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Abstract

In this paper, a numerical approximation for a time fractional one-dimensional
bioheat equation (transfer paradigm) of temperature distribution in tissues is
introduced. It deals with the Caputo fractional derivative with a order for time
fractional derivative and new mixed nonpolynomial spline for second order of space
derivative. We also analyzed the convergence and stability by employing Von
Neumann method for the present scheme.
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1. Introduction
In the human body, the skin is considered as the largest organ. The study of skin and thermal
behavior of living tissues is very fundamental, and it can be mathematically described by Pennes’
bioheat transport equation:
aT (x,t) 92T (x,t)
PtCt at = 92 + Wbcb(Ta - T) + Q + qm (1)
Mathematical resolve of the complex thermal interaction between the vasculature and tissues is a
topic of interest for numerous physiologists, physicians, and engineers [1]. Temperature distribution in
skin tissues is important for medical applications such as skin cancer, skin burns, etc. [2]. At most, the
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accurate solution of Pennes' equation does not exist and, therefore, approximations and numerical
techniques must be used to solve this equation.

In recent years, fractional calculus has been adopted by scientists and engineers and applied in many
fields, namely in the fields of materials and mechanics, medical science, fluid mechanics,
viscoelasticity, physics, signal processing, anomalous diffusion, biological systems, finance, hydrology
and many others [3, 4] presented the solution of fractional bioheat equation by adopting the shifted
Grunwald finite difference approximation for Riemann-Louville space fractional derivative method,
the HPM of the fractional derivative of space, and the Caputo fractional for the fractional time. It has
been spotted that the time possessed to achieve hyperthermia in a location is reduced as the order
fractional derivative decreases. [5] discussed the two cases of 1D and 2D Pennes bioheat model for the
implementation of triangular and quadrilateral elements method. In the 2D case, both quadrilateral and
triangular elements were investigated. Through test problems, the discretization error generated from
this method was reported[6] discussed the approximate solution of fractional Pennes bioheat equation
with constant and sinusoidal heat flux conditions on skin, using the implicit finite difference method
where the fractional time derivative is of the Caputo form.[7]. showed a numerical solution for the
time-fractional Pennes bioheat transfer equation on skin tissues and solved it by Fourier Sine
transform of second order derivative and the Caputo for the fractional time. [8], discussed the 2-D
fractional bioheat equation by Laplace transforms of second order derivative and performed the
numerical solutions to search the temperature transfer in skin exposed to immediate surface heating.
Some differentiations were shown to estimate the impact of the fractional order parameter on the
temperature wave. [9], presented a numerical solution of the fractional bioheat equation by finite
difference of second order derivative and the fractional derivative by Grinwald Letnikov for the
fractional time. They discussed and analyzed the stability and convergence. [10], studied the fractional
bioheat transfer equation and solved it using an approximate solution (numerically) by finite
difference of second order derivative and the fractional time derivative by Caputo derivative. They
also discussed the stability and convergence by this scheme. [11], discussed the 2D fractional bioheat
equation using Galerkin FEM. He found the solution method in the cylindrical living tissue and noted
the effects of thermal conductivities that have significant and more remarkable effects on temperature
variation in living tissue. [12], studied the fractional bioheat equation when the time-space fractional

derivative in the form and solve it by Caputo fractional derivative of order a € (0, 1] and Riesz—

Feller fractional derivative of order g € (1, 2] respectively. They obtained the results in terms of
Fox’s H-function with some specific cases using Fourier—Laplace transforms. [13], studied the
fractional bioheat equation and solved the space-time fractional bioheat equation using fractional order
Legendre functions of fractional space order derivative and the fractional time derivative by Caputo
derivative. They observed that the quantity of the temperature at the skin surface is a strong function
of the space fractional order and, conversely, the impact of the time fractional order is almost
negligible.

The time fractional for Pennes' bioheat transfer equation and all the constants within it are
introduced in section 2. We present the mathematical background concerned with the fractional
definitions in section 3. In section 4, a new mixed spline form for the second space derivative is
derived. In sections 5 and 6, we derive and apply the time fractional derivative by Caputo fractional
derivative and a new mixed nonpolynomial spline form for space derivative of Pennes' bioheat transfer
equation. Section 7 contains a stability analysis for Pennes bioheat transfer equation. In section 8 we
apply and find the numerical solutions for time fractional Pennes bioheat equation by a new mixed
nonpolynomial spline method.

2. Pennes Bioheat Transfer Equation with Time Fractional Derivative
The problem of the time fractional Pennes bioheat transfer equation for the modeling of skin tissue

heat transfer is expressed in previous works [6, 14, 15, 16], as follows:
0%T (x,t) _ 92T (x,t)

PtCt ata 9x2 + Wbcb(Ta - T) + Q + dm (2)
T(x,0)=T,, x€(0,L), 3)
ZT(x,0)=g(), x€(L), (4)
T(0,t) = h(t), t>0, 5)
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2.1 Nomenclature
a € (0,1) is the fractional order of time,
x is the distance from the skin surface,
p: = 1000 is a constant representing the density tissue (kg/ m3) ,
¢ = 4000 is a constant representing the specific heat of tissue (Jk/kg ),
u = 0.5 is the tissue thermal conductivity (J/sm),
W, = 0.0005 is the mass flow rate of blood per unit volume of tissue (kg/sm?),
cp = 4000 is the specific heat of blood (J/kg),
Q,,, = 420 is the metabolic heat generation per unit volume (J/ m3),
T, = 37 represents the arterial blood temperature,
T is the temperature of tissue,
Q is the source of metabolic heat,
Wy c, (T, — T) represents the blood perfusion. It is worth mentioning that the W, constant was
obtained experimentally by Pennes for a human forearm.
3. Definitions
Definition (1): The Riemann-Liouville fractional derivative of order « € (n —1,n) isn € N,t > a,
defined by [2-6], [8-14], [16], [17-21] as:
"DEFO) = o ag s E — W @AY, a€(-1n)
Definition (2): The Caputo fractional derivative of order a« € (n — 1,n),n € N,t > a is defined by
[2-6], [8-14], [16], [19-21] as:
DEFO) = mogy Ju E— WL f@AY @€ (n—1,n)
New Mixed Nonpolynomial Spline Form for the Second Derivative
Now we introduce the new nonpolynomial spline method which depends on a mixed
splineQ; (x, t,.), which can be written in the form:

Qi (x, ti) = a;(ty) + by (tx)e S ™) + ¢ty )eS M =D, i = 0(1)(n — 1), (6)
where a;(t;), b;(t;) and c;(t;) are unknown coefficients with respect to time and w is the frequency
of the trigonometric part of the spline functions.

To find the coefficients of (6) in terms of S;, S;,1, F; and F; 1, at first we define
Qilxy t) =S; ZQi(xi+1th) =St .+ QP0ut) =F . QP (i1 ti) = Fiaa (7
where Qi(z)(xiﬂ, ty) = %
Then by using (6) and (7), we obtain
a;(ty) + bi(ti)e + ci(t) = S;
a;(te) + bi(tr)e™sf + ¢;(ty) 59 = ;14
—w?bi(t)e + w?c;(ty) = F; ©)
where 8 = hw. From solving equation (8), we get the following expressions

—e4eC0s0 (1- esine)
ai(tk) = Si - ((ecos(-}'_e)(el+sin 6 _2e+eC0s 9)) (5i+1 - Sl) + wz(el+sin9_26+ecos 6) Fi e~

e S S (ecose_e) F
(e1+sin9_23+ecose)( i+1 = Si) + w?(e1+sin0_2¢4c0s0) i

—e+eC059 (1_ esins)
bi(tk) = <<(ecos¢9_e)(e1+sin6_Ze+ec059)> (Si+1 - Sl) + wz(el+sin6_2€+ec056) Fl>

_ e (ecose_e)
ci(ty) = (e1*sin0 ¢4 gcos0) (Siv1 =S + w?(el*sin0 g1 ecos0) F; (9)
Therefore, by (9) and the continuity condition at knots(x;, t; ), such that
Q2 (i ti) = QY (i 1) (10)

From equations (6), (9) and (10), we yield the following relation

5Fi—1 + ]/Fl = aSl- + bSi—l +c Si+1 (11)
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where y =e—ecst 6= —ycosBeSine—sinBec"Se(l— eSine),

b = w?cosBesinPe — 2sinhes? ¢ = w?e anda = —b —c.

4. Caputo fractional derivative for the time fractional derivative
The discrete approximation of time-fractional derivative at time point t = t;.,, can be achieved as
follows [9, 10]

99T (x,t)
ate r(1 —a) f

1 aT(x,r) —a —a
:mZI —5 (=) dr + 0(t*™%)

1 T(xt )-T(xt) t _ _
= tacw [ "“T k fk“(trH—T) 2dr + 0(7%7%)

8T(x T)

(tre1 — D %t +0(r*79)

By using the forward Euler scheme to discretize the Caputo time fractional derivative, let t, = rAt =
rt,r = 0(1) K, inwhich t = 5 is the time step size.

0T (x,
asa Tar(z_ )Zu, [Tt troiern) = T trog0)] + 0227

= oo (74 TGy — 1) + S T s — ) — 1,70] + 02 (12)

where u, = (k + 1)17% — (k)¢ , forall k = 0(1)r and uy = 1.
5. Derivation of a Caputo fractional and new mixed nonpolynomial spline forms for time
fractional Pennes bioheat transfer equation
From (7)and (12) and by putting in (2), equation (2) can be rewritten as the following system of
algebraic equation:
AT/ + BT + AR AT *wy — Au, TP = FT + QI + C (13)

ptC
where A = m ,B = A(ul - 1) + Wbe, C =Wy, T, + g and Wy = (uk+1 - uk)
Eqg. (13) can lead to
AT/ 4+ BT, + AL AT fwy — Au, T2, = uFl, + QI + C (14)

By multiplying (13) and (14) by y and 6, respectively, then addlng these equations, we get
A(STT“ +YTI) + BOSTE +yTT) + AXR (ST + y T %) )wy — A (8T, +yTP) =
W(OFEy + yFD) + 5QL1 +7QF + (5 + 2 (15)
From (11) and by substituting the value 6F;/_; + yF; in (15), the last equation can be rewritten in the
following form
A((STr“ +yTI™) + (BS — ub)T{y + (By — pa)T{ + AXRZ1(6T/ K + yT/ ¥ )wy —

Aup (8T, +yTP) = cuTliy + Q11 +vQ] +C(6 +7) (16)
Equation (16) contains (n — 1) linear algebraic equations by (n + 1) unknowns T/, i = 0(1) n. Thus,
we need two boundary equations when i = 0 and i = n and by using Taylor serles for these nodes, we
get the following two equations:

A +NTEH = WSS ) + (BS — ub)(T§ = hTgy) + (By — ua)Tg + AXEE ((6 + T -

ShTJK ) wic — Awy (8 + )T = ShTgyy ) = cuT{ + (8 +¥)Q§ — hQpery + C(6 +7)
17)
AT +yTi*Y) + (BS — ub)Th_y + (By — ua)Ty + AXRZ1(6Thf + y T )wy —
Au, (8Ty_1 +yTY) = cuThpq +8Q5_1 +vQn + C(6 +v) (18)
oT aT
where T0(1) | x=0/ and Tn(l) | x=n

6. Stability analy5|s
The analysis of stability for the proposed scheme can be achieved by using Von Neumann method.
Consider

Tzr — fremieh (19)
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where m =+/—1, @ is real and & is a complex number. We rewrite (16) as follows:
A(STIE +yT ) + (BS — ub)T/_; + (By — ua)T{ + AX;Z1(6T/ 5 +yT] ™ )wy = cuTq + R
(20)
where R = Au, (6T, +¥T?) + 6Q}_, + ¥Q] + C(8 +y), which can be neglected [15],[22,23]. By
substituting (19) into (20), we obtain
A(8841e™TVOR 4 yg L e™O) 4 (BS — ub)E,e™"DO 4 (By — pa)§e™On +
A Zz;i(‘sfr—kem(i_l)eh + V’fr—kemieh)wk = C.“'Srem(i-'—l)eh (21)
By dividing (21) by &,e™" we obtain

r—1
A s (™ 4 y) + A6y Y (867 47w
k=1
=&, (CﬂemGh — B(6e ™% 4+ y) + u(be ™" 4 a))
r—1
A1 (6 +1) +AG + Vi ) Wi < &xlci— B +) + (b + )
k=1
cu B ,u(b + a) Z
< |- _
|f1”+1| A(5+ ) A A(6+y) f k Wk |€T‘
Now,r =0
(b+a)
Gl = s 2+ ] 1ol = 1l <&l (22)
Now, r =i
u(b+a)
[€ial < |A(6+y) THiESTA sG]l = al <1l (23)
u(b+a) pb+a)  or-
where |A(6+y) yRTEI < 1,and |A(5+y) yRTEI) Y- wy| < 1 for all values of r.

Therefore, (22) and (23) lead to |&,.,.1] < |&| for all values of r. Hence, the new mixed
nonpolynomial spline form is stable.
7. Numerical experiment

Now, in this section, we apply the proposed method for solving two cases of problems (2)-(5). We
show the reliability and applicability of this method by contrasting the numerical results of it with
exact solutions for each case. In all the following examples, the new mixed nonpolynomial spline
method is used.
Example 1: Consider Pennes’ bioheat equation (2) with the conditions:

0
T(x,0) = 37 — x3, aT(x, 0) = —3x2, T(0,t) =37
where, by choosing the source function Q, the exact solution is given as follows:
T(x,t) = xt? — x3 + 37.

Table 1-The Errors of  Numerical approximations  for  distinct  values  of
a=0.1,0.20.5,0.8,09,1,and t = 1,7 = 0.001 for Example 1.

a L, —error L, —error
0.1 0.4449270733644448205733992e-3 0.38854140888807493627e-3
0.2 0.2167731853148521488207715e-3 0.18910537292943955978e-3
0.5 0.2739915368292686778450546e-4 0.23550524225658979990e-4
0.8 0.5094134293056410015673081e-5 0.39586567273706585300e-5
0.9 0.3539109352319899606575435e-5 0.25460438955123084000e-5
1 0.2771307914549355807719072e-5 0.18239450176970080000e-5
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36 T ' T T T T 1
0 02 04 06 (] 1
x

I alpha=0.9 alpha=0.8 alpha=0.5 alpha=0.1 ¢ exact solutionl

Figure 1-Comparison between exact solution and numerical approximations for distinct values of «
andt =1,7 = 0.001.
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[

Figure 2-Comparison between exact solution and numerical approximations for Examplel for
different 7, and ¢ = 0.8.
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Figure 3-The errors of numerical approximations for Examplel at « = 0.8 and 7 = 0.001.

1729



Abdullhussein and Al-Humedi Iragi Journal of Science, 2020, Vol. 61, No. 7, pp: 1724-1732

Example 2: Consider Pennes bioheat equation (2) with the following conditions:
T(0,t) = t3+37, T(x,0) = sin(x?) —x3t% 4+ 37,

d

—T(x,0) = 2x cos(x?) — (3 + a)x?** |

dx
where, by choosing the source function Q, the exact solution is given as follows:

T(x,t) = sin(x?) — (x37% + ¢3) + 37,

Table 2-The Errors of Numerical approximations for distinct values of Example 2 at a =
0.1,0.3,0.5,0.7,09,1and t = 1,7 = 0.001.

a L, —error L, —error
0.1 0.1715340679449874796505876e-3 0.13738288950461518936¢e-3
0.3 0.4393141587685349876491385¢e-4 0.34874785528640870720e-4
0.5 0.1152700471776546187571774e-4 0.90996711140071062000e-5
0.7 0.3234063693751174266862903e-5 0.25967473864369616500e-5
0.9 0.8801986532719872660697001e-6 0.69064900642968784000e-6
1 0.4766435393819385355082149¢e-6 0.37326780928752769000e-6

37.24

alpha=0.9
alpha=0.7
alpha=0.5
— alpha=03
— alpha=0.1
Exact solution

T(x.t)
374

36.9

< T v. T T T 1
0 02 04 06 08 1
"

Figure 4-Comparison between exact solution and numerical approximations for Example 2 for at
a=0.1,0.2,0.50.8,09andt = 1,7 = 0.001.

25% 1071
2.x 107
15x 1071
Ex1)

1.x 1071

s.x 1078 T

] 01 02 03 04 05 06 0.7 08 09

x

Figure 5-The errors of numerical approximations for Example2 at« = 0.9 andt = 1,7 = 0.001.
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Conclusions

The objective of this article is to compare the achievement of the model approach based on our new
mixed nonpolynomial spline method, which have been considered for finding the numerical solutions
of time fractional Pennes' bioheat equation by using Caputo fractional derivative for the time fractional
derivative and a new scheme for the derivative of second order in this equation. In general, it can be
concluded from L, and L, errors of the numerical approximations that the proposed method is
powerful, effective, highly accurate and needed a small recurrence, as compared to the accurate
solution. Furthermore, the present algorithm is simply applicable and the results clarified the activity
of the suggested method. We discussed the stability of the fractional bioheat equation by the new
mixed nonpolynomial spline method to clarify that the scheme is stable.
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