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Abstract 
     In this paper, we suggest a descent modification of the conjugate gradient method 

which converges globally provided that the exact minimization condition is 

satisfied. Preliminary numerical experiments on some benchmark problems show 

that the method is efficient and promising.  
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Introduction 

     The conjugate gradient algorithms are among the most efficient algorithms because of their 

simplicity, convergence properties, and competence to solve large-scale unconstrained optimization 

problems. Consider the unconstrained optimization problem 

 
 

(1) 

where  is smooth whose gradient  is available. The conjugate gradient (CG) methods 

are among the most preferred methods for solving problems (1). Starting with an initial point , the 

CG method generates a sequence of iterates  through the following scheme [1].  

 (2) 

where  is the step size computed along the search direction . The first direction of search is 

usually the negative of the gradient which is the steepest descent direction, i.e., , while 

subsequent directions are recursively defined as follows. 

 (3) 

in which  is known as the CG update parameter capable of reducing to linear CG method if the step 

size satisfies the exact minimization condition and (1) is a quadratic function that is strictly convex. 

The performance of these CG methods differs for general non-quadratic objective functions [2, 3]. 

Some of the efficient conjugate gradient coefficients are the Hestenes-Stiefel, (HS) [4], Polak-Ribiere-

Polyak (PRP) [5, 6], and Liu and Storey (LS) [7] with their formula defined below. 

 
where  and  is known as the Euclidean norm. 

The methods of HS, PRP, and LS have the same numerator and can perform a restart when the 

algorithm moves along  with a very small step size, that is,  implying , and 

thus, produce effective numerical results. Their global convergence has been studied by numerous 
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researchers. For the convergence of various CG methods, it is usually required that  satisfies the 

exact minimization condition:                                                 (4)  

On the other hand, other researchers require  satisfying the inexact line search such as the standard 

Wolfe condition: 

 (5) 

 (6) 

The convergence results of some unconstrained optimizations methods are obtained under the strong 

Wolfe line search (5) and         

 (7) 

One interesting features of these methods is that, if  is the exact minimizer, then HS = PRP = LS. 

But, Powell [8] provided a counter-example which shows that there exist some nonconvex functions in 

which PRP does not converge, which also applies to the HS method. Despite the effective 

computational results of these methods, their convergence is yet to be established under some inexact 

line searches. Various modifications have received a growing interest around the globe.   

Recently, Rivaie et al. [9] constructed a new denominator while retaining the numerator of the HS, 

PRP, and LS method, as follows; 

 

(8) 

The global convergence was established under exact line search. The RMIL method was extended by 

Rivaie et al. [1], as follows;  

 

(9) 

It is clear to see that . The RMIL* and PRP methods have similar features and thus 

possess the restart properties. Also, RMIL reduces to RMIL* if the exact minimization condition is 

satisfied. The global convergence of the RMIL AND RMIL* has been studied under exact line 

searches.  Convergence analysis of recent modifications of the CG methods can be referred to form 

literature [10, 11, 12]. Also, application of the CG method to real-life problems can be referred to [13, 

14]. 

New formula and its properties 

      In an attempt to enhance the performance of the CG methods while retaining the nice convergence 

properties, various researches have proposed many variants of the CG coefficient and established their 

global convergence proof. However, some of the recent modifications of the CG methods are too 

complicated and thus, their proofs are difficult to establish. Motivated by the descent properties and 

numerical efficiency of the RMIL and RMIL* methods, we proposed a simple variant of RMIL AND 

RMIL* as follows. 

 

(10) 

 where MIMS denotes the researchers name Mamat, Ibrahim Mohammed Sulaiman. The following 

algorithm describes the proposed MIMS method. This method inherits some nice properties of the 

RMIL and RMIL* method with better numerical performance. Another interesting feature of the 

proposed MIMS method is the ability to reduce to the standard RMIL* method provided that the exact 

minimization condition is satisfied. The algorithm of the proposed MIMS method is described as 

follows. 

Algorithm 2.1:  

Step 1. Given  , set  for . If , then stop. 

Step 2. Compute  by (4), (5 & 6), or (5 & 7). 

Step 3. Let   and check if , then stop. 

Step 4. Compute   by (10) and obtain the next  by (3). 

Step 5. Update  by (2). 

Step 6. Repeat Steps 2 to 4 with  until tolerance is satisfied. 

For the convergence analysis, the following assumptions are frequently needed. 

Assumption A. The function  is bounded below on the level set  
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Assumption B. In some neighbourhood  of ,  is smooth and its gradient  is 

Lipschitz continuous, that is, , such that         

(11) 

Convergence Analysis 

For the convergence analysis, we need to simplify the proposed method. From Rivaie et al., RMIL 

coefficient [9], 

 
Also, from RMIL*, it follows that; 

 
From (10), we have  

 

 

(12) 

Hence, we have  

 

(13) 

We begin by showing that the method is descent.  

3.1 Sufficient descent condition 

For this to hold, then                                              (14) 

Theorem 1 below would be used to show that (14) holds for the proposed MIMS method under (4). 

Theorem 1. Consider a CG method with search direction (3) and CG coefficient (10), then condition 

(14) holds for all k ≥ 0. 

Proof. The proof of this theorem is by induction. If , then . Hence, condition (14) 

holds true.  We need to show that (14) holds for all . Multiplying through (3) by  will give; 

 (15) 

However,  under exact minimization rule [1, 2]. Hence, 

 
Therefore, (14) holds true for  and this completes the proof.  ■ 

3.2. Global convergence properties 

     The following lemma, which follows from the assumptions above, is useful in the convergence 

analysis of the CG methods.  

Lemma 1. [15]. Suppose that Assumptions A and B hold true.  Consider any CG methods of the form 

(2) and (3) where   satisfies  

 (16) 

and  is obtained using the exact minimization rules (4). Then,  

 

(17) 

Proof: The proof follows from [9]. By contradiction, we suppose that (17) is not true and that  

such that . 

From (3) and (10), we have  

 (18) 

Squaring (18) will give 

 (19) 

Dividing (16) by  gives  
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From (13), we have  

 

(20) 

By definition,  , thus, from (20), it follows that; 

 
which implies 

 

 

 

(21) 

Since , then from (21), we have 

 
which contradicts the assertion in Lemma 1, and thus, the proof is completed.  ■ 

Numerical experiment 

     In this section, we investigate numerical performance of the proposed MIMS conjugate gradient 

method on some unconstrained optimization benchmark problems considered from Andrei [16] and 

Molga & Smutnicki [17], as listed in Table 1. The performance result was compared with the existing 

CG methods of RMIL and RMIL*, based on iteration number and CPU time under exact minimization 

conditions defined in (4). For each benchmark problem, four different initial guesses with a varying 

dimension (n) are selected, ranging from points closer to the solution to points further away, as 

suggested [18]. The stopping condition was set as , where . Meanwhile, the iteration 

is also terminated if the function evaluation exceeds , or the number of iterations exceeds .  

All test problems were coded on MATLAB version 7 (2015a) subroutine programming and solved on 

an Intel® corei5-2410M CPU @ 2.30 GHz processor, 4GB for RAM operating system. Also, the 

performance result was plotted using the Dolan and More [19] performance profile as shown in 

Figures-1 and 2, respectively.  

Table 1- List of Test Functions 

No Function (n) Initial Guess 

1 Treccani 2 (2,2), (9,9), (10,10), (13,13) 

2 DQDRTIC 2 (2,2), (9,9), (10,10), (13,13) 

3 Three Hump Camel 2 (0.5,0.5), (5,5), (10,10), (15,15) 

4 Booth 2 (2,2), (9,9), (10,10), (13,13) 

5 Ext DENCHNB 2,4 (5,5), (10,10), (20,20), (50,50) 

6 Sphere 2,4,10,100 
(2,2, …, 2), (9,9, …, 9), (10,10, …, 10), (15,15, 

…, 15) 

7 Ext White and Holst 2,4,10,100,1000 
(0,0, …, 0), (2,2, …, 2), (10,10, …, 10), (13,13, 

…, 13) 

8 Gen Tridiagonal 2,4,10,100,1000 (0,0, …, 0), (2,2, …, 2), (6,6, …, 6), (9,9, …, 9) 

9 Diagonal 4 2,4,10,100,1000 
(2,2, …, 2), (9,9, …, 9), (10,10, …, 10), (15,15, 

…, 15) 

10 Ext Tridiagonal 1 2,4,10,100,1000 
(2,2, …, 2), (9,9, …, 9), (10,10, …, 10), (15,15, 

…, 15) 

11 Ext Rosenbrock 2,4,10,100,1000 
(0,0, …, 0), (2,2, …, 2), (10,10, …, 10), (15,15, 

…, 15) 

12 Fletcher 2,4,10,100,1000 
(2,2, …, 2), (3,3, …, 3), (9,9, …, 9), (10,10, …, 

10) 

13 NONSCOMP 2,4,10,100,1000 
(2,2, …, 2), (9,9, …, 9), (10,10, …, 10), (15,15, 

…, 15) 

14 Ext Quadratic QP2 2,4,10,100,1000 
(2,2, …, 2), (9,9, …, 9), (10,10, …, 10), (15,15, 

…, 15) 
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15 Gen Quartic 2,4,10,100,1000 
(2,2, …, 2), (9,9, …, 9), (10,10, …, 10), (15,15, 

…, 15) 

 

Figure-1 illustrates the performance comparison based on iteration number. It is obvious that the 

proposed MIMS method outperformed both methods of RMIL and RMIL*.  Also, Figure- 2 shows 

that the MIMS method is preferable to the methods of RMIL and RMIL* based on CPU time.  

 
Figure 1 – Performance profile based on number of iterations  

 

 
Figure 2 – Performance profile based on CPU time 

 

     As a final note, we can conclude that the proposed MIMS method has the best performance based 

on the performance profile illustrated in Fig 1 and Fig 2 above, since it can solve all of the test 

problems successfully.  

Conclusions 

     In this paper, the proposed modification of RMIL methods guaranteed the descent condition and 

converged globally, provided that the exact minimization condition is satisfied. Also, the MIMS 

method inherited the restart mechanism of the RMIL* method with a better numerical performance. 

The proposed method was compared with RMIL and RMIL* conjugate gradient methods under exact 

line search. Numerical results illustrates the efficiency of the MIMS method.  For further work, 

researchers interested in the area of conjugate gradient method can test this   coefficient using 

the inexact line search. 
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