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Abstract

The presented work includes the Homotopy Transforms of Analysis Method
(HTAM). By this method, the approximate solution of nonlinear Navier- Stokes
equations of fractional order derivative was obtained. The Caputo’s derivative was
used in the proposed method. The desired solution was calculated by using the
convergent power series to the components. The obtained results are demonstrated
by comparison with the results of Adomain decomposition method, Homotopy
Analysis method and exact solution, as explained in examples (4.1) and (4.2). The
comparison shows that the used method is powerful and efficient.
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1 Introduction
The equations of fractional derivatives have received attention due to their widespread use in
various science topics, including mathematical biology, electrochemistry, and others [1, 2]. The
Navier-Stokes equations were submitted and solved numerically. The main importance of this kind of
equations is the pure mathematics and successful applications, as in water flow in pipe, blood flow, the
analysis of pollution and many other fields. In order to ensure the exact solutions of fractional order
non-linear differential equations, it is an important consideration to fulfill need for new methods to
obtain the desired solutions. The consideration of exact solutions of nonlinear fractional order
differential equations is a very difficult task and, therefore, the approximate and numerical methods
were used to solve this kind of equations. The proposed method was reliable to solve various kinds of

non-linear problems.
In the last few years, many researchers pointed the numerical solution of the fractional order
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differential equations. Some of the numerical methods were improved, such as the semi-explicit
multi-step method [3], transform methods [4], natural homotopy perturbation method [5], homotopy
perturbation Elzaki transform [6], Laplace transform [7], Adomian decomposition method [8-10], and
homotopy analysis method [11].

Navier-Stokes equations started in 1822, when Navier derived equations for homogenous

incompressible fluids from a molecular point of view. The continuum derivation of the Navior —Stokes
equations was presented by Saint- Venant and Stokes (1843). These equations are foundations of
various fields of sciences, including geology, biology, medicine and physics [12].
The structure of this paper is described as follows: In section 2, we give the concept of fractional
calculus. The HTAM is presented in section 3. In section 4 Navier- Stokes equations of fractional
order derivative are solved to illustrate the competence of the considered method. Finally, in section 6,
we present our conclusions.

The objective of this paper is to make a combination of the Homotopy Analysis and Laplace
Transform methods, called The Homotopy Transforms of Analysis method (HTAM), to provide
approximate solutions to the Navier- Stokes equations of fractional order derivative with variable
coefficients of the form [13]:

1
Dfu+ (u-V)u= —/—)VP + vV, . (1.1)

Where u is the vector of the velocity, p is the density, v refers to the kinematics viscosity, P is the
pressure, and t is the time variable.
2. Preliminaries and notations

This section consists of some basic definitions and properties for the fractional calculus theory.
Definition 2.1 [5, 14]: Let f(t) be a real valued function, t > 0, then f(t) belongs to the space
Cu» 1 € R ifthere is a real number p > u, 3 f(t) = tPf;(¢t), where f;(t) € C[0,0] and it belongs
to the space C}, if f™ € C,,r e Nu {0}.
Definition 2.2 [5, 14]: The fractional integral of Riemann-Liouville of @ > 0 of f(t) € C,,,u > —1
is:

JEf(E) = % [t =D f(D)dr, ¢>0 .. (2.2)

J°f@® =f®
Definition 2.3 [14]: The fractional derivative of Caputo of f(t) € C, is:

DEf(t) = ]T‘“Drf(t)=r(r1_a) Lt -0 fO@de, >0 .. (22)

Forr—-1<a<r, r€N, t>0, feC(l,.
Definition 2.4 [7]: The fractional Laplace transform of the Caputo derivative is:
L[DEw(z,t)] = s*L{w(z,t)] — 5;35(“‘j‘1)w0)(z, 0, r—-1<acsr. ...(2.3)
3. The Homotopy Transforms Analysis Method (HTAM) [14]
To explain the main idea, let us study the fractional partial differential equation:

DEw(z,t) = f(w,w,w,,), 0<a<2 t=0 ..(3.1)
according to the initial conditions
W(Z' O) = gl(Z)' Wt(Z' 0) = gZ(Z) (32)
The function f refers to the linear or nonlinear sense and Dfis a time fractional derivative
operator.
We re-write eq.(3.1) as:
Dfw(z,t) = L(w,w,,w,,) + N(w,w,,w,,) +C(z,t), 0<a<2 t=0 ..(3.3)

where L refers to the linear part and N is the nonlinear part. The function C is analytic.
Using the differentiation property of Laplace transform, we have:
L[Dfw(z,t)] = LIL(W, w,, w,,) + N(w,w,,w,,) + C(z,t),]
1

s*Llw(z, )] — Y s< T 1w(z0)
%
= L[L(w,w,,w,,)] + LIN(w,w,,w,,)] + L[C(z,t)], ..(3.4)
By simplifying, we have
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£w(z, )] - z it w0(z,0) = LLOW,w,, W] + LN, W w,)] + £1CC, D),
=0
s*Llw(z,t)] - 191(21) — s gz(Z) = LIL(w,w;, Wz)] + LIN (W, wz, w;,)] + L[C(z, )],
Liw(z, )] — 91(z )— 92(2)
1 1 1
= S_O( [L(W, Wz, sz)] + S_(XL[N(W, Wy, sz)] + S_O(L[C(Z: t)]:
-1 -2 1 1
L[W(Z' t)] = < J1 (Z) + i 92 (Z) + S_oc[’[L(W' Wz, sz)] + S_KL[N(Wv Wz, WZZ)]
+ si“L[C(Z’ 0], ..(3.5)
The nonlinear operator is:
x—1 xX—2
N[@(z, t; )] = L[9(z, t; )] — —91(2) — — 92(2)

1
+ S_xL[L(®(Z’ t; Q): Q)Z(X; t; Q): ®zz(z' [ q))]

1 1
+ S—O(L[N(®(Z, t;q),0,(x,t;q),8,,(2,t; Q)] + e G CAF .. (3.6)
where @(z, t; q) is a real function of z, t and q. We combine a homotopy:
(1 —@)L[B(z t; q) — wo(z, )]

«<—1 -2

s
< 91(z) — s

92(2)
1
+ = L[L(0@ 6 9),0:(2,6:0), 02:(2.t; 0)]

1 1
+ s_«L[N(‘D(Z' t;q),0,(z,t9),0,,(z Q)] + = LlC(z, t)]], . (3.7)

The variable q is a parameter of embedding g € [0,1]. If g = 0 and g = 1, then
L[B(z,t;0)] = LIwy(z,t)] and L[D(z,t;1)] = L][w(z,t)]. Thus, when q increases from 0 to 1,
@(z,t; q) varies from wy(z,t) to w(z,t). By extending @(z, t; q) to Taylor series with respect to
q, we obtain:

L[0(z, 6 ) = Liwo(, O]+ ) Liw, (2,0 q" ~(38)
and =
Llwy (2,01 = 55— LIB(z, ;)] lg=0 ..(3.9)
We define the foIIowinQ vectors:
Wy (z,t) = {L[wy(z,0)], LIw, (2, t)], LW, (2, )], . Llw,(z,t)] } ..(3.10)

We differentiate eq. (3.7) r-times with respect to g, then by
setting g = 0, h = —1 and dividing by r!, then:

Lwy(z,6)] = % LIwy(2,t)] = R (Wr_1(z, 1)) ..(3.11)
and

Rr(Wr—l(Z: t)) = L[wy(z,1)]

1 1 F L
T <m6 —1 [L[L(Q)(z t;q),0,(z,t;q),0,,(z t; q))]

+L[N(8(z t; 9),0,(2,t; 9), 8, (2, t; q))]])

(g N t)]) (1-x) ~(312)
S S

q=0

2050



Nemah Iragi Journal of Science, 2020, Vol. 61, No. 8, pp: 2048-2054

and
_ { 0, r<1
r=u, r>1
We take the inverse of Laplace transform of eq. (3.11), then the solution of (3.1) is:

w(z,t) = Z wy(z,t)
=0

4. Applications and Results
The Navier- Stokes equation (1.1) in cylindrical coordinates for unsteady one dimensional motion of a
viscous fluid is given by
a —
Diw=p+v 372 +Z Ep
In this part, some applications to HTAM are introduced for solving Navier- Stokes equations of
fractional order derivative.
Example 4.1: Firsty, we study the differential equation of fractional order:
D&w =p + 62_w + 1 a_W
«W=Pp 0z% z 0z
According to the initial conditions
w(z,0)=1—2z2 . (4.2)
the Laplace transform of eq.(4.1) is:

’w 1 aw)

e (41)

1 2w 1 ow
— | =0 .. (4.3)

1 1
Lweol- sA-29-GLPl - L+ 5

The nonlinear term is:
1 1
N[B(z ;)] = LI0(z, 6] = ~(1 = z%) — < LIP]

1 92 10
_S_°< L ﬁ%(z, t; q) +E &@(Z,t; q)], ...(4.4)
thus
_ 1 [6? 10 1 )
Rr(Wr—l(Z' t)) = L[Wr—l(zv t)] - S_O( L [ﬁ Wy_q + &Wr—l] - (1 - xr) ;(1 —Z )
— e LRI = xp) .. (4.5)
The rt" - order deformation equation is:
LIwy(z,t) — x,wy_1(2,t)] = hR(Wr_1(2, 1)) ..(4.6)
Next step is to apply the inverse Laplace transform:
Wi (2,0) = XyWin—1(z, ) = h L7 Ry (W1 (2, 0))] .. (4.7)

By solving the above eq. (4.7), forr=1, 2, 3, ..., then
wo(z,t) =1— 22

h(—4 + P
h(=4+ P)(1 +h
W)= = = rzra J2(1)Jr e
h(—4+P)(1+h)*
Wizt = = =0T
h(-4+P)(1+h)*
w0 = - —Fa D

And so on.
Concluding that

w(z,t) =wy(z,t) +wi(z,t) + wa(x, t) + ws(z,t) + wu(z, t) + -
Then
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B h(—4+P) _ h(—4+P)(1+h) _
wzt) =1-2% = Lot - =t

h(=4+P)A1+h)?*  h(=4+P)A+h)?
T Te+Dd T T@+n ¢

+ .-

w(z,t) =1—z2

h(-4+P) _
BT [1+ A+R)+@A+h)2+ 1 +h)3+-] .. (4.8)

If h less than zero then the geometric series [11] will be convergent at infinity, the solution takes the
form

_ 2 (—4+P) o
w(z,t)=1—2z°+ —r(a+1)t ... (4.9
If oc= 1, then the exact solution of eq.(4.1) w(z,t) = 1 — z% + (=4 + P).
This solution is exactly the same solution obtained by Ragab et al. [13 ] and by Momani and

odibat [9].

Figure 1-Solution plots of Eq. (4.9 ) for (a = 1). Figure 2-Solution plots of Eq. (4.9 )

Example 4.1 for (a = 0.5). Example 4.1
Example 4. 2: studying the fractional derivatives differential equation:
2
Doy =2¥ 12w ... (4.10)

. T 0z2 7oz
According to the initial conditions

w(z,0) =2z . (4.11)
the Laplace transform of eq. (4.10) is:
2
Lw(z o] - 12— L[53+25] =0 . (4.12)
The nonlinear term is
a2 a
NR@zEDI = LBz 6Dl - 22— L0 6) +5 20z 6|, .. (413)

thus
— 1 92 10 1
R, (Wy_1(z,8)) = LIwy_1(2,t)] — = L [ﬁwr_l(z, ) +- —wra(z, t)] - 2z (1-x,) (4.14)
The rt* - order deformation equation is :

Lw,(z,t) — x,wy_1(2,0)] = hR(Wy_1(2, 1)) ... (4.15)
By taking the inverse Laplace transform of eq. (4.15), we have:
wy(2,t) — x,wyp_1(2,t) = R L7YR,(W,_1(z,0))] .. (4.16)

Solving the above eq. (4.16), for r=1, 2, 3, ..., then:
wo(z,t) =z
ht*

Wiz ) = = zI'(1+ a)
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h(1+ h) t* N h? 2
zI'(l+a) z3T(1+ 2a)
h(1+ h)?t*  h%2(1+ h) t?~ 9h3 3%
zI'(1+ a) z3T(1+2a) z5T(1+ 3a)
(0 t) = — h(1+h)3t* K% (1+R)%t**  3R3(1+h)9 3%  9n* 253
Walt, ) = = = e 2 I(1+2a) SI(43a) | 27 T(1+4a)
Concluding that
w(z, t) =wy(z,t) +wi(z, t) +wy(z, t) + wi(z,t) + wy(z,t) + -

w; (Z' t) = -

W3(Z! t) = -

ht* h(1+ h) t* N h? t2*
zI'(1+ a) zI(1+a) z3T(1+2a)
h(1+ h)2t*  h%2(1+ h) t** 9h3 3%
zI'(1+ a) z3T(1+2a) z5T(1+3a)
h(1+h)3t* k%2 (1 +h)%t?* 3h3(1+h)9t3*  9h* 25¢3%

+
zI'(1+ a) z3T(1 + 2a) z°T'(1+ 3a) z’ T(1+ 4a)

+..
- e 1+ QA+ +A+h)*+ A +h)3+]
- zI'(a+1)
h2t20< ,
+m[1+2(1+h)+3(1+h) + -]
9h3t30c ,
—m[1+ 3(1+h)+6(1+h)2+-] +-

If we take h as less than zero then the geometric series [11] will be convergent at infinity, the solution

takes the form
o 12x32x .. x(2j-3)2 tJ>
wiz, ) =7+ i, =t . (417)

This solution is exactly the same solution obtained by Momani and Odibat [9].
If we put = 1, then solution of eq. (4.10) is:

12 x32x .. x(2j—=3)% t
W(Z,t)=Z+Z & =3
j=1

z2j-1 jt

This solution is exactly the same solution obtained by Biazar et al. [8] and Ragab et al. [13].

Figure 3-Solution plots of Eq. (4.17 ) for (« = 1).  Figure 4-Solution plots of Iéq. (4.17)
Example 4.2 for (a = 0.5). Example 4.2

Conclusions
In this work, the introduced method desegregated the Laplace Transforms with Homotopy Analysis
method for fractional derivative equations. This combination produced a very powerful method called
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The Homotopy Transforms Analysis Method (HTAM). The proposed method was used to solve the
Navier- Stokes equations of fractional order derivative. HTAM showed accurate effective and simple
results for solving various types of problems. We got that the approximation solution of proposed
problem tends to exact solution rapidly. Finally, we conclude that HTAM may be a good tool to
numerically solve the fractional order nonlinear partial differential equations.
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