 0 € (ot
oY a(t

<y()+ Mf Qwdu < y(t) +¢, e>0.
o (a(t))
Then for large enough t we get
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wo <y@®), teltl =t (2.6)
Choose y(t) > t, such that for large enough ¢; =t;, we obtain W(y(t)) —W() =0, for
t € (4, t41]
By integrating (2.4) from t to y(t) we get

W(y(®) - W) = - f " (Q (071 (@())) (2 (a())) - R(s)) y(a(s))ds
<-— ft "o (Q (o7 (ats))) (0'1(a(s)))’ - R(s)) w(a(s))ds
< -W(ay()) ftyw (Q (a‘l(a(S))) (0‘1(a(5))), - R(S)) ds

For large enough t, it follows that:

0<-L fty(t) <Q (a‘l(a(s))) (a‘l(a(s))), - R(s)) ds

Which is a contradiction. Thus, L = 0. Assume that limsup y(t) = M; = 0. So there exists a

t—o0
sequence {t,,} such that lim,,_, t,, = ©, lim,,_., y(t;,) = M;. We claim that M; = 0, otherwise
M; > 0. Then it follows that
W(tm) = y(tn) — p1y(@(tm))
Asm - o, 0= M, —p;M; = (1 —p;)M,, ityields that M; < 0, which is a contradiction.
Hence lim sup y(t) = 0, which implies that %i_)rgy(t) =0. O

t->w

Theorem 2.2
Let W (t) be defined as in (2.1) and let a;, = 1,1 <p, < P(t) <ps3, P(tF) < P(t) and t(ty)
is not an impulsive points, in addition to:

wa(t)dt < o, (2.7)
T ’

R(w) —Q (0'_1(a(u))) (G'l(a(u))) >0, (2.8)
fT (R(u) -Q (a-l(a(u))) (a-l(a(u))) ) du = . (2.9)

Then every nonoscillatory solution of Eq.(1.1) converges to zero as t — o.
Prglcj];pose that y(t) > 0,y(t(t)) > 0,y(a(t)) > 0,y(a(t)) > 0,t € (ty, tx4+1]. Differentiate (2.1)
and use (1.1) for every interval (ty,trxs1], k=12, ...
W'(©) = [y(®) - POYE®)] + Q©)y(e(®) = @ (o7 (a(®))) y(a®)) (0~ (a(®)))
= -0y (a(®) + ROy (a®) + QM)y(s(®))
~Q (07 (a®)) y(@(®) @ (a®))

- (R(t) = (o7 (a(®))) (a‘l(a(t)))’) y(a(®)) = 0. (2.10)

Hence W (t) is nondecreasing for t, <t < t,,, fork =1,2,..
Next, we need to prove that W(t}) = W (t,) fork =1,2,.... Sincea, = landz(ty) #t;, i <k,
k =1,2,.., it follows that:

W) =y — P&Hy(t(t)) + j

o Ya(ty

tk

) Qwy(o(w))du

2%

Zaky(tk)—(l—ak)f

o~ (a(ty)

tk
Qy(o)du = PeOY(r(a) + j (
o Ya(t

(tx

) Qwy(o(w))du

o™ Ha(ty))
= 4yt + a [ 0Wy(o (W) du — Pe)y(x(t))

Lk
> W(ty).
So, W (t) is nondecreasing on [tg, ).
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Hence  —oo <limy,, W(t) < 0. We claim that y(t) is bounded, otherwise there exists a
sequence {t,} such that lim,_,t, =, lim,,,y(t,) =, y(t,) = max{y(s), t_; <s <
()}, t-1 = min{r(ty), 07 (a(ty)) . Condition (2.7) implies

. 1(t) _ . t _ .
that lim,_,., fa_l(a(r_l(t))) Q(w) du =0, and lim,_,, fa_l(a(t)) Q) du =0. From (2.1) it follows
that:
T_l(tn)
W @) = ¥ @) — P )y + | QWy(o(w)du,
a—l(a(r—l(tn)))
T_l(tn)
<y = P (E))y(6) + (6 | Q@wdu,
0‘1(a(r‘1(tn)))

< (1 =p2 +8)y(ty).

As n — oo and for € € (0,p, — 1), the last inequality implies that lim,_,,, W (t) = —oo, which is a
contradiction.  So, y(t) is bounded, thus W (t) is bounded. Let liminf,, y(t) =1=>0, if [ >
0, then there exists u > 0 such that y(t) = u > 0 for t € (t;,t;41], | = k. Integrating (2.4) from T
tot,wheret; <t < t;,q,T =t;, yields

w© -wn = [ (re - 0 (s (@) (o~ () ) (etw)ea
>u '[Tt (R(u) -Q (0‘1(0((11))) (a‘l(a(u)))) du

Regardless of the sign of W(t), as t —» «, by using (2.9), the last inequality leads to a
contradiction.
We conclude that liminf;_., y(t) = 0. It remains to show that limsup y(t) = 0

t—-w
Letlimsup y(t) = M; > 0, hence for large enough t, we get y(t) < M,. Let lim W) =L
t—oo —00
If W(t) >0
tn
W(ta) = ¥(60) = Pe)Y(e(e) + | 0wy (ow)du,
o (a(ty)
tn
<y =Py () + M [ Qaodu,
o~ a(ty)

1111_1>n W(t,) =1 < —p,M; + eM; = (e — pp)M;

For € € (0,p,), the last inequality leads to a contradiction, unless M; = 0,1 = 0. However, this is
impossible since W (t) is positive and nondecreasing.
If W(t) < 0, we claimthat [ = 0, otherwise [ < 0, hence

T (ty)

0>WE™'(ty) =y () = PE 1ty (ta) + f Qwy(oc(wW))du,

o~ a(r™(ty)))
= y(r 7 (tn)) — p3y(ta)
Asn — oo, it follows that [ > lim sup,,_., y(t~1(t,,)), which is a contradiction. Hence [ = 0. On

the other side, if M; > 0, then from the following equation:
t

W) =y© - POYE©)+ [ 0y(ew)du
o~ (a(®))
()
we have: W(t71(8)) < y(z71(1)) — poy(6) + j Qwy(a(w))du

a‘l(a(‘r‘l(t)))
Taking limit superior for both sides to the last inequality yields
0<M; —p,M; +eM; = (1 —p, +e)M; Then for every € € (0,p, — 1) the last inequality leads to
a contradiction. Hence M; = 0. This means that %i_l)‘gloy(t) =0.
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3. Asymptotic behavior of INDEPNCFT (1.2)

In this section, some sufficient conditions are obtained to ensure that all the solutions of first order
impulsive neutral differential equations, with positive and negative coefficients and with forcing term
(INDEPNCFT) of the form (1.2), converge to zero.

Let W (t) be defined as

W) = y() — POy(z(t)) + f

o~ (a(t

t

) Q(u)y(a(u))du —F(t) (3.1)
For & <t<o (a(t)) <ty k=1,2, ..., suchthat

( t
[ seuas, et
F(t) = Tff: (3.2)
Ikak f(s)ds, t=t,, k=1.2,...
T(tk)

where f:(t)f(s)ds is convergentfort > T > t, and lim;_,, F(t) = 0.

Theorem 3.1

Assume that 0 < P(t) <p, <1, P(t{) = P(ty), F(t{) = F(ty) and 7(t;) is not an impulsive
points. Therefore, the conditions (2.2) and (2.3) hold. Then every nonoscillatory solution of Eq.(1.2)
converges to zero as t — oo.
Proof

Suppose that y(t) > 0,y(z(t)) > 0,y(a(t)) > 0,y(a(t)) > 0,t € (ty,txs1l, k =12, ...
We differentiate (3.1) for each interval (t;,tx,1], k = 1,2, ... and use Eq.(1.2) to get Eq.(2.4).
Hence W (t) is nonincreasing for t, <t <ty fork =12, ...
First, we need to show that W (t;) < W(t,) fork =1,2,....Since 0 < a; < landt(ty) #t; i <
k =1,2,... it follows that:

W) = y(&5) = Py () + j

(23
o~ (a(ty)

)Q(u)y(a(u))du — F(tg)
23

tk
< apy(ty) — (1 —ay) J o) QW)y(o(w))du — P(t,)y(r(ty)) + f . ) QWy(ow))du

o a(ty
— F(tx),
tk k
= a; y(ty) + ag J Qwy(o(w))du — P(t))y(t(tx)) — a f f(s)ds < W(ty).

o~ alty)) T(tr)
Hence W (t) is nonincreasing on [t,, ). Hence —oo < lim;_,,, W(t) < . We claim that y(t) is
bounded, and —oo < tlimW(t) < oo,

t

If y(t) is unbounded, then there exists a sequence {t, } such that lim,_, t, = o, lim,_ y(t,) =
o, y(t,) = max{y(s), t(ty) <s < t,}. Then by (2.1) it follows that:

W(tn) = y(tn) = p1y(tn) = F(tn) = (1 — p)y(tn) — F(tn)

Asn — oo we get lim,,_,, W(t,) = oo, but this is a contradiction. Therefore y(t) is bounded, and this
leads to W (t) is bounded.

If W(t) <0, then 0>W( 1(t,) = y(r 1(t,) —py(ty) — F(x71(t,)) asn - oo, we get
tli_)n%W(t) = 0. However, this is impossible since W (t) is negative and nonincreasing.

If W(t)>0,lety(t) <M, tlim W(t)=1=0, W(t) =1 Weclaimthat! = 0, otherwise [ > 0.

Then by
t

W) = y© - POY(E©) + |

o a(t

) QWy(o)du —F(t),  t€ (ty, tysal

t
Sy(t)+M_[ Qwdu—F(t) <y(t)—F(t) +¢, e>0.
o~ 1(a(®))
Then for large enough t, we get
Which implies that
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w® <y®), te(tt] J=k
Lety(t) > t such that W (y(¢)) — W(t) = 0, for large enough t.
By integrating (2.4) from t to y(t) we get

W040)—Wa)=—Lﬂﬁ<0@’%a®n)@’%aﬁny—R@ﬁyﬁﬂﬂﬁk
<- ft " (Q (072(a())) (o7 (a())) - R(s)> W (a(s))ds
< -W(a@y®)) ft "o <Q (672 (a())) (a—l(a(s))), = R(s)) ds

For large enough t, we conclude that

0<-L ftﬂt) (Q (a‘l(a(s))) (a‘l(a(s)))’ - R(s)) ds

Which is a contradiction. Thus L = 0. Assume that tlim sup y(t) = M; = 0. So there exists a

sequence {t,,} such that lim,,_,, t,, = ©, lim,, y(t,,) = M;. We claim that M; = 0, otherwise

M; > 0. Then it follows that
W(tm) = y(tn) — p1y(@(tm)) — F(tn).

Asm — o, 0> M; —p;M; = (1 — p;)M,, this yields M; < 0, which is a contradiction. Hence

lim sup y(t) = 0, which implies that hmy(t) = 0.

t—oo

4. Examples
Example 4.1
Consider the impulsive neutral differential equation:

(O —ge2 (t 1)]I+ ez (t+1) Lo o7 (t)—o
y 46}12 eeyz 466}12—,

6

t+k k=12

t
y(tg) = ap y(t) — (1 —ay) (f Q(u)y(a(u))du>. t=k
o~ (a(t))
where t “k—m<1 k=12,.
Let P(t) = { e s te(kk+1]
0, t=k

() = (k) =5 —¢
t 1 _k

P(t) =Pkt) = tl_i)r)l{1+P(t) = tl_i)r}l{ﬂ)f%e_? =7¢ 2 >0
P(t;) = 0,then P(t) = P(ty)

Let o(t) = %+ 1,a(t) = % ando™(a(t)) =t -2

To show condition (2. 2)- Q (o7 (a®)) (0‘1(6(t))) — R(t)

-(t-2)
=ele 2 —1es ez = (7.389056 — 1.042546) ez = 6.34651 > 0.

And condition (2 3):
t

t -u
lim Q(w)du = lim elez du
toc0 (o= (a(w)) = Ji o
-t -t
= tlim 2ele2 (el — 1)] = tlim 9.341545e2 =0
Hence all the conditions of theorem 2.1 hold. So, according to theorem 2.1, every solution of equation
-t
e
(1.1) converges to zeroast — oo. Thus y(t) = {L f=k is the desired solution.
k+1’

Example 4.2
Consider the impulsive neutral differential equation
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!

po-o(s- =] edebns o) (o) o (-3 -0

t+xk k=1,2,..
t
y(tE) = ap y(te) — (1 —ax) ( f Q(u)y(a(u))du), ty =k
o~ (a(®))
where a;, = % >1, k=1,2,..

t(ty)=1k)=k—-1
1 1
+\ +\ — 1: o ,-2t) = = -2k
p(ty) = Pk )‘tlir;?ﬁ(l =2° ) 6(1 =€ )
P(t,) = 10k, then P(t{) < P(ty)

_ L -
Let P(t) = { 6(1 iz(}): ) 'tt_et(tk' tk+1]
’ - Yk

1 1 2
Let o(t) =t +§,a(t) =t-3 ando (a(®)) =t -3
To verify condition (2.7):

j Q(t)dt = j —e9e dt=0<
T T 3

To show condition (2.8): R(t) — Q (a‘l(a(t))) (e (@)Y

10 2
- (6 €5 — e?) _ (%e?e_z(t_E)) — 13.699711 — 1.579239¢ 2t > 12.120472 > 0.
To verify condition (2.9):

lim th (Rw - @ (o7 (aw)) (™1 (5(w)))") du = lim th (13.699711 — 1.579239%¢ ~2%)du

= OO
Hence all the conditions of theorem 2.2 hold. So all solutions of equation (1.1) converge to zero as
t - oo,
_ _ e t, t+k
For instance the solution y(¢) =4 2, _ K does so.
k+1’

Conclusions

In this paper, the impulsive neutral differential equations were considered. The impulses
characteristics of the first order neutral differential equations with positive and negative coefficients
were clarified. Some necessary and sufficient conditions that determine the asymptotic behavior of all
solutions of equations (1.1) and (1.2) were obtained. Illustrative examples of the obtained results were
explained.
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