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Abstract

Let Y be an n-Banach space, M be a nonempty closed convex subset of Y, and
S:M—M be a mapping that belongs to the class D(L, q) mapping. The purpose of
this paper is to study the stability and data dependence results of a Mann iteration
scheme on n-Banach space .
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Introduction
Let Y be a vector space over a field IF, which is either a real or complex space with a finite

dimension d > n;n € N or an infinite dimension, and a real-valued function |.,...,.]|: Y* = R
satisfying the following properties for all x,v4,...,v,_; € Yand A € R.
1. ||X,vq, .., Vp—1ll = Oifandlonly if x,vy, ..., v,_; are linearly dependent.
2. ||X,vq, ..., Vp—1]| is invariantlunder permutations of X, vy, ..., Vp_1.
3. 1% Ve, e, Vina Il = [ 2] 1% Ve, e, vy -
4. ”X + Y, V1, "'JVn—lll < ”X, V1, '"JVn—lll + ||Y» V1, ---'Vn—lll-
then ||., ...,.|| is called an n-norm onY, and (Y, ||., ...,.|]) is called a linear n-normed space. For

simplicity, we will call Y an n-normed space [1]. In the following, we need the concept of n-Banach
space. H. Gunawan and M. Mashadi [1] studied the concepts of Cauchy sequence and convergence
sequence, as follows:
A sequence {x,} in n-normed space (Y, ||., ..., . ||) is said to be a convergeto x € Y, if
lim,e || Xn — X, V1, Vo, o, Vot || = Oforall vy, v,,...,vy_1 €Y,
Also, a sequence {x,} in n-normed space (Y, ||., ..., ||) is said to be a Cauchy sequence if
limpy, nooo || Xn = Xmy Ve, V2, v, Vg || = 0 forall vy vy, vy €Y

Therefore, if every Cauchy sequence is a convergent sequence, then the (Y, ||., ...,.||) is called an
n—Banach space.
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The concept of stability was introduced by Harder [2] and Harder and Hicks [3], roughly speaking
of a fixed point iteration procedure which is numerically stable if a small modification in the initial
data involved in the computation process will produce a small influence on the computed value of the
fixed point.

The outcomes on the data dependence results for the Mann iteration on normed space using
contraction mapping were proved by Solutz [4]. Also, data dependence results were discussed by
many authors, including Rus and Muresan [5], Espiynola and Petrusel [6], and Soltuz [7].

In this paper, we generalize the concept of stability on an n-normed space and we prove the stability
of the Mann iteration. We establish data dependence results of the Mann iteration scheme on n-
Banach space, under a mapping that belongs to the class D(L, q):

Let M be a subset of an n-normed space Y. A mapping S: M — M belongs to the class D(L, q) if for
allx,yeM,veY*land0<L,q<1.

ISx=Sylly < LIl x=yllv +qlllx=Sx Iy + [l y = Sy II1]

This paper consists of two sections. In section one, we introduce the concept of the stability on an
n-normed space and prove that the Mann iteration scheme is stable under different types of mappings.
In section two, we prove a data dependence result for a fixed point under a mapping that belongs to the
class D(L, q) with the help of the Mann iteration scheme.

Notation:

We will abbreviate v,, ...,v,_; € Yasvand ||x,vq, ..., Vo1 ]| @S ||X]]+-
$1 Stability Results

This section focuses on the stability of the Mann iteration scheme [8]. We define the Mann iteration
as follows:

x; EM
Xk+1 = 1- o)Xk + 0 Sxx 3 KEN

where {0y} is a sequencelsatisfying 0 < oy < 1 forallk € Nand Yy_; oy = .

But before discussing the stability, we need to generalize the definition of the stability to the n-normed
space.
Definition 1.1:
Let Y be an n-normed space, S: Y— Y is a mapping, and {xy} c Y is the sequence generated by an
iteration procedure
Xk+1= F(S,xk) ; KEN 1)
where x, € Y. Suppose that {x, } converges to a fixed point p of S, {y\} is an arbitrary sequence in
Y, and the set
& = | ykr1 = FSyllv i KEN.
Then, the iteration (1) is said to be S- Stable or stable with respect to S if
limk_)oo & = 0ifand Only if limk_)oo ||yk - p”V =0
The following lemma is essential to the main result of the section.
Lemma 1.2 [9]:

If 6 is a real number such that 0 < 6 < 1, and {ei} is a sequence of positive numbers such that
limy_,.., €, = 0, then for any sequence of positive numbers {ay} satisfying

a1 <6apte; k=01.2..
we have
ll(l—IBo dx — 0.

The next result is to prove that the Mann iteration scheme converges to a fixed point p of S.
Proposition 1.3:

Let M be a convex subset of an n-Banach space Y and a mapping S: M — M be a mapping that
belongs to the class D(L,q) with 0 <L,q<1, L+2q<1 . Then, the Mann iteration scheme
converges to a fixed point p of S.

Proof.
Using the Mann iteration scheme and since S belongs to the class D(L, q), we obtain that
| X1 = P llv = [1(1 — ag)xk + oy Sxi — plly

= I(1 — og)xyc — agp + axp + ax Sxi — plly

= I(1 — og)xi — (1 — e)p + oy Sxi — axeplly
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=|(1 — o) (% — p) + ax (Sxk — P)llv
<(I—ay)llxk — pllv + oxll Sxx — plly
< (1 —allxx — pllv + ax (L[ xx = p lly
+q(ll xk = Sxk v + I p—Sp Ilv))
=(1 - o (1 —L)lIxk — plly +ouxq Il xic — Sxc Iy 1)
Note that;
Ixk — Sxx [Iv < lIxk —p llv + [ISp — Sxk |Iv
S lxk—plly+Llxk—plly +qa ISP —pllv + lIxk — Sxkllv)
Thus,
1+L
Ik — Sxi [Iv < g lIxx —pllv 2
By combining (1) and (2), we have

i =P lle < (1= et = )lIxic = pllv + uca (555) e = lly
= (1—ak(1—L—q(1—ﬂl)>>nxk— plly

<nko<1—ak(1—L— (iL)))nxo—pnv (3)

Observe that
1+L 1+L

[Te 0(1—ak(1—L— (—)))Sexp( T Oock(l—L— (—)))—>0,ask—>oo

From equation (3), we have

I%er - Plly <%= pllyexp [( (1-1L- (ﬁ))>zkm=0ak] (4)
Because YjpL,op =c and taking the Ilimit of both sides of inequality (4) yields
lhnnaw||Xk+1_ p”v =0.

Now, we discuss the stability for the Mann iteration scheme with respect to belongs to the class
D(L, q) mapping.

Theorem 1.4:

Let Y be an n-normed space and S: Y— Y belongs to the class D(L, q), where 0 < L, q < 1. Suppose
that S has a fixed point p. For arbitrary x, € YwithL+ 2q < 1, if there isA € R, where 0 <A <
oy < 1, then the Mann iteration scheme is S- stable.

Proof.
Let {yx} < Y and define
& = || Y1 — (1 — o) yx — ax Sykllv, k=0.
Suppose that limy_,,, €, = 0. Then
| Yk+1 = Pllv < [l yk+1 — (1 — o) Yk — ok Sykllv
+H|(1 = o) yk + ax Syk —Ppllv
=g+ ||(1 = gy + axp —ax p + axSyk — plly
=g H|[(1— a) yk — (1 = a)p + axSyk - oxplly
=g t{|(1 = oq) (yk — P) + ok Syx - p) Ilv
< e+ (- ag) |y — p llvt ax [ISyk - Splly
Since S a belongs to the class D(L, q), we have
I yker =P llv < &+ (1= o) vk = p llvtax[Lll yk = p Iy
+q(llyk = Syk Iy + [l p = Sp [Iv)]
From proposition (1.4) equation (2), we have
lyker — Pllv S &+ Q- o) [y — pllv

+O(k[L||YR_p”v + q( ) Ika—pllv]
= (1— ak<1 —L—q (%q))) lyk = pllv + &
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Therefore

L
1Y = Pllv < <1— A(l - (ﬁj))) ¥k = P lly + &

L+q

1-q
limp . llyk = plly = 0

Conversely, Letlimy_,, ||[yx — plly = 0. To show that limy_,., g, = 0, then

€ = || Yke1 — (1 — o) Yk — o Syklly

SHyker = pllv+ A= adllye = pllv +oll Syk = pllv
By using the definition that belongs to the class D(L, q), we have
e S lyk+1 —Pllvt@ —o) Iy —pllv

+ oLy —p Ilv +a(ll yxk = Syk llv + Il p = Sp lIv)]
From the equation (2) of the proposition ( 1.3), we have

SinceL+2q<land0<1- )\(1 - ( )) < 1, by using Lemma in (1.2), we get

ek < llyke1— Pllv + (1 — o1 = (H)) lyx = pPllv

Then, g »0ask — oo
$2 Data Dependence Results

In some cases, to compute a fixed point p of S we use a certain approximate operator S of S to
approximate a fixed point p of S. So the natural question arises: Does f approximate p ? If yes, how
canwe compute || p—D |lv ?

In this section, we try to answer this question. But first we introduce the definition of approximate
mapping and lemma.
Definition 2.1:

Let Y be an n-normed space and S and S be two mappings. We say that S is an approximate mapping
of S, if forall x €Y and for fixed e > 0 we have:

| Sx —Sx ||y < e (1)

Lemma 2.2[7]:

Let {ax} be a nonnegative sequence for which one assumes that there exists k, € N, such that for
allk € N; k > k, one has satisfied the inequality

agyr < (1—98y) ag + 8oy
where §; € (0,1), Yh=1 6x = c0and o = 0, then the following inequality holds
0 < limsupag < Illi_>rrolosup Ok

n—oo

Now, we can establish the following data dependence result.
Theorem 2.3:

LetY be an n-Banach space, M be a nonempty closed convex subset of Y, S: M — M belongs to the
class D(L, q) operator with the fixed point p, and S: M — M is a mapping with a fixed point . If the
following relation is satisfied for all x € M:

|| Sx — Sx||y < e
then, fore > 0and L,q € (0,1), L + 2q < 1, we have

B €
lp—plly =< —T¥q
1-¢q
Proof.
Note that,
1% — SXi llv < IZx —p Ilv + 1ISp — SXkllv
SlIZk—pllv+Lllp—Zkllvy +qllp—=Spllv + Ik = S%q IIv)
< A+ L%k —xkllv + lIxk = pllv) + g Xk — SZq Iy
Thus,
~ ~ 1+L |, ~ 1+L
| %k — S [lv =15 I Xk_Xk”V'l'qu”Xk_p“V (1)
And similarly

1+L
1% = Sxic lly < 7 I —p Il )
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By using the Mann iteration scheme, we have
IXk41 — Riewr lv= 11— og) Xk + anSxie — (1 — o) K — eSXkelly

< (1 — a)llxk — Kiclly + ogelISxi — Sxc Iy + eI Sxic — SXclly
< age + (1 — ag)|lx — Xilly + axLllxik — Xklly
+ o q( |1xx — Sxi v+l Xk — SX [ly) (3)

By combining (1), (2) and (3), we have
XK1 — K llv < (1 = og) lIxe — Rillv + axe + ageLlIxg — Xielly

1+L 1+L |~ 1+a
(75 Ixac=p lly + 16 %= xadly + 155 llxic = plly)

- (1-a(1-L-a(22))) -l
+204q (%z) lIxx —p llv + axe
= (1 - e (1= 29) ) lxie — elly

q
fa ( B M)ZQ%”X}(_ID”V"'G
k 1-q 1—%}%
By putting:
a=||x — Zilly, since L + 2q < 1 thus, 8= (1 — ‘1%2) € (0,1), and
207 acplly e
Ok = 1_L+_q
1-q
From lemma ( 2.2 ), we obtain:
1+L
2q 1—q Ixx —plly + €
< Ii s < I
0 < lim supllx — Xlly < lim sup " L+g
I-q

From proposition (1.3) limy_,, |[xx — pllv = 0 and Sp = p, therefore

~ €
lp—Pllv= 5 -

1-q
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