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Abstract

In this paper, we study the class of prime semimodules and the related concepts,
such as the class of m semimodules, the class of Dedekind semidomains, the class of
prime semimodules which is invariant subsemimodules of its injective hull, and the
compressible semimodules. In order to make the work as complete as possible, we
stated, and sometimes proved, some known results related to the above concepts.
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Introduction

Throughout this paper, R will denote a commutative semiring with identity, and M is an R-
semimodule.

This paper consists of three sections. In Section one, we introduce some definitions and remarks
which we will use in the paper. In Section two, we introduce the concept of density of semimodules.
A non-zero R-subsemimodule of an R-semimodule is said to be dense in M, if M =}, d(N),
where the sum is taken over all & € Hom(N, M). We use the density concept to define the class of
1 semimodules, as M is said to be msemimodule if each non-zero subtractive subsemimodule
of M is dense in M.

In Section three, we define the concept of prime semimodules, analogous to that in modules [4],
where M is said to be prime if ann(N) =ann(M), for each non-zero subtractive subsemimodule N of
M. Similar to that in modules [1], we will show that every m semimodule is a prime semimodule.

The aim of this paper is to discuss the converse of this statement in the case of

semimodules having injective hull. Also we generalize some types of prime modules for
semimodules, such as the compressible type.
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1. Preliminaries

In this section, we introduce some of definitions, remarks, and examples that might be needed in
the main results.
Definition 1.1.[19] A nonempty set R with two operations of addition and multiplication ( denoted
by + and -, respectively) is called a semiring, provided that:
1. (R, +) is a commutative monoid (A monoid is a semigroup with identity)with identity element 0;
2. (R,") is a monoid with identity element 1 # 0;
3. Multiplication distributes over addition, i.e. a(b + c) = ab + ac and (a + b)c = ac + bc; for all
a,b,c eR.
4. The element O is the absorbing element of the multiplication, i.e.r- 0 = 0 forall r € R.
The semiring R is said to be commutative if its multiplication is commutative.
Definition 1.2.[18] A non-empty subset I of a semiring R will be called an ideal of R ifa,b € I and
reRimplya+bel,ra,andar €l
Definition 1.3.[6] A semiring R is said to be a semidomain if ab = 0, (a,b € R) then eithera = 0 or
b = 0.
Definition 1.4.[10] A semiring R is semisubtractive if, forall x,y € R, thenx + h=yorx=y+h
for some h € R.
Definition 1.5.[10] Let R be a semiring, a left R-semimodule is a commutative monoid (M, +)
with additive identity O for which we have a function R x M — M defined by (r,x) - rx ( scalar
multipli-cation), which satisfies the following condition, for all x,y € M and for all r,s € R:
1. (rs)x = r(sx)
2. r(x+y) =rx+ry
3. (r+s)x=rx+sy
4, Ogm =0 = 0x

If the condition 1x = x for all x € M holds, then the semimodule M is said to be unitary.
Definition 1.6.[12] A non-empty subset N of a left R-semimodule M is called subsemimodule of
M if N is closed under addition and scalar multiplication, that is N is a semimodule itself (denoted by
N & M).
Definition 1.7.[6] Let M be an R-semimodule. A subtractive subsemimodule (or k-subsemimodule)
N is a subsemimodule of M such that if x,x +y € N, then y € N. We define subtractive ideals (k-
ideals) of a semiring R in an analogous manner.
Definition 1.8. Let S be a non-empty subset of an R-semimodule M. Then the intersection of all
subsemimodules of M containing S is a subsemimodule of M, called a subsemimodule generated by S
and denoted by RS. It is easy to verify that

RS = {¥K 15| r; €R,s; € S,k € N}
The expression Z{;l ris; is called a linear combination of the elements s,,s,,:-,s. If S=
{s1,S2,**, Sm}, then
RS = {errzll riSil Iy € R,Si € S}

Especially, if S = {s}, then we denote RS by Rs, i.e., Rs = {rs|r € R}.
If RS = M, then S is called a generating set for M. An R-semimodule having a finite generating set is
called finitely generated, if Rs = M then M is called cyclic. A non-empty subset S of M is called a free
set if for each {sy,s3,:*,s;m} €S, the linear combination }i2,; rjs; = 0 implies r; = 0, Vi, where
r; € R. An R-semimodule M is called free semimodule if M has a free generating subset S. In this case,
S is said to be a basis for M.
Remark 1.9. If a semiring R is a ring then any R-semimodule is an R-module.
Proof: Let M be a semimodule over a ring R. Then M is a commutative monoid (commutative
semigroup with identity) which satisfies all the conditions in Definition 1.5. To show that M is an R-
module, we need only to prove that for all m € M there exists —m € M such that m + (—m) = —m +
m = 0. Now let m € M, since R is a ring, i.e. Ris a ring with identity 1. Hence —1 € R, and so
—1(m) € M. Thus —m € M, Ym € M. Therefore M is a group, and hence M is an R-module.
Remark 1.10. The only subtractive ideals of the semiring (N, +,-) are the cyclic ideals.
Proof: Let I be a non-cyclic ideal of N, and let a be the smallest non-zero element of I and b is the first
element of I which is greater than a and not multiple of a. Thenb = a + k for some k € N and k ¢
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I(by the choice of a and b), hence I is not subtractive. On the other hand, it is clear that any cyclic
ideal of N is subtractive.

Remark 1.11. Let A be a subsemimodule of the N-semimodule N, and let a, be the smallest non-zero
element of A, then either A = Na, = {nag|n € N}orA ={0,ap,a0 + 1,30 + 2, }.

Proof: Assume that A # Na,, then A c Na,, if by is the smallest element greater than a, such that
bo €A, by ¢ Na,, then Nay UNby UN(ayg+by) € A. Similarly proceeding, we have A =
{0,a9,a0 + 1,29+ 2, }.

Remark 1.12.  Let R be a commutative semiring with identity. A set SCR is said to be a
multiplicatively closed set of R provided that “ifa,b € S, then ab € S". The localization of R at S
(Rs) is defined in the following way:

First define the equivalent relation ~on R xS by (a,b) ~ (c,d), if sad = sbc for somes € S.
Then put Rs as the set of all equivalence classes of Rx S and define the addition and
multiplication on Rs, respectively, by [a,b] + [c,d] = [ad + bc,bd] and [a,b] - [c,d] = [ac,bd],
where [a, b] is also denoted by a/b, by which we mean the equivalence class of (a,b). It is, then,
easy tosee that Rs with the above mentioned operations of addition and multiplication on R is a
semiring [15].
Definition 1.13. In Remark 1.12, if S is the set of all not zero divisors of R, then the total quotient
semiring Q(R) of the semiring R is defined as the localization of R at S. Note that Q(R) is also an R-
semimodule. For more details, see previous articles [11, 13].
Definition 1.14. A subset I of the total quotient semiring Q(R) of R is called fractional ideal of a
semiring R, if the following hold:
1. Tis an R-subsemimodule ofQ(R), that is, ifa,b € T andr € R,thena+b € Ilandra € I.
2. There exists a non-zero divisor element d € R such thatdl € R.

Let1, J be two fractional ideals of a semiring R. Then

JI ={bja;,bya,,...,bpa, : b; €],a; €1}

It is clear that any ideal I of R is a fractional ideal of a semiring R.

Definition 1.15. Let I be a fractional ideal of a semiring R, then I is called invertible if there exists a
fractional ideal ] of R such that JI = R. Note that ] is unique and we denote that by 1~*. For more
details, see for example earlier works [10, 11].

2.  Semimodules

Let Q be a family of R-semimodules. The R-semimodule M, as an R-module [14, Ex.17(b), page
241]) is said to be generator for the family Q if for each N € Q,

N = X petoma,ny P(M)

In some cases, for simplicity, we put H = Hom(M, N).

The following theorem gives a different form for generators.

Theorem 2.1. Let M be an R-semimodule and Q be a family of R-semimodules. Then the following
statements are equivalent:

1. M s a generator for Q.

2. For all R-semimodules N and K in Q, and f € Hom(N, K) with f # 0, 3g € Hom(M, N) such that
fg + 0, see the diagram below.

M -~

agl Yo

N —> K
V%0

Proof: (1) = (2).Since f # 0, there is a€ N with f(a) # 0. As M is a generator, there is
a
representation a = Y.i-., g;(m;), g; € Hom(M, N), m; € M. Hence we have

0 # f(a) = XLy fg:(my),

and consequently there is a g; with fg; # 0.
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(2) = (1). Suppose that ¥geyd(M) # N, (H=Hom(M,N), N€), then let viN —
N/ ¥ pen ¢(M) be the natural epimorphism. Since v # 0, there is a g€H with vg=+0.
Consequently, we have g(M) & Y sen (M), in contradiction to the definition of ¥ 4ey ¢ (M). This
completes the proof.

Birge Zimmermann-Huisgen [3] introduced the definition of self-generator for R-
modules. In this paper, we recall this definition for R-semimodules. M is called a self-generator if M
generates each of its subsemimodules. In other words, an R-semimodule M is called self-generator,
if for any subsemimodule N of M,

N = quEHom(M,N) dM).
In this section, we study the semimodules which can be generated by each of their non-zero
subsemimodules. This is a "dual proplem" of self-generator concept. Now, for any two R-
semimodules
My, My, let m(My, My) = ¥4 ¢(M;) where the sum is taken over all ¢ € Hom(My, M;). If N is a sub-
semimodule of M, then we may put m(N) instead of (N, M). Note that if M, = R then (M, R) is
just the trace of M;. For more details see a previously published study [1, page 7].

Now we introduce the following definition.

Definition 2.2. A non-zero subsemimodule N of an R-semimodule M is said to be dense in M, if N
generates M. This means that M = .4, ¢ (N), where the sum is taken over all ¢ € Hom(N, M). In other
words, N is dense in M if t(N) = M.

Geometrically, N is dense in M if M can be covered by images of homomorphisms from N into M.
Note that N is dense in M, iff vm € M, 34, ¢y, -, ¢, € Hom(N, M), and 3x4,X,, -+, X, € N such
that m = }[L,; &;(x;). A subsemimodule N of M is said to be dense in M, if N generates M, i.e

M = Y peromn,m) P(N)

In the following lemma, we give other forms of dense subsemimodules, with the proof as in
Theorem 2.1.

Lemma 2.3. Let N be a non-zero subsemimodule of an R-semimodule M. Then the following
statements are equivalent:

1. Nisdensein M.

2. For any R-semimodule K, and Vf € Hom(M, K) with f # 0, 3g € Hom(N, M), such that fg # 0.
Proposition 2.4. Let N be a non-zero subsemimodule of an R-semimodule M. If N is dense in M, then
ann(N) =ann(M).

Proof: We have ann(M) < ann(N), thus it is enough to show that ann(N) Sann(M). Let r €ann(N).
Sine N isdense in M, then by definition 2.2, vm € M, 3 ¢4, ¢y, -, ¢, € Hom(N,M ), and 3 x4,
Xg, .., Xn € N suchthat m = YL, ¢;(x;). Then rm = YL, ¢;(rx;), but r €ann(N), hence rx; = 0,
and rm = 0. Therefore, r €eann(M) and ann(N) =ann(M).

Remark 2.5.

1. Homyz(Q,Z) = 0.

2. Homy(Q,N) = 0.

Proof: For(1), assume that 0 # f(1) = n and m is any integer with g.c.d(m,n) = 1, thenn = f(1) =
f(m/m) = mf(1/m), —» f(1/m) = n/m & Z (which is not possible). Hence f(1) must equal zero.
Therefore Homy(Q, Z) = 0. Using the same way we prove(2).

The following example shows that the condition in Proposition 2.4 is not sufficient.

Example 2.6. Let M = Z@®Q be considered as a Z-semimodule, where Z and Q are the groups of
integers and rationals, respectively. Let N=0+ Q be a non-zero subsemimodule of M. It is clear that,
ann(N) =ann(M) = (0). If (n,0) € M, n # 0. From Remark 2.5, we have Hom(Q,Z) = 0, then
(n,0) € (N). Thus N is not dense in M.

Note that, in Example 2.6, if we put M = N@Q considered as a N-semimodule, where N is a semi-
group of natural numbers, we will get N = 0 + Q is not dense in M = NHQ.

The following lemma shows that the condition of Proposition 2.4 is sufficient to make a subsemi-
module dense if a subsemimodule is cyclic.

Lemma 2.7. Let Ra be a non-zero cyclic subsemimodule of an R-semimodule M, then the following
statements are equivalent:
1. M=mn(Ra)
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2. ann(M) =ann(Ra)

3. Vm € M, 3 is a homomorphism ¢,: Ra — M such that ¢,,(a) = m.

Proof: From Proposition 2.4, (1) gives (2). Suppose that (2) holds and m € M.We define
¢m: Ra — M as follows: ¢,,(ra)= rm, in particular ¢,,,(a) = m. The assumption implies that ¢,,
is

well-defined. Finally, suppose that (3) holds , then it is clear that mw(Ra) S M, let m € M by (3), then
forall ¢ € Hom(Ra, M), we have m € ¥4 ¢(Ra), thus M < m(Ra). Thus M = m(Ra).

After defining the concept of a dense subsemimodule, as previously described in the modules [1,
page 11], we are ready now to give the concept of a m semimodule, which is a dual, in some sense,
to the concept of self-generator semimodule, given in modules.

Definition 2.8. An R-semimodule M is said to be a @ semimodule if for each non-zero subtractive
subsemimodule N of M, m(N) = M, i.e. each non-zero subtractive subsemimodule of M is dense in M.

Note that M is a = semimodule if it is generated by each of its nonzero subtractive subsemimodule,

while M is a self-generator if it generates each of its subtractive subsemimodules.

Example 2.9. Here we introduce some examples to explain  semimodules:

1. Any simple semimodule is a T semimodule.

2. Let N be the semiring of natural numbers, and let aN be a any non-zero ideal in N. Define a N-

homomorphism f: aN — N by putting f(an) = n, Van € aN . In particular,f(a) = 1. Hence aN is

dense in N. Thus N is a  semimodule.

3. Let Q* be the N-semimodule of non-negative rational numbers, and let K be any non-zero

subsemimodule of Q*. Then 3a/b € Kwith a,b # 0. Let m/n € Q*. Define a map f:K — Q* by

putting f(x) = (bm/an)x, Vx € K. It is clear that fis an N -homomorphism and f(a/b) = m/n. Thus

Kis dense in Q*, and Q* is a T N-semimodule.

4. Let p be a prime number, and let N,y be the set of rationals of the form m/n, with m and n are in

N and n is not divisible by p. Then N, is a subsemigroup of Q*. As a Z-module Z,~ [17]. We put
Npo = Q"/Np).

Then Ny is a N-semimodule. It is known that each proper non-zero subsemigroup of Nje is
cyclic of the form N, [17]. Note that, since each element of f(N,n) where f € Hom(Npn, Ny) is of
order less than or equal to p", then N;n is not dense in N«. Thus Ny is not a T semimodule.

A subsemimodule N of an R-semimodule M is called invariant subsemimodule if f(N) € N, Vf
€ Hom(M, M), and N is called a stable subsemimodule if f(N) S N, f € Hom(N, M)[2].

Remark 2.10. Let N be a non-zero subsemimodule of an R-semimodule M, then

1. Ncn(N) € M.

2. N is a stable subsemimodule of M iff m(N) = N.

3. m(N) is a stable subsemimodule of M.

Proof: (1) and (2) are clear. (3) Let f: m(N) — M. We want to show that f(m) € (N), Vm € n(N).

Since m € (N), then m = Y ; d;(x;), where ¢; € Hom(N, M), and x; €N, Vi 1 <i < n. Thus
f(m) = XiL, foi(x;)

Since f¢; € Hom(N, M), then f(m) € (N), so f(m(N)) € n(N), vf € Hom(m(N), M). Then t(N) is a

stable subsemimodule of M.

The following proposition relates the concept of a  semimodule and the concept of stability.
Proposition 2.11. Let M be an R-semimodule, then M is a m semimodule iff M has no non-trivial
stable subsemimodules.

Proof: Assume that M is a T semimodule, and N is a proper non-zero stable subsemimodule of M. By
Remark 2.10, m(N) = N. Since M is  semimodule, hence M = m(N) = N, which is a contradiction.

Conversely, since m(N) is a stable non-zero subsemimodule of M, see Remark 2.10, thus by
assumption, M = m(N). Therefore M is m semimodule.

Now, we study when an ideal is dense in semiring.

Remark 2.12. A non-zero ideal I of a semiring R is dense in R iff trace(I) = R.

Golan [9, page 39] proved thatan ideal I of aring R isa direct summand iff | = Re for some
idempotent element e of R. Here, we use another proof for a semirings.

Lemma 2.13. Anideal I of R is a direct summand iff I = Re for some idempotent element e of R.
Proof: (=) Assume that I is a direct summand of R, thatis R = I@],then 1 =e + é forsomee € |
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and é € J.Foreach x € I, x = xe + xé. Since [ issubtractive x €I A xe +xé € I, imply xé €1,
hence xé € INJ={0}.Then,x =xe (Vx€l),thatis I =Re. Now if we put x =e in the
expression x = xe, we get e = ee = e?, and e is idempotent.

(<) Assume that e is anidempotent element of R and I = Re. If e is a non-zero divisor, then
a:R — Re, defined by » re, is an isomorphism, so Re is a direct summand of R. If e is a zero
divisor, and eé = 0 (for some é € R). Claim that R = Re + Ré for some é such that eé = 0. We need
to consider that R is semisubtractive. In this case, either e +é=10r e =14 ¢ for some ¢é € R.
If e+é=1,thenR=Re+Ré, and since (e +é)e=e—>e’+ée=e >e+ée=e— ée=0,
thenR = Re ® Ré. Inthe case that e = 1+ é, we also get ée = 0 and Re N Ré = 0. On the
other hand,re =r +1ré,vr € R. Nowre € Re + Ré A ré € Re + Ré, by subtractivity, r € Re +
Ré > R =Re+ Ré >R = Re @ Ré. Therefore. I = Re is a direct summand of R.

As in the modules, we give the following lemma without proof, since it is already included in the
modules [9, page 61].

Lemma 2.14. A left R-semimodule is isomorphic to a direct summand of a free left R-semimodule iff
it is projective.

Theorem 2.15. Let I be a non-zero subtractive ideal of R, then I is dense in R iff is a faithful finitely
generated projective ideal.

Proof: (=) Suppose that I is dense in R, by Remark 2.12, 1 = }}; ¢;(%;), Where ¢; € I" = Hom(], R),
x; € I, for finite i. Thus, vx € [, x = Y x;(x;) = X X;¢0;(X).

Hence I is finitely generated, and by the dual basis lemma, I is projective, [5]. Since
ann(I) =ann(R) = (0), thus I is faithful.

(<) Suppose that I is a faithful finitely generated projective ideal. Since Iis faithful, then
ann(I) = 0. Since I is projective, then by Lemma 2.14, we have I is a direct summand of R. Then, by
Lemma 2.13, we have I = Re for some idempotent element e € R. Now, let a: R — Re, defined by
r>re , then a is an epimorphism and R/Kera=Re , where Kera
= {r € R|re = 0} =ann(e) =ann(l). But I is faithful, then era = ann(I) = 0. Hence R =1, and
trace(I) = R. By Remark 2.12, T is dense in R.

Corollary 2.16. If I is a subtractive dense ideal of a semiring R, then I is an invertible in R.

Proof: Since I is a subtractive dense ideal of R, then by Theorem 2.15, we have I is a finitely
generated projective ideal. As in the rings theory [8], we have I is invertible.

Proposition 2.17. If Iis an invertible ideal of a semiring R, then I is dense in R.

Proof: Since I is an invertible, then we have JI = R, for some fractional ideal Jof R.] = {x € Q(R)|
xI € R}, where Q(R) is a total quotient semiring of R. Hence, each element of ] can be thought of as
an R-homomorphism in Hom(I,R). In fact, for eachr e R, r =YL, x;a;, xj€lLa; €]. ie.r=
Yiz1 &k, (ai). Where if x € ], then ¢y (a) = xa Va € I. Hence by Remark 2.12, we have I is dense in R.

An integral domain R is called a Dedekind domain if every non-zero ideal of R is invertible
[16]. Similar to this, we construct concept of Dedekind semidomain as follows: A semidomain R (R
is a semiring) is said to be a Dedekind semidomain if every non-zero subtractive ideal of R is
invertible
inR

The following theorem is immediate from Corollary 2.16 and Proposition 2.17.

Theorem 2.18. Let R be a semiring, then R is a m R-semimodule iff R is a Dedekind semidomain.
Proof: (=) Assume that R is = semimodule, then Ra is dense in R, Va € R, and by Theorem 2.15, Ra
is faithful and ann(Ra) = 0. Hence, R is a semidomain. Moreover, every non-zero subtractive ideal /
of R is dense, thus by Corollary 2.16, I is invertible. Then R is a Dedekind semidomain.

(<) The converse follows immediately from Proposition 2.17. Thus R is a m R-semimodule.
Remark 2.19. Let R be a semiring and a € R. Then the principal ideal (a) is invertible iff a is not zero
divisor.

Proof: (=)Assume that 0 # a € R, and ab = 0, for some b € R. Since the principal ideal (a) is
invertible, then (a)] = R, fore some fractional ideal ] of R. Hence,

(ary)j; + (@rp)j, + -+ (arp)jp = 1
a(ryjp +rajp + - +rpjp) =1
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Then, 3x € J such that ax = 1 = xa. But x(ab) =x0 = 0, » 0 = (xa)b = 1b = b and hence a is
not a zero divisor.

(<) Assume that a is not zero divisor element of R, and let (a) be a principal ideal of R. Since a is
not zero divisor, then ] = (s/a) is a fractional ideal of R. Now, R € I] = (a)(s/a). Lety € IJ, then

y = (r12) (2) + (r;2) (2) + - + () (2).
y =T11Sq + IS, + - +rS, ER.

Hence, IJ is an ideal of R, and I] = R. Therefore, I is invertible ideal of R.

The following two corollaries are immediate from Remark 2.19 and Proposition 2.17.

Corollary 2.20. Every principal ideal in a semiring R generated by a non-zero divisor is dense in R.
Corollary 2.21. Let R be a semiring, then the following statements are equivalent:

1. Risasemidomain.

2. Each non-zero principal ideal of R is an invertible ideal of R.

3. Each non-zero principal ideal of R is dense in R.

3. Prime Semimodules Having Injective Hull

In Proposition 2.4, we saw that for every dense subsemimodule N of M, ann(N) =ann(M), thus in
a m R-semimodule M, for every non-zero subtractive subsemimodule N of M, ann(N) =ann(M). And
in Lemma 2.7, we observed that a cyclic subsemimodule Ra isdense in M iff ann(Ra) =ann(M).

These observations lead us to study prime semimodules. Analogous to the concept of prime
modules [4], we define a prime semimodules as follows:

Definition 3.1. An R-semimodule M is said to be prime semimodule if ann(N) =ann(M), for every
non-zero subtractive subsemimodule N of M.

We observed that the class of prime semimodules contains the class of m semimodules. But the
converse is false. Note that the Z-semimodule M = Z®Q is easily seento be a prime semimodule.
Anyway, any direct summand of semimodule is subtractive, [11, page 184], hence Q is a subtractive
subsemimodule of M which is not dense in M (see Example 2.6). Thus, M is not a = semimodule.
One can ask when a prime semimodule can possibly be a 7 semimodule. We will show later that, in
the class of quasi-injective semimodule, the two concepts of m semimodule and  prime
semimodule are equivalent.

It is well known that, for every R-module M, M can be embedded in an injective R-module. M is
called an injective hull of M, if M is an essential extension of M, i.e M NN # 0 for every non-zero
submodule N of M [17].

It is well known, however, that injective hulls always exist if R is a ring. But, Golan[10] proved
that injective hulls of non-zero R-semimodules need not exist for every semiring R[10, prop.17.21,
page 198]. If R is a semiring then any cancellative R-semimodule can be embedded in an injective R-
module M, [10, Ex.17.35, page 202]. Wang [19] proved that every semimodule over an additively-
idempotent semiring has an injective hull. For more details on an injective hull of semimodules over
semiring, see for example information described previously [13].

Lemma 3.2. Let R be a semisubtractive semiring, and let M and N be cancellative R-semimodules. If
x € M and y € N with ann(Rx) =ann(Ry), then f: Rx — Ry defined by : rx - ry is well-defined R-
homomorphism.

Proof: Assume rx = fx, then either r =  + s, for some s € R. Hence (f + s)x = fx, » X + sx = Ix,
- sx =0, - s €ann(Rx), » s €ann(Ry), > sy =0, > ry=(f+s)y=fy+sy=rfy. Orr+s =1,
by similar process rx = fx, = ry = ty, and then f is well-defined. On the other hand, it is clear that f is
R-homomorphism.

Note that it is considered in this work that all semiring R is a semisubtractive and all R-
semimodules are cancellative. The following proposition gives another characterization of prime
semimodules, which is analogous for modules [4].

Proposition 3.3. Let M be a non-zero R-semimodule having an injective hull M, then the following
statements are equivalent:

1. Misa prime semimodule.

2. M is contained in every non-zero invariant subsemimodule of M.

Proof: (1)=(2) Let N be a non-zero invariant subsemimodule of M. We want to prove that M € N.
Since M is an essential extension of M, then M NN # 0. Thus 0 # x € M n N. Since M is prime, then
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V0 #y € M, ann(Rx) =ann(Ry). We define f: Rx — Ry as follows: f(rx) = ry, Vr € R. By Lemma
3.2 we have that fis a well-defined R-hhomomorphism. Since M is injective R-semimodule then f can
be extended to F: M — M, as in the following diagram.

i
>Ry—3>p

Rx f
il\L

N
l

M

where iy, i, and i3 are the inclusion R-homomorphisms. Since N is an invariant subsemimodule of
M, then F(Rx) € N, but f(Rx) = Ry, theny € N, hence M € N.

(2) =(1). Let N be a non-zero subsemimodule of M. Since ann(M) Sann(N), we want to show that
ann( N) cann( M). Assume that 3r € R such that r eann( N), and 3x € M with rx # 0. Since 0 # N,
30 # y € N. Now, (Ry, M) = ¥, ¢(Ry), ¢ € Hom(Ry, M). Since Ry € M € M, so (Ry, M) isa
non-zero submodule of M, and it is easy to check that (Ry, M) is an invariant nonzero submodule of
M. Thus by assumption M € ©t(Ry, M). Then 3ry, 75,1, € R, and 3¢y, ¢, -+, ¢, € Hom(Ry, M)
such that, x = 37, ¢;(1;y). Thus, rx = Y=, r¢;(r;y) = X, ¢;(rr;y) = 0, which is a contradiction.
Then ann(N) Sann(M), and hence M is a prime semimodule.

From Proposition 2.4, we have that every m semimodule is a prime semimodule. Thus we have the
following corollary.

Corollary 3.4. Let M be a semimodule having an injective hull M. If M is a  semimodule then M is
contained in every non-zero invariant submodule of M.

Proposition 3.5. Let M be a non-zero semimodule having an injective hull M. If M is invariant
subsemimodule of M then the following statements are equivalent:

1. Mis aprime semimodule.

2. M has no non-trivial invariant subsemimodules.

Proof: (1) = (2). Let N be a non-zero invariant subsemimodule of M. Because M is an invariant
subsemimodule of M, so it can easily seen that N is also invariant subsemimodule of M. Thus, by
Proposition 3.3 we have M € N, and hence M = N.

(2)= (1). Let K be a non-zero invariant subsemimodule of M. By Proposition 3.3, it is enough to
show that M € K. Since M is an essential extension of M, hence M n K # (0). Now we claim that
M n K is an invariant subsemimodule of M. If this is proved, then by assumption M has no non-trivial
invariant subsemimodules and thus M N K = M, which implies that M € K.

To prove the claim, consider f any homomorphism in Hom(M, M). Since f(M N K) < f(M) n f(K),
and since f(M) € M, so it is enough to show that f(K) € K. Because M is an injective semimodule,
then f can be extended to F € Hom(M, M), but K is an invariant subsemimodule of M. Thus f(K) =
F(K) € K, hence M n K is an invariant subsemimodule of M.

Now, as in the modules [7, page 22], we say that an R-semimodule M is said to be quasi-injective
if each homomorphism from any subsemimodule N into M can be extended to a homomorphism of M
to M. Note that any simple semimodule, and any injective semimodule, is quasi-injective. However, a
quasi-injective semimodule needs not to be injective. For example, for each prime number p, Npn is
considered as a N-semimodule which is quasi-injective. In verity, the only non-zero subsemimodules
of Npn are Npk, 1 <k <n. Then, for eachf e Hom(Npk,an) ,and all x € Npk, the order of f(x) is

less than or equal to p¥, hence f(Npk) C Npk. It is clear that f can be extended to a homomorphism in
Hom(Npn, Nyn). Whereas, Npn is not injective.

The following theorem gives the relation between invariant and quasi-injective Semimodules.
Theorem 3.6.et M be a semimodule having an injective hull M. If M is an invariant subsemimodule
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of M then M is a quasi-injective.

Proof: Assume that M is a non-zero invariant subsemimodule having an injective hull, and @« € Hom
(M, M). Since M is injective, it is enough to consider that @« € Hom(M, M). Let X > M and :X —
M

be a homomorphism. Since M is injective, f can be extended to a : M — M. By assumption,
a(M) € M, and hence a : M — M extends f. Therefore M is Quasi-injective. See the diagram below.

—_—> M

d

H<—T <

Remark 3.7. We showed in Example 2.6 that M = Z@Q is considered as a Z-semimodule which is
a prime semimodule, and we proved that M is not = semimodule. We show now that M is not a quasi-
injective semimodule.

Proof: Let N =(m/n) be acyclic subsemimodule of @ generated by the non-zero element m/n,
where g.c.d (m,n) = 1. We define f: (m/n) — Z asfollows : f(r - m/n) = rm, Vr € Z.

Itis clear that f is a well-defined Z-semimodule. Consider the diagram.

(m/m) — 26Q

il

Y F
iui
ZdQ

where i, is the inclusion into the first factor and i, is the inclusion in the second factor.
Suppose that f can be extended to F € Hom( Z®Q, Z®Q ). Let p: ZHQ — Z be the natural
projection, and let f; = p F|q. It is easily seen that f; is a non-zero element in Hom( Q,Z ). But
Hom( Q,Z) = (0), which is a contradiction. This completes the proof.

We conclude that M = Z@Q is not an invariant subsemimodule of its injective hull M =
QQ. Thus we arrive at the following main theorem.
Theorem 3.8. Let M be any prime semimodule having an injective hull M. If M is an invariant
subsemimodule of M, then M is a T semimodule.
Proof: We use the characterization of msemimodules given in Proposition 2.11. So let N be a non-
zero stable subsemimodule of M, then we have to show that M is a contained in N. From the definition
of stability, it is easy to see that N is invariant subsemimodule of M. By assumption, M is an invariant
and prime semimodule and, using Proposition 3.5, M has no non-trivial invariant subsemimodule.
Therefore, M < N. This completes the proof.

The following corollary is immediate from Corollary 3.4 and Theorem 3.8.
Corollary 3.9. Let M be a semimodule having an injective hull M, if Mis an invariant subsemimodule
of M. Then M is a w semimodule iff M is a prime semimodule.

Next, similar to the case in the modules [20], we can say that an R-semimodule M is called
compressible if
every non-zero subsemimodule of M contains an isomorphic copy of M. As a trivial example:
e  Everysimple R-semimodule is compressible.
e N asaN-semimodule is compressible.

> Z
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e Q%asaN-semimodule is not compressible since Q*" = Hom(Q*,N) = (0).

The following shows that the class of prime semimodules contains the class of compressible semi-
modules.
Theorem 3.10. Every compressible R-semimodule is a prime R-semimodule.
Proof: Let M be a compressible R -semimodule, and let 0 # N < M . Now, we show that
ann(N) =ann
(M), since ann(M) <ann(N). So it is enough to prove that ann(N)Sann(M). Since M is compressible,
then 3 a monomorphism a: M — N. Hence, V r €ann( N), ra( M) = (0), thus a(rM) = (0), which
implies that rM = (0), and r € ann(M), thus ann(N) Sann(M). This completes the proof.
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