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Abstract 
     In this paper, a numerical approximation for a time fractional one-dimensional 

bioheat equation (transfer paradigm) of temperature distribution in tissues is 

introduced. It deals with the Caputo fractional derivative with   order for time 

fractional derivative and new mixed nonpolynomial spline for second order of space 

derivative. We also analyzed the convergence and stability by employing Von 

Neumann method for the present scheme. 
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لإيجاد الحلهل العددية لمسألة الانتشار الحراري  Mixed Nonpolynomial Splineالطريقة الجديدة 
 الحيهي الكسهرية بالنسبة للزمن

  

2،  حميدة عهدة الحميدي *1عمار مسلم عبد الحسين  
المفتهحة في البررة ، البررة ، العراققدم الرياضيات ، الكلية التربهية 1  
 قدم الرياضيات ، كلية التربية للعلهم الررفة ، جامعة البررة ، العراق 2

 
 الخلاصه

في هذه المقالة، تم حل عدديا لمدألة الأنتذار الحراري الحيهي الكدهرية الزمانية لتهزيع درجة الحرارة في      
وتم أستخدام طريقة الأشتقاق  Mixed Nonpolynomial Splineالأندجة بأستخدام الطريقة الجديدة  

للمذتقة الزمانية والطريقة الجديدة بالندبة للمذتقة المكانية ثم تمت مقارنة بين  αمن الرتبة  Caputoالكدهري 
 .تحليل الاستقرارية بطريقة فهن نيهمان الحلهل الدقيقة والعددية. ثم ناقذنا

1.  Introduction  

     In the human body, the skin is considered as the largest organ. The study of skin and thermal 

behavior of living tissues is very fundamental, and it can be mathematically described by Pennes’ 

bioheat transport equation:  

    
       

  
  

        

                                                                                   (1)    

     Mathematical resolve of the complex thermal interaction between the vasculature and tissues is a 

topic of interest for numerous physiologists, physicians, and engineers [1]. Temperature distribution in 

skin tissues is important for medical applications such as skin cancer, skin burns, etc. [2]. At most, the 
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accurate solution of Pennes' equation does not exist and, therefore, approximations and numerical 

techniques must be used to solve this equation. 

  In recent years, fractional calculus has been adopted by scientists and engineers and applied in many 

fields, namely in the fields of materials and mechanics, medical science, fluid mechanics, 

viscoelasticity, physics, signal processing, anomalous diffusion, biological systems, finance, hydrology 

and many others [3, 4] presented the solution of fractional bioheat equation by adopting the shifted 

Grünwald finite difference approximation for Riemann-Louville space fractional derivative method, 

the HPM of the fractional derivative of space, and the Caputo fractional for the fractional time. It has 

been spotted that the time possessed to achieve hyperthermia in a location is reduced as the order 

fractional derivative decreases. [5] discussed the two cases of 1D and 2D Pennes bioheat model for the 

implementation of triangular and quadrilateral elements method. In the 2D case, both quadrilateral and 

triangular elements were investigated. Through test problems, the discretization error generated from 

this method was reported[6] discussed the approximate solution of fractional Pennes bioheat equation 

with constant and sinusoidal heat flux conditions on skin, using the implicit finite difference method 

where the fractional time derivative is of the Caputo form.[7]. showed a numerical solution for the 

time-fractional Pennes bioheat transfer equation on skin tissues and solved it by Fourier Sine 

transform of second order derivative and the Caputo for the fractional time. [8], discussed the 2-D 

fractional bioheat equation by Laplace transforms of second order derivative and performed the 

numerical solutions to search the temperature transfer in skin exposed to immediate surface heating. 

Some differentiations were shown to estimate the impact of the fractional order parameter on the 

temperature wave. [9], presented a numerical solution of the fractional bioheat equation by finite 

difference of second order derivative and the fractional derivative by Grünwald Letnikov for the 

fractional time. They discussed and analyzed the stability and convergence. [10], studied the fractional 

bioheat transfer equation and solved it using an approximate solution (numerically) by finite 

difference of second order derivative and the fractional time derivative by Caputo derivative. They 

also discussed the stability and convergence by this scheme. [11], discussed the 2D fractional bioheat 

equation using Galerkin FEM. He found the solution method in the cylindrical living tissue and noted 

the effects of thermal conductivities that have significant and more remarkable effects on temperature 

variation in living tissue. [12], studied the fractional bioheat equation when the time-space fractional 

derivative in the form and solve it by Caputo fractional derivative of order          and Riesz–

Feller fractional derivative of order          respectively. They obtained the results in terms of 

Fox’s H-function with some specific cases using Fourier–Laplace transforms. [13], studied the 

fractional bioheat equation and solved the space-time fractional bioheat equation using fractional order 

Legendre functions of fractional space order derivative and the fractional time derivative by Caputo 

derivative. They observed that the quantity of the temperature at the skin surface is a strong function 

of the space fractional order and, conversely, the impact of the time fractional order is almost 

negligible. 
     The time fractional for Pennes' bioheat transfer equation and all the constants within it are 

introduced in section 2. We present the mathematical background concerned with the fractional 

definitions in section 3. In section 4, a new mixed spline form for the second space derivative is 

derived. In sections 5 and 6, we derive and apply the time fractional derivative by Caputo fractional 

derivative and a new mixed nonpolynomial spline form for space derivative of Pennes' bioheat transfer 

equation. Section 7 contains a stability analysis for Pennes bioheat transfer equation. In section 8 we 

apply and find the numerical solutions for time fractional Pennes bioheat equation by a new mixed 

nonpolynomial spline method. 

2. Pennes Bioheat Transfer Equation with Time Fractional Derivative 

    The problem of the time fractional Pennes bioheat transfer equation for the modeling of skin tissue 

heat transfer is expressed in previous works [6, 14, 15, 16], as follows: 

    
        

     
        

                                                                                (2) 

                                                                                                                              (3) 
 

  
                                                                                                                        (4) 

                                                                                                                                 (5) 
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2.1 Nomenclature 

        is the fractional order of time, 

  is the distance from the skin surface, 

         is a constant representing the density tissue          , 

        is a constant representing the specific heat of tissue         , 

      is the tissue thermal conductivity       , 

          is the mass flow rate of blood per unit volume of tissue         , 

        is the specific heat of blood       , 

   = 420 is the metabolic heat generation per unit volume        ,  

      represents the arterial blood temperature,  

  is the temperature of tissue,  

  is the source of metabolic heat, 

           represents the blood perfusion. It is worth mentioning that the    constant was 

obtained experimentally by Pennes for a human forearm. 

3. Definitions  

Definition (1): The Riemann-Liouville fractional derivative of order           is        , 

defined by [2-6], [8-14], [16], [17-21] as: 

  
        

 

      

  

   ∫                 
 

 
                       

Definition (2): The Caputo fractional derivative of order                    is defined by 

[2-6], [8-14], [16], [19-21] as: 

  
       

 

      
∫             

         
 

 
                      

New Mixed Nonpolynomial Spline Form for the Second Derivative 

     Now we introduce the new nonpolynomial spline method which depends on a mixed 

spline        , which can be written in the form: 

                                                                ,                   (6) 

where                 and         are unknown coefficients with respect to time and   is the frequency 

of the trigonometric part of the spline functions. 

  To find the coefficients of (6) in terms of            and     , at first we define 

              ,                       ,     
                ,     

                          (7) 

where   
             

          

    

Then by using (6) and (7), we obtain  

                         

                                      

                                                                                                                                  (8) 

where     . From solving equation (8), we get the following expressions  

 

          ((
        

(       )(                 )
)           

(        )

  (                 )
  )   

 

(                 )
          

(       )

  (                 )
    

       ((
        

(       )(                 )
)           

(        )

  (                 )
  )  

       
 

(                 )
          

(       )

  (                 )
                                          (9) 

Therefore, by (9) and the continuity condition at knots       , such that   

    
             

                                                                                                              (10) 

     

From equations (6), (9) and (10), we yield the following relation  

 

                                                                                                   (11)                                        
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where           ,                         (        ),  

                          ,        and       . 

 

4. Caputo fractional derivative for the time fractional derivative  

  The discrete approximation of time-fractional derivative at time point       , can be achieved as 

follows [9, 10] 

        

   
 

 

      
∫

       

  

    

 

                     

                    
 

      
∑ ∫

       

  

    

  

            

 

   

         

                   
 

      
∑

                 

 
∫             

    

  

 
                         

 

By using the forward Euler scheme to discretize the Caputo time fractional derivative, let        

              in which   
 

 
 is the time step size. 

        

   
  

 

        
∑   [                      

 

   

         

 
 

         
[              ∑                 

       
 ]                        (12) 

where                    , for all         and       
5. Derivation of a Caputo fractional and new mixed nonpolynomial spline forms for time 

fractional Pennes bioheat transfer equation 

  From (7)and (12) and by putting in (2), equation (2) can be rewritten as the following system of 

algebraic equation: 

   
       

   ∑   
     

   
         

    
    

                                                 (13) 

where   
    

          
                              and               

Eq. (13) can lead to 

     
         

   ∑     
     

   
           

       
      

                                      (14) 

By multiplying (13) and (14) by   and    respectively, then adding these equations, we get   

 (     
       

   )         
     

    ∑ (     
       

   )  
   
       (     

     
 )  

       
     

        
     

                                                                  (15) 

From (11) and by substituting the value      
     

  in (15), the last equation can be rewritten in the 

following form  

 (     
       

   )             
           

   ∑ (     
       

   )  
   
    

   (     
     

 )        
       

     
                                                          (16) 

Equation (16) contains       linear algebraic equations by       unknowns   
           . Thus, 

we need two boundary equations when     and     and by using Taylor series for these nodes, we 

get the following two equations:  

 (       
           

   )         (  
        

 )           
   ∑ (       

       
   

       
   )      (       

         
 )      

         
        

                                                                                                                                         

(17) 

       
       

                
           

   ∑ (     
       

   )  
   
    

         
     

         
       

     
                                                        (18) 

where       
  

  
|      and       

  

  
|     

6. Stability analysis  

     The analysis of stability for the proposed scheme can be achieved by using Von Neumann method. 

Consider  

  
     

                                                               (19) 
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      where   √  ,   is real and ξ is a complex number. We rewrite (16) as follows: 

 (     
       

   )             
           

   ∑ (     
       

   )  
   
          

                                                                                                                                 

(20)   

where      (     
     

 )       
     

        , which can be neglected [15],[22,23].  By 

substituting (19) into (20), we obtain 

 (      
               

    )            
                   

     

 ∑ (                         )  
   
         

                                                    (21) 

By dividing (21) by    
    , we obtain 

     (        )       ∑(        )  

   

   

   (        (        )   (        )) 

                     ∑   

   

   

   (                ) 

|    |   |
  

      
 

 

 
 

      

      
 ∑    

   

   

  | |  | 

Now,     

|  |      |
  

      
 

 

 
 

      

      
| |  |      |  |   |  |                                                                  (22) 

Now,     

|    |   |
  

      
 

 

 
 

      

      
∑    

   
     | |  |      |    |   |  |                                       (23) 

where |
  

      
 

 

 
 

      

      
|     and |

  

      
 

 

 
 

      

      
 ∑   

   
   |    for all values of  . 

Therefore, (22) and (23) lead to |    |   |  | for all values of  . Hence, the new mixed 

nonpolynomial spline form is stable. 

7. Numerical experiment  

  Now, in this section, we apply the proposed method for solving two cases of problems (2)-(5). We 

show the reliability and applicability of this method by contrasting the numerical results of it with 

exact solutions for each case. In all the following examples, the new mixed nonpolynomial spline 

method is used. 

Example 1: Consider Pennes’ bioheat equation (2) with the conditions: 

             
 

  
                            

where, by choosing the source function  , the exact solution is given as follows: 

                 . 

 

Table 1-The Errors of Numerical approximations for distinct values of  
                       , and             for Example 1. 

                    

    0.4449270733644448205733992e-3 0.38854140888807493627e-3 

    0.2167731853148521488207715e-3 0.18910537292943955978e-3 

0.5 0.2739915368292686778450546e-4 0.23550524225658979990e-4 

    0.5094134293056410015673081e-5 0.39586567273706585300e-5 

0.9 0.3539109352319899606575435e-5 0.25460438955123084000e-5 

1 0.2771307914549355807719072e-5 0.18239450176970080000e-5 

  

 

 

 

 

 



Science, 2020, Vol. 61, No. 7, pp: 1724-1732  Abdullhussein and Al-Humedi                  Iraqi Journal of  
 

4274 

 
Figure 1-Comparison between exact solution and numerical approximations for distinct values of   

and              
 

 
Figure 2-Comparison between exact solution and numerical approximations for Example1 for 

different  , and        

 
Figure 3-The errors of numerical approximations for Example1 at       and          
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Example 2:  Consider Pennes bioheat equation (2) with the following conditions: 

                                              
 

  
                              

where, by choosing the source function  ,  the exact solution is given as follows: 

                            , 

 

Table 2-The Errors of Numerical approximations for distinct values of Example 2 at   
                      and              

                    

    0.1715340679449874796505876e-3 0.13738288950461518936e-3 

    0.4393141587685349876491385e-4 0.34874785528640870720e-4 

0.5 0.1152700471776546187571774e-4 0.90996711140071062000e-5 

    0.3234063693751174266862903e-5 0.25967473864369616500e-5 

0.9 0.8801986532719872660697001e-6 0.69064900642968784000e-6 

1 0.4766435393819385355082149e-6 0.37326780928752769000e-6 

 

 
Figure 4-Comparison between exact solution and numerical approximations for Example 2 for at 

                      and               

 
Figure 5-The errors of numerical approximations for Example2 at       and              
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Conclusions 

     The objective of this article is to compare the achievement of the model approach based on our new 

mixed nonpolynomial spline method, which have been considered for finding the numerical solutions 

of time fractional Pennes' bioheat equation by using Caputo fractional derivative for the time fractional 

derivative and a new scheme for the derivative of second order in this equation. In general, it can be 

concluded from    and    errors of the numerical approximations that the proposed method is 

powerful, effective, highly accurate and needed a small recurrence, as compared to the accurate 

solution. Furthermore, the present algorithm is simply applicable and the results clarified the activity 

of the suggested method. We discussed the stability of the fractional bioheat equation by the new 

mixed nonpolynomial spline method to clarify that the scheme is stable. 
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