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Abstract 
     In this paper, the asymptotic behavior of all solutions of impulsive neutral 

differential equations with positive and negative coefficients and with impulsive 

integral term was investigated. Some sufficient conditions were obtained to ensure 

that all nonoscillatory solutions converge to zero. Illustrative examples were given 

for the main results. 
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 الخلاصة
في هذا البحث، تم دراسة السلهك المحاذي لجميع الحلهل للمعدلات التفاضلية المحايدة ذات المعاملات      

المهجبة والسالبة وحد التكامل النابض. تم الحصهل على الشروط الكافية لتقارب جميع الحلهل غير المتذبذبة 
 الى الصفر. تم أعطاء أمثلة تهضيحية للنتائج.

 

Introduction 

     The differential equations with impulses effect describe the process of evolution that rapidly 

changes its state at certain moments. Therefore, this type of differential equations is suitable for the 

mathematical simulation of the evolutionary process in which the parameters are subject to relatively 

long periods of smooth variation followed by a rapid short-term change, and this is a jump in their 

values. The wide possibility of applications determines the increasing interest in impulsive differential 

equations. The importance of the need to study differential equations with impulsive effect is due to 

the fact that these equations are more comprehensive in their use of mathematical modeling, where 

gaps in the model can be addressed by limiting these gaps in specific points called the points of 

impulses effect. They were appeared in many real processes and phenomena, such as control theory, 

biology, mechanics, medicine, electronic, economic, etc. 
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     For instance, their applications include neural networks [1-3], control theory [4], economics [5, 6], 

communication security [7, 8], population dynamics [9] and medicine [10]. As a result, many papers 

were published for numerous impulsive neutral differential equations [11-13].  

Guan and Shen [14] investigated the asymptotic criteria for the impulsive neutral differential equation 

of Euler form, as follows: 
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Pandian and Balachandran [15] studied the following differential equation with impulsive condition: 
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Under some sufficient conditions, they showed that all solutions of this equation tend to constant or to 

zero.  

The aim of this paper is to obtain some sufficient conditions to guarantee the convergence of all 

solutions of neutral differential equation with positive and negative coefficients and impulsive integral 

term of the form: 
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     where     are positive real numbers           are the moments of impulses effect. Let    
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        ( )    . The functions    ( )    ( )    ( )  are the inverse of the functions 

 ( )  ( )  ( )  respectively,  

     We define the initial function   ( )   ( )   , (  )   -,  ( )     * ( )  ( )  ( )+        ,  

where  ( )    ( (  )  )  
A function   ( ) is said to be a solution of (1.1) which satisfies the initial condition if  

      ( )   ( )  for    (  )       and  ( ) is continuous for      and               . 
     ( )   ( ) ( ( ))  is continuously differentiable      and           (  )   
   (  )      (  )          which satisfies the first equation. 
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 ) exist with  (  
 )   (  ) and satisfy the impulsive differential equation in (1.1) 

or (1.2), where  
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2. Asymptotic behavior of INDEPNC (1.1) 

     In this section, some sufficient conditions are obtained to ensure that all the solutions of impulsive 

neutral differential equations with positive and negative coefficients (INDEPNC) in the form of 

Eq.(1.1) converge to zero. 

Theorem 2.1 

      Assume that    ( )          (  
 )   (  )          and  (  )  is not an impulsive 

point, let 
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Then every nonoscillatory solution of Eq.(1.1) converges to zero as    . 

Proof   
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 ( )   ( )   (       -                                      (   ) 

      Choose  ( )   , such that for large enough       , we obtain   ( ( ))   ( )     for 
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By integrating (2.4) from   to  ( ) we get 
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Then every nonoscillatory solution of Eq.(1.1) converges to zero as    . 

Proof   
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So  ( )  is nondecreasing on [    ). 
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3. Asymptotic behavior of INDEPNCFT (1.2) 

      In this section, some sufficient conditions are obtained to ensure that all the solutions of first order 

impulsive neutral differential equations, with positive and negative coefficients and with forcing term 

(INDEPNCFT) of the form (1.2), converge to zero.  

 Let  ( ) be defined as  
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      Assume that    ( )          (  
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points. Therefore, the conditions  (2.2) and (2.3) hold. Then every nonoscillatory solution of Eq.(1.2) 

converges to zero as    . 

Proof 

     Suppose that  ( )     ( ( ))      ( ( ))     ( ( ))      (       -          .  
We differentiate (3.1) for each interval (       - ,         and use Eq.(1.2) to get Eq.(2.4).                           
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4. Examples 

Example 4.1  
      Consider the impulsive neutral differential equation: 
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Hence all the conditions of theorem 2.1 hold. So, according to theorem 2.1, every solution of equation 

(1.1) converges to zero as    . Thus  ( )  {
             

 

   
       

  is the desired solution. 

 Example 4.2  
      Consider the impulsive neutral differential equation 
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Hence all the conditions of theorem 2.2 hold. So all solutions of equation (1.1) converge to zero as 
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For instance the solution  ( )  {
             

 

   
       

  does so.   

 

Conclusions 

      In this paper, the impulsive neutral differential equations were considered. The impulses 

characteristics of the first order neutral differential equations with positive and negative coefficients 

were clarified. Some necessary and sufficient conditions that determine the asymptotic behavior of all 

solutions of equations (1.1) and (1.2) were obtained. Illustrative examples of the obtained results were 

explained.  
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