Zyarah and Al-Mothafaar Iraqi Journal of Science, 2020, Vol. 61, No. 5, pp: 1104-1114 DOI: 10.24996/ijs.2020.61.5.19

ISSN: 0067-2904

Semiprime RΓ-Submodules of Multiplication RΓ-Modules

Ali Abd Alhussein Zyarah*, Nuhad Salim Al-Mothafar

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 20/8/ 2019 Accepted: 30/9/2019

Abstract

Let *R* be a *Γ*-ring and *G* be an R_Γ -module. A proper R_Γ -submodule *S* of *G* is said to be semiprime R_Γ -submodule if for any ideal *I* of a *Γ*-ring *R* and for any R_Γ submodule A of G such that $(I\Gamma)^2 A \subseteq S$ or $I\Gamma I\Gamma A \subseteq S$ which implies that $I\Gamma A \subseteq S$. The purpose of this paper is to introduce interesting results of semiprime R_{Γ} -submodule of R_{Γ} -module which represents a generalization of semiprime submodules.

Keywords: Γ – ring, R_{Γ} -module, R_{Γ} -submodule and prime R_{Γ} -submodule

المقاسات الجزئية شبة األولية من النمط كاما للمقاسات للمقاسات الجدائية

علي عبد الحدين زيارة، نهاد سالم المظفر قسم الرياضيات، كلية العلهم، جامعة بغداد، بغداد، العراق

الخالصه

ً جزئي فعلي من النمط R^Γ ً من النمط R^Γ و ^S هه مقاسا لتكن ^R هي حلقة من النمط *Γ* و ^G هه مقاسا G . نسمي S مقاس جزئي شبة أولي من النمط R_Γ اذا كان لكل مثالي I في R وأي مقاس جزئي A في G بحيث 2 . الغرض من البحث هه تقديم *I A S* فأن *I I A S* أو () *I A S* نظريات و خصائص مثيرة لألهتمام في المقاسات الجزئية شبة األولية من النمط R^Γ والذي يعتبر هه التعميم للمقاسات الجزئية شبة األولية.

1. Introduction

 'Let *R* and *Γ* be additive abelian groups. We say that *R* is a *Γ*-ring if' there exists a mapping' of $\tau: R \times \Gamma \times R \to R$ 'such that for every' $r, s, g \in R$ and $\alpha, \beta \in \Gamma$, the following conditions hold:" $r : R \rightarrow R$ such that for every $r, s, g \in R$ and $a, p \in I$, the following contract $(r+s) \alpha g = r \alpha g + s \alpha g'$, $r (a + \beta) g = r \alpha g + r \beta g'$, $r \alpha (s + g) = r \alpha s + r \alpha g$,

 $(r \alpha s) \beta g = r \alpha (s \beta g)$ [1]. A left R_Γ-module is an additive abelian group *G* 'together with a mapping' $\tau: R \times \Gamma \times G \to G$ such that for all $e, e_1, e_2 \in G$ and $\gamma, \gamma_1, \gamma_2 \in \Gamma$, $r_1, r_2, r_3 \in R$ the following conditions hold: $r_3 \gamma(e_1 + e_2) = r_3 \gamma e_1 + r_3 \gamma e_2, (r_1 + r_2) \gamma e = r_1 \gamma e + r_2 \gamma e, r_3 (\gamma_1 + \gamma_2) e = r_3 \gamma_1 e + r_3 \gamma_2 e$ $r_1 \gamma_1 (r_2 \gamma_2 e) = (r_1 \gamma_1 r_2) \gamma_2 e$. A right R_Γ –module 'is defined in an analogous manner and a non-empty subset *S* of (*G*, +) is said to be' R_Γ-submodule of *G* 'if *S* is a subgroup of *G*' and *R* Γ*S* \subseteq *S*, where $R \Gamma S = \{ g \gamma w : \gamma \in \Gamma, g \in R, w \in S \}$, 'that is for all $w, w_1 \in S$ and for all' $w, w_1 \in S$ and for all' $\gamma \in \Gamma, g \in R$; $w - w_1 \in S$ and $g \gamma w \in S$. So, In this case we write $S \leq G$. Let *K*, *L* be R_Γsubmodule of an R_Γ -module *G*', 'then the R_Γ -residual of *K* by *L*

^{*}Email: aliziara107@gmail.com

 $[L] = \{ g \in R \mid g \alpha_i l \in K, \forall \alpha_i \in \Gamma, l \in L \}$ [2]. A proper R_Γ-submodule *S* of *G* is called prime R_Γ-submodule if for any ideal *T* of a *Γ*-ring *R* and for any R_Γ-submodule *H* of *G*, *T* $\Gamma H \subseteq S$, implies $H \subseteq S$ or $T \subseteq [S :_{R_{\Gamma}} G][3]$. Let *G* and *G'* be arbitrary R_Γ-modules. A mapping $\tau: G \to G'$ is a homomorphism of R_Γ-modules (or R_Γ-homomorphism) if for all $u, v \in G$ and for all $t \in R$, $\gamma \in \Gamma$ we have:-

i. $\tau(u + v) = \tau(u) + \tau(v)$

ii. $\tau(t \gamma u) = t \gamma \tau(u)$

[*K* :_{*x*}, *L*]={*g* ∈*R* |*g α*, *l* ∈*K*, ∀*α*_{*i*} ∈Γ, *l* ∈*K*₁ P2}
 R₁-submodule if for any ideal *T* of a *F*-fing *R* and fo
 H ⊆ *S* or *T* ∈ [S :_{*x*}, *G*][3]. Let *G* and *G'* be arb

homomorphism o A R_Γ-homomorphism τ is R_Γ-epimorphism if τ is onto. We denote the set of all R_Γhomomorphism from *G* into *G*^{\prime} by $Hom_{R_r}(G, G')$. In particular, if $G = G'$ we denote $Hom_{R_r}(G, G)$ by *End* (*G*) and if $\tau: G \to G'$ is an R_Γ-homomorphism, then $Ker \tau = \{u \in G : \tau(u) = 0\}$ and, so, Im $\tau = \{w \in G' : \exists u \in G : \tau(u) = w\}$ [2]. An R_Γ-module *G* and $\varphi \neq F \subseteq G$, then the generated R_Γ-
Im $\tau = \{w \in G' : \exists u \in G : \tau(u) = w\}$ [2]. An R_Γ-module *G* and $\varphi \neq F \subseteq G$, then the generated R_Γsubmodule of *G*, denoted by $\langle F \rangle$, is the smallest R_Γ-submodule of *G* containing *F*, i.e., $F = \bigcap \{ S | S \le G \}$. *F* is called the generator of $F >$ and $F >$ is finitely generated if $|F| < \infty$. If $F = \{z_1, z_2, ..., z_n\}$ we write $\langle z_1, z_2, ..., z_n \rangle$ instead of $\langle \{z_1, z_2, ..., z_n\} \rangle$. In particular, if $F = \{z\}$ then $\langle z \rangle$ is called the cyclic submodule of *G*, generated by *z* [2]. An R_Γ-submodule S of an R_Γ-module *G* is called R_Γ-direct summand of *G* if there is R_Γ-submodule *Q* of *G* such that $S \oplus_{\Gamma} Q = G$, i.e., if there are R_Γ-homomorphism $\rho : S \to G$ and $i : G \to S$ such that $i \circ \rho = I_s$ [4]. A proper submodule S of R-module G is said to be prime submodule, if $g u \in S$ for $g \in R$ and $u \in G$, implies that either $u \in S$ or $g \in [S : G]$ and *S* is called semiprime submodule of R-module *G*, whenever $g \in R$ and $u \in G$ with $g^2u \in S$, then $g u \in S$ [5]. A proper R_Γ-submodule *S* of *G* is called prime R_Γ -submodule if for any ideal *I* of a *Γ*-ring *R* and for any R_Γ -submodule *K* of *G*, *I* $\Gamma K \subseteq S$ implies $K \subseteq S$ or $I \subseteq [S :_{R_{\Gamma}} G]$ [3]. In this paper, we provide the definition of semiprime R_{Γ} -submodule of R_{Γ} -module and the relation with semiprime R-submodule of R-module, which is a generalization to semiprime R-submodule. Thus, we find the relation of semiprime R_1 submodule with multiplication RΓ-module. As a result, we have come up with an equivalent **Theorem 3.13.** Let *G* be a multiplication R_Γ-module and let *S* be a proper R_Γ-submodule of *G*. Then the following statements are equivalent:-

- 1. *S* is semiprime R_Γ-submodule of *G*.
- 2. $x \Gamma x \subseteq S$ implies $x \in S$ such that for all $x \in G$.
- 3. $rad_{\Gamma}(S)=S$.
- 4. *G S* has no non-zero nilpotent.
- 5. $K_1 \Gamma K_2 \subseteq S$ implies $K_1 \cap K_2 \subseteq S$, for every K_1, K_2 are proper R_Γ-submodules of *G*.
- **2. Semiprime RΓ-Submodules of RΓ-Modules**

In this section we illustrate the concept of semiprime R_Γ -submodule and we introduce some basic properties.

Definition 2.1. Let *S* be a proper R_Γ-submodule of R_Γ-module *G*. Then *S* is called semiprime R_Γsubmodule if for any ideal *I* of a *Γ*-ring *R* and for any R_Γ-submodule *A* of *G* such that $(I\Gamma)^2 A \subseteq S$ or $I\Gamma I\Gamma A \subseteq S$ implies $I\Gamma A \subseteq S$.

Theorem 2.2. Let *G* be an R_Γ-module. An R_Γ-submodule *S* of *G* is semiprime R_Γ-submodule if and only if, for each $u \in G$, $g \in R$ such that $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle u \rangle \subseteq S$ implies $g \Gamma u \subseteq S$.

Proof: Let *S* be a semiprime R_Γ-submodule of *G* and let $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle u \rangle \subseteq S$, where $u \in G$, $g \in R$. Since *S* is semiprime R_Γ-submodule, then $\lt g > \Gamma \lt u > \subseteq S$ and hence $g \Gamma u \subseteq S$. Conversely, suppose that $I \Gamma I \Gamma A \subseteq S$, where *I* is an ideal of a *Γ*-ring *R* and *A* is a R_Γ-submodule of G. Then for any element $g \in \mathbb{R}$ and $a \in A$, we have $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle a \rangle \subseteq I \Gamma I \Gamma A \subseteq S$, then $g\Gamma a \subseteq S$. Thus, $I\Gamma A \subseteq S$ and *S* is a semiprime R_Γ-submodule of *G*.

Theorem 2.3 [3]. Let *G* be an R_Γ-module. An R_Γ-submodule *S* of *G* is said to be prime if and only if, for each $u \in G$, $g \in R$ such that $g > \Gamma \lt u \gt \subseteq S$ implies $u \in S$ or $g \in [S :_{R_{\Gamma}} G]$.

Lemma 2.4 [3]. Let *G* be an R_Γ-module. Let *S* be a prime R_Γ-submodule of *G*. Then $[S :_{R_1} G]$ is a prime ideal of a *Γ-*ring *R*.

Remarks and Examples 2.5

- Every semiprime R-submodule is semiprime R_Γ -submodule but the converse is not true in general, as in the following example:
- Let Z_8 be a $Z_{(\bar{2})}$ module, $\Gamma = \frac{1}{2}$ and $\lt \frac{1}{4}$ be a proper $Z_{\leq \bar{2} >}$ submodule of Z_8 . Then $1 < 4 > 1$ is semiprime $Z_{\le 2}$ – submodule, since for any I is an ideal of a *Γ*-ring *Z* and *K* is any $Z_{\le 2}$ – submodule of Z_8 such that $I < \overline{2} > I < \overline{2} > K \subseteq S$, then $I < \overline{2} > K \subseteq S$. But $\overline{4} > \overline{1}$ s not semiprime submodule since $2 \in \mathbb{Z}$, $1 \in \mathbb{Z}_8$, $k=2$ such that $2^2 \cdot 1 = 4 \in \mathbb{Z}_8$ but $2.1 = 2 \notin \overline{4}$
- ii. Every prime R_Γ -submodule is semiprime R_Γ -submodule.

Proof. Let *S* be a prime R_1 -submodule of *G*. We have to show that *S* is semiprime R_1 -submodule. Let $I \Gamma I \Gamma A \subseteq S$, where *I* is an ideal of a *Γ*-ring *R* and *A* is R_Γ-submodule of *G*. Since *I* is ideal of a *Γ*-ring *R*, then $I\Gamma A = A\Gamma I$. Since *S* is a prime R_Γ-submodule of *G*, then either $A \subseteq S$ then $I\Gamma A \subseteq S$ or $I\Gamma I \subseteq [S:_{R_{\Gamma}} G]$ then $I \subseteq [S:_{R_{\Gamma}} G]$, since $[S:_{R_{\Gamma}} G]$ is prime by lemma (2.4). Therefore, $I\Gamma A \subseteq I\Gamma G \subseteq S$ and hence $I\Gamma A \subseteq S$. Thus *S* is semiprime R_Γ-submodule of *G*. The following example explains that the converse is not true in general:

Let 3Z be an Z_{2Z} – module, 6Z be a proper Z_{2Z} – submodule of 3Z. Let $f:Z \times 2Z \times 3Z \rightarrow 3Z$ and 6*Z* is semiprime Z_{2Z} – submodule of 3*Z*, for any ideal *I* in *Z* and any Z_{2Z} – submodules in 3Z, then $(I2Z)^2 A \subseteq 6Z$. But $6Z$ is not prime of Z_{2Z} -submodule of 3Z, since $x = 3$, $r = 2$, $\gamma = 2$, $\langle 3 \rangle 2Z \langle 2 \rangle \subseteq 6Z$ and $3.2.2 = 12 \in 6Z$ but $3 \notin 6Z$ and $2 \notin [6Z:_{R_r} 3Z]$.

 Recall that an ideal *I* in a *Γ*-ring *R* is said to be semiprime ideal of a *Γ-*ring *R* if for any *J* is an ideal in *Γ*-ring *R* such that $J \Gamma J \subseteq I$ implies $J \subseteq I$ [6].

Proposition 2.6. Let *G* be an R_Γ-module and *S* be a semiprime R_Γ-submodule, then [*S* :_{R_Γ} *G*] is semiprime ideal of a *Γ-*ring R.

Proof. Let *J* be an ideal in *R* such that $J \Gamma J \subseteq [S :_{R_{\Gamma}} G]$, then $J \Gamma J \Gamma G \subseteq S$. Since *S* is semiprime R_Γ -submodule, then $J \Gamma G \subseteq S$. Therefore, $J \subseteq [S :_{R_\Gamma} G]$ and $[S :_{R_\Gamma} G]$ are semiprime ideals of a *Γ*ring *R*. To show that the converse is not true in general, the following example is shown:

Let $G = Z \oplus Z$ be a $Z_{\leq 5}$ -module and let *S* be an R_Γ-submodule generated by $\lt (0, 4)$ >, then $[S :_{R_{\Gamma}} G] = \{0\}$ is semiprime ideal of a *Γ*-ring *Z*, but *S* is not semiprime R_Γ-submodule of G. Let $\langle \frac{1}{2} \rangle$ be an ideal, *Γ* be a abelian group define by $\langle \frac{1}{3} \rangle$ and *S* be an R_Γ-submodule generated by $<$ 2 > be an ideal, *I* be a abelian group define by $<$ 3 > and *S* be an R_I-submodule generated by
 $<$ (0,4) >, then $<$ 2 > $<$ 3 > $<$ 2 > \subseteq [*S* :_{R_F} *G*], then $<$ 2 > $<$ 3 > $<$ 2 > = (0) \subseteq [*S* :_{R_F} $<(0, 4)>, \text{ then } <2><3><3><2> \leq E[S :_{R_{\Gamma}} G]$, then $<2><3><2>(0) \subseteq [S :_{R_{\Gamma}} G]$. Then
 $<(0, g)><(u, 0)> = {(0, 0)} \subseteq [S :_{R_{\Gamma}} G]$ for all $u \in G, g \in R$. Thus $[S :_{R_{\Gamma}} G] = {0}$ is semiprime ideal of a *Γ*-ring *Z*, but *S* is not semiprime R_Γ-submodule of *G*. Let $(0,1) \in G$, $\lt 3 > \in F$ such that
 $\lt 2 < 3 < 3 < 2 < 3 > 0, 1$ = $(0,36) \in S$ and $\lt 2 < 3 > 0, 1$ = $(0,6) \notin S$. and $\langle 2 \rangle \langle 3 \rangle = (0,1) = (0,6) \notin S$.

Theorem 2.7. Let *S* be a proper R_Γ-submodule of R_Γ-module *G*, then the following statements are equivalents:

1. *S* is semiprime R_Γ-submodule of *G*.

2. The ideal $[S:_{R_{\Gamma}} K]$ is semiprime in *Γ*-ring *R*, for all *K* is a proper R_Γ-submodule of *G* such that $S \subset K$.

3. The ideal $[S :_{R_{\Gamma}} < u >]$ is semiprime in *Γ*-ring *R*, for all $u \in G$ and $u \notin S$.

Proof. $(1 \rightarrow 2)$

Let *K* be a proper R_I -submodule of *G*. Let *I* be an ideal of *Γ*-ring *R* such that $I \Gamma I \subseteq [S :_{R_I} K]$, then $I \Gamma I \Gamma K \subseteq S$. Since *S* is semiprime R_Γ-submodule of *G*, then $I \Gamma K \subseteq S$ and hence $I \subseteq [S:_{R_{\Gamma}} K]$. Thus, $[S:_{R_{\Gamma}} K]$ is semiprime ideal in *Γ*-ring *R*. $(2 \rightarrow 3)$

Let $u \in G$, $u \notin S$, let *J* be an ideal of *Γ*-ring *R* such that $J \Gamma J \subseteq [S :_{R} < u >]$ and let $g \in R$ such that $J = \langle g \rangle$, then $\langle g \rangle \Gamma \langle g \rangle \subseteq [S :_{R_{\Gamma}} \langle u \rangle]$. We have to show that $\langle g \rangle \subseteq [S :_{R_{\Gamma}} \langle u \rangle]$. Since $u \in G$ and $u \notin S$, then $\langle u \rangle$ is R_Γ-submodule of *G*, $\langle u \rangle \subseteq S + \langle u \rangle$, then $[S :_{R_r} < u >] \subseteq [S :_{R_r} S + \langle u >]$ and $S \subseteq S + \langle u >.$ By hypothesis (2), $[S :_{R_r} S + \langle u >]$ is semiprime ideal of *R*, then $J \subseteq [S :_{R_\Gamma} S + \langle u \rangle]$ and $J \Gamma \langle u \rangle \subseteq S$. Thus, $J \subseteq [S :_{R_\Gamma} \langle u \rangle]$ and $[S :_{R_\Gamma} \langle u \rangle]$ is semiprime ideal in *Γ-*ring *R*.

 $(3 \rightarrow 1)$

Let *I* be an ideal in *Γ*-ring *R* and $u \in G$, then $\langle u \rangle$ is R_Γ-submodule of *G*. Let $I \cap I \cap \langle u \rangle \subseteq S$, to show that $I \Gamma \lt u \gt \subseteq S$. Since $[S :_{R_{\Gamma}} \lt u \gt]$ is semiprime ideal in *R*, then $I \subseteq [S :_{R_{\Gamma}} \lt u \gt]$ and, hence, *I* $\Gamma < u > \subseteq S$. Thus *S* is semiprime R_Γ-submodule of *G* by Proposition (2.6).

Proposition 2.8. Let *S* be a proper R_Γ-submodule of R_Γ-module *G*, if *S* is prime R_Γ-submodule of *G* and $S = \bigcap S_i$ where each S_i is prime R_Γ-submodule of *G*, then *S* is semiprime R_Γ-submodule of *G*. *i* $\in \! \Lambda$

Proof. Let *K* be a proper R_Γ-submodule of *G* and let *I* be an ideal of a *Γ*-ring *R* such that *I* $I \cap K \subseteq S$. We have to show that $I \cap K \subseteq S$. Since S_i is a prime R_Γ-submodule of *G*, then S_i is semiprime R_Γ-submodule of *G* by Remark ((2.5), ii). Then $I \Gamma K \subseteq S_i$ for all $i \in \Lambda$, which implies that $I \Gamma K \subseteq \bigcap S_i = S$. Thus, *S* is semiprime R_Γ-submodule of *G*. *i* $\in \! \Lambda$

Proposition 2.9. Let *G* be R_Γ-module and let *S* be a proper R_Γ-submodule of *G*. If *S* is semiprime R_Γsubmodule of *G* and *L* is a proper R_Γ -submodule of *G* such that $L \not\subset S$, then $L \cap S$ is semiprime RΓ-submodule of *G*.

Proof. Let $w \in L$, $g \in R$ such that $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle w \rangle \langle g \rangle \Gamma$, then $\langle g \rangle \Gamma \langle g \rangle \Gamma \langle w \rangle \langle g \rangle$ and $\leq g > \Gamma \leq g > \Gamma \leq w > \subseteq L$. But $w \in L$, hence $g \Gamma w \subseteq L$. As *S* is semiprime R_Γ-
and $\leq g > \Gamma \leq w > \subseteq L$. But $w \in L$, hence $g \Gamma w \subseteq L$. As *S* is semiprime R_Γsubmodule of G, then $g \Gamma w \subseteq S$, hence $g \Gamma w \subseteq S \cap L$ which implies that $L \cap S$ is semiprime RΓ-submodule of *G*.

Proposition 2.10. Let *G* be R_Γ-module and S_α be a family semiprime R_Γ-submodule of *G*, for each $\alpha \in \Lambda$, then $\bigcap S_\alpha$ is semiprime R_Γ-submodule of *G*. $\alpha \in \Lambda$

Proof. Let *I* be an ideal of *Γ*-ring *R* and *H* be a proper R_Γ-submodule of *G* such that $I \Gamma I \Gamma H \subseteq \bigcap S_{\alpha}$ $\alpha \in \Lambda$ $\Gamma I \Gamma H \subseteq \bigcap S_{\alpha}$, to show that $I \Gamma H \subseteq \bigcap S_{\alpha}$ $\alpha \in \Lambda$ $\Gamma H \subseteq \bigcap S_\alpha$. Then $I\Gamma I\Gamma H \subseteq S_\alpha$ for all $\alpha \in \Lambda$, since S_α is semiprime R_Γ-submodule of *G*, then $I\Gamma H \subseteq S_\alpha$ for all $\alpha \in \Lambda$. Thus $I\Gamma H \subseteq \bigcap S_\alpha$ $\alpha \in \Lambda$ $\Gamma H \subseteq \bigcap S_\alpha$ for all $\alpha \in \Lambda$

. Hence $\bigcap S_{\alpha}$ is semiprime R_Γ-submodule of *G*. $\alpha \in \Lambda$

Recall that *T* is an ideal of *Γ*-ring *R*. The radical of *T*, denoted by $rad_T(T)$, is defined to be the intersection of all prime ideals containing *T* [3].

Recall that *G* is an R_Γ -module and *S* is an R_Γ -submodule of *G* that is said to be primary if for any R_Γ-submodule *V* of *G* and for any ideal *I* of a *Γ*-ring *R*, $I \Gamma V \subseteq S$ and $V \nsubseteq S$ implies $I \subseteq rad_{\Gamma}[S :_{R_{\Gamma}} G][3].$

Proposition 2.11. Let *G* be R_Γ-module and *S* be a proper R_Γ-submodule of *G*. If *S* is primary R_Γsubmodule of *G*, then $[S :_{R_{\Gamma}} G]$ is semiprime ideal of a *Γ*-ring *R* if and only if *S* is semiprime R_Γsubmodule of *G*.

Proof. Suppose that $[S :_{R_{\Gamma}} G]$ is semiprime ideal of *R*. Let *I* be an ideal of *Γ*-ring *R* and *K* be a proper R_Γ-submodule of *G* such that $I\Gamma I\Gamma K \subseteq S$. We have to show that $I\Gamma K \subseteq S$. Since $[S:_{R_r} G]$ is semiprime ideal of *R*, then $I \Gamma I \subseteq [S :_{R_{\Gamma}} G]$. Since $I \Gamma I \Gamma K \subseteq S$ then $I \Gamma I \subseteq [S :_{R_{\Gamma}} K] \subseteq [S :_{R_{\Gamma}} G]$, and as $[S:_{R_{\Gamma}} G]$ is an ideal of a *Γ*-ring *R*, we obtain $[S:_{R_{\Gamma}} G] \Gamma K \subseteq S$ and $I \subseteq [S:_{R_{\Gamma}} G]$. Thus $I \Gamma K \subseteq S$ and *S* is semiprime R_Γ -submodule of *G*. The converse is true, by Proposition (2.6).

Proposition 2.12. - Let *G*, *G'* be R_Γ-modules and let φ : *G* \rightarrow *G'* be an R_Γ-epimorphism, then:

1) If *S* is semiprime R_Γ-submodule of *G* and *Ker* $\varphi \subseteq S$, then $\varphi(S)$ is semiprime R_Γ-submodule of G'

2) If S' is semiprime R_Γ-submodule of G', then $\varphi^{-1}(S')$ is semiprime R_Γ-submodule of G. **Proof.**

1) Let $h \in R$, $u' \in G'$ such that $(h\Gamma)^2 u' \subseteq \varphi(S)$, $(h\gamma)^2 u' \in \varphi(S)$ for all $\gamma \in \Gamma$. Since φ is epimorphism, then there exists $u \in G$ such that $u' = \varphi(u)$.

 $(h\gamma)^2 \varphi(u) \in \varphi(S)$, then $\varphi((h\gamma)^2 u) \in \varphi(S)$. Since φ is R_Γ-homomorphism and there exists $v \in S$ such that $\varphi((h\gamma)^2 u) = \varphi(v)$, then $v - (h\gamma)^2 u \in Ker \varphi \subseteq S$ and $(h\gamma)^2 u \in S$. Since *S* is semiprime R_Γ-submodule of *G*, then $h \gamma u \in S$ and $\varphi(h \gamma u) \in \varphi(S)$. Thus, $h \gamma u' \in \varphi(S)$ and, hence, $\varphi(S)$ is semiprime R_Γ-submodule of G' .

 $2)$ $h \in R$, $u \in G$ such that $(h\Gamma)^2 u \subseteq \varphi^{-1}(S')$, $u = \varphi^{-1}(u')$, $u' \in G'$ for all $\nu \in \Gamma$. $(h\gamma)^2 u \in \varphi^{-1}(S')$, then $\varphi((h\gamma)^2 u) \in S'$ and $(h\gamma)^2 \varphi(u) \in S'$. Since S' is semiprime R_Γ-submodule of G', then $h \gamma \varphi(u) \in S'$ and $h \gamma u \in \varphi^{-1}(S')$. Hence, $\varphi^{-1}(S')$ is semiprime R_Γ-submodule of G.

Corollary 2.13. Let *S* be a proper R_Γ-submodule of R_Γ-module *G* and let *H* be any proper R_Γsubmodule of *G* such that $H \subseteq S$, then *S* is semiprime R_Γ-submodule of *G* if and only if S/H is a semiprime R_Γ -submodule of G/H .

3. Semiprime RΓ-Submodules of Multiplication RΓ-Modules

Notice that *G* is multiplication R_Γ -module, if for any *S* be a proper R_Γ -submodule of *G*, there exists an ideal *I* of a *Γ*-ring *R* such that $S = I \Gamma G$ [3, 7].

Proposition 3.1. Let *G* be multiplication R_Γ -module and *S* be a proper R_Γ -submodule of *G*, then *S* is semiprime R_{Γ} -submodule of *G* if and only if $[S :_{R_{\Gamma}} G]$ is semiprime ideal of Γ -ring R .

Proof. The first side is clear.

Conversely, suppose that $[S :_{R_\Gamma} G]$ is semiprime ideal of R. Let $g \in R$, $w \in G$; $w \notin S$, then $g >$ is an ideal in *Γ*-ring *R* and $\langle w \rangle$ is R_Γ-submodule of *G* such that $g >$ is an ideal in T-ring R and $\lt w >$ is R_F-submodule of G such that $g > \Gamma \lt g > \Gamma \lt w > \subseteq S$, to show that $g > \Gamma \lt w > \subseteq S$. Since *G* is multiplication R_Fmodule, then $S = [\langle w \rangle :_{R_{\Gamma}} G] \Gamma G$ where $\langle w \rangle$ is R_Γ-submodule of *G* generated by *w* and module, then $S = \langle \infty | S \rangle_{R_{\Gamma}} G$ is a subset $\langle w \rangle$ is R_{Γ} -submodule of G generated by w and $\langle \langle w \rangle_{R_{\Gamma}} G$ is an ideal in R. $\langle w \rangle = [\langle w \rangle_{R_{\Gamma}} G] \Gamma G$ and $w = v_1 \gamma_1 k_1 + v_2 \gamma_2 k_2 + ... + v_n \gamma_n k_n$, where $k_i \in [\langle w \rangle :_{R_i} G]$, $\gamma \in \Gamma$ and $v_i \in G$, for all $i = 1, 2, 3, \dots, n$. $g \gamma k_i \in [\langle g \gamma w \rangle :_{R_i} G]$ and $g \gamma w \in S$. Then $[\langle g \, \gamma \, \rangle_{R_{\Gamma}} \, G \,] \subseteq [S :_{R_{\Gamma}} G]$ and $\qquad g \, \gamma \, k_{i} \in [S :_{R_{\Gamma}} G],$

 $w = g \gamma k_1 \gamma_1 + g \gamma k_2 \gamma_2 + ... + g \gamma k_n \gamma_n \gamma_n \in S$. Then $g \Gamma w \subseteq S$ and, hence, *S* is semiprime R_Γ-submodule of *G*.

Theorem 3.2. Let *G* be a multiplication R_1 -module and let *S* be a semiprime R_1 -submodule of *G* such that $K_1 \cap K_2 \subseteq S$, where K_1, K_2 are R_F-submodules of *G*, then $K_1 \subseteq S$ or $K_2 \subseteq S$. **Proof.**

Let *S* be a semiprime R_Γ-submodule of G and $K_1 \cap K_2 \subseteq S$. Then $[K_1 \cap K_2 :_{R_{\Gamma}} G] \subseteq [S :_{R_{\Gamma}} G]$ and $[K_1:_{R_\Gamma} G] \cap [K_2:_{R_\Gamma} G] \subseteq [S:_{R_\Gamma} G]$. Since [S :_{R_r} G] is semiprime ideal of a *Γ*-ring *R* by Proposition (2.6), then $[K_1:_{R_\Gamma} G] \subseteq [S:_{R_\Gamma} G]$ or $[K_2:_{R_\Gamma} G] \subseteq [S:_{R_\Gamma} G]$, then $[K_1:_{R_\Gamma} G] \cap G \subseteq [S:_{R_\Gamma} G]$ or $[K_2:_{R_\Gamma} G] \subseteq [S:_{R_\Gamma} G]$, then $[K_1:_{R_\Gamma} G] \cap G \subseteq [S:_{R_\Gamma} G]$ or (2.0), then $[\mathbf{K}_1 \cdot_{R_\Gamma} \mathbf{G}] \sqcup [\mathbf{K}_2 \cdot_{R_\Gamma} \mathbf{G}]$ or $[\mathbf{K}_2 \cdot_{R_\Gamma} \mathbf{G}] \sqcup [\mathbf{K}_2 \cdot_{R_\Gamma} \mathbf{G}]$, then $[\mathbf{K}_1 \cdot_{R_\Gamma} \mathbf{G}] \sqcup \mathbf{G} \sqsubseteq [\mathbf{S} \cdot_{R_\Gamma} \mathbf{G}]$ or $[K_2 \cdot_{R_\Gamma} \mathbf{G}]$ $[\mathbf{G} \sqsubseteq [\mathbf{S} \cdot_{R_\Gamma} \mathbf{G}]$ hence $K_1 \subseteq S$ or $K_2 \subseteq S$.

Recall that *G* is an R_Γ-module that is called irreducible or (simple), if $G \Gamma R \neq 0$ and it has only the trivial R_Γ -submodules $\{0\}$ and *G* itself [4].

Proposition 3.3. Let *G* be an R_Γ-module. If *S* is irreducible R_Γ-submodule of *G*, then *S* is semiprime R_{Γ} -submodule of *G* if and only if *S* is a prime R_{Γ} -submodule of *G*.

Proof. The first side is clear. Conversely, suppose that *S* is not prime R_Γ-submodule of *G*. Let $h \in R$, $h \notin [S:_{R_{\Gamma}} G]$, $u \in G$, $u \notin S$ and $\alpha \in \Gamma$ such that $h \alpha u \in S$. Since $h \notin [S:_{R_{\Gamma}} G]$, there exists $v \in G$ such that $h \alpha v \notin S$. We claim that $K_1 \cap K_2 = S$. Let $w \in K_1 \cap K_2$ and $K_1 = S + \langle u \rangle$, $K_2 = S + \langle h \alpha v \rangle$. Let $s_1, s_2 \in S$ and $t_1, t_2 \in R$ such that $w = s_1 + t_1 \alpha u = s_2 + t_2 \alpha h \alpha v$, then $w = s_1 - s_2 + t_1 \alpha u = t_2 \alpha h \alpha v$. By multiplying this equation by $h_1 \in R$, we obtain $h_1 \gamma s_1 - h_1 \gamma s_2 + h_1 \gamma t_1 \alpha u = h_1 \gamma t_2 \alpha h \alpha v$ where $\gamma \in \Gamma$. $h_1 \gamma s_1 - h_1 \gamma s_2 + h_1 \gamma t_1 \alpha u = h_1 \gamma t_2 \alpha h \alpha v \in S$. $w = s_1 - s_2 + t_1 \alpha u = t_2 \alpha h \alpha v$. By multiplying $h_1 \gamma s_1 - h_1 \gamma s_2 + h_1 \gamma t_1 \alpha u = h_1 \gamma t_2 \alpha h \alpha v$ where $\gamma \in \Gamma$. Since *S* is semiprime R_Γ-submodule of *G*, then $t_2 \alpha h \alpha v \in S$ and $h_2 \alpha v \in S$ such that $t_2 \alpha h = h_2$, also $s_2 + t_2 \alpha h \alpha v = w \in S$. Hence, $K_1 \cap K_2 = S$, which is a contradiction, since *S* is irreducible. Thus *S* is prime R_Γ-submodule of *G*.

Recall that an R_Γ-module *G* is called R_Γ-faithful if its R_Γ-annihilator $l_R(G) = 0$ [4].

Definition 3.4. Let *G* be an R_Γ-module. If *J* is a maximal ideal of *Γ*-ring *R*, then we define **Definition 3.4.** Let *G* be an R_Γ-module. If *J* is a maximal ideal of *Γ*-ring *R*, then we defin $T_{J\Gamma}(G) = \{u \in G, \alpha \in \Gamma : (1-j)\alpha u = 0\}$ for some $j \in J$. Clearly, $T_{J\Gamma}(G)$ is R_Γ-submodule of *G*.

Definition 3.5. Let *G* be an R_Γ-module and *J* is a maximal ideal of a *Γ*-ring *R*. We say that *G* is *J*cyclic if there exist $j \in J$, $u \in G$ and $\alpha \in \Gamma$ such that $(1-j)\Gamma G \subseteq R\Gamma u$.

Theorem 3.6. Let *R* be a commutative *Γ*-ring with identity. Then an R_Γ -module *G* is a multiplication R_Γ-module if and only if, for every maximal ideal *J* of *Γ*-ring *R*, either $G = T_{J\Gamma}(G)$ or *G* is *J*-cyclic. **Proof.**

Suppose that *G* is a multiplication R_Γ -module. Let *J* be a maximal ideal of a *Γ*-ring *R*. Suppose that $G = J \Gamma G$, and let $u \in G$. Then $J \Gamma u = I \Gamma G$ for some *I* is an ideal of a *Γ*-ring *R* and, hence, $R \Gamma u = I \Gamma G = I \Gamma J \Gamma G = J \Gamma I \Gamma G = J \Gamma u$ and $1 \alpha u = j \alpha u$ such that $1 \in R$, $j \in J$, $\alpha \in \Gamma$. and $1 \alpha u = j \alpha u$ such that $1 \in R$, $j \in J$, $\alpha \in \Gamma$. Thus, $(1-j)\alpha u = 0$ and $u \in T_{J\Gamma}(G)$. It follows that $G = T_{J\Gamma}(G)$. Now suppose that $G \neq J\Gamma G$, there exist $w \in G$ and $w \notin J \Gamma G$. There exists an ideal *B* of *Γ*-ring *R* such that $R \Gamma w = B \Gamma G$. Clearly, $B \not\subset J$ and, hence, $1-t \in B$ for some $t \in J$. Clearly, $(1-t)\Gamma G \subseteq R \Gamma w$ and *G* is *J*-cyclic. Conversely, suppose that, for each maximal ideal *J* of a *Γ*-ring *R*, either $G = T_{J\Gamma}(G)$ or *G* is *J*-cyclic. Let *S* be a R_Γ-submodule of *G* and $K = ann_{R_f}(G/G)$. Clearly, $K \Gamma G \subseteq S$. Let $y \in S$ and

 $H = \{h \in R : h \nmid y \in K \Gamma G\}$. Suppose that $H \neq R$, then there exists a maximal ideal *Q* of a *Γ*-ring *R* such that $H \subseteq Q$. If $G = T_{Q}^{\dagger}(G)$, then $(1-s)\gamma y = 0$ for some $s \in Q, \gamma \in \Gamma$ and, hence,

, which is a contradiction. Thus, by hypothesis, there exist $s_1 \in Q$, $z \in G$ such that $(1-s_1)\Gamma G \subseteq R \Gamma z$. It follows that $(1-s_1)\Gamma S$ is a R_Γ-submodule of R Γz and hence (1-s₁) Γ *S* \subseteq *K* Γ \subseteq *K* Γ \subseteq *K* is an ideal such that $F = \{h \in R : h \ \gamma z \in (1-s_1) \Gamma S \}$ of a *Γ*-ring *R*.

(1-s₁) Γ *F* Γ *G* $=$ *F* Γ (1-s₁) Γ *G* \subseteq *F* Γ $z \subseteq S$ and hence $(1-s_$ and hence $(1-s_1)\Gamma F \subseteq K$. It follows that $(1 - s_1)$ 1 $S = F \perp z$ where *F* is an ideal such that $F = \{h \in R : h \gamma z \in (1 - s_1) \Gamma F \Gamma G = F \Gamma (1 - s_1) \Gamma G \subseteq F \Gamma z \subseteq S \text{ and hence } (1 - s_1) \Gamma F$
 $(1 - s_1) \gamma (1 - s_1) \gamma y \in (1 - s_1) \Gamma (1 - s_1) \Gamma S = (1 - s_1) \Gamma F \Gamma z \subseteq K \Gamma G \text{ . But the}$. But this gives a contradiction of $(1-s_1)\gamma(1-s_1) \in H \subseteq Q$. Thus, $H = R$ and $y \in K \cap G$. It follows that $S = K \cap G$ and G is multiplication R_Γ -module.

Theorem 3.7. Let *R* be a commutative *Γ*-ring with identity and *G* be an R_Γ-faithful R_Γ-module. Then *G* is a multiplication R_Γ -module if and only if

i. $\bigcap_{\lambda \in \Lambda} (I_{\lambda} \Gamma G) = (\bigcap_{\lambda \in \Lambda} I_{\lambda}) \Gamma G)$ ΓG) = ($\bigcap I_{\lambda}$) ΓG) for any non-empty collection of ideals I_{λ} ($\lambda \in \Lambda$) of a *Γ*-ring *R*.

ii. For any R_Γ-submodule *S* of *G* and an ideal *A* of a *Γ*-ring *R*, such that $S \subset A \cap G$, there exists an ideal *B* with $B \subset A$ and $S \subseteq B \cap G$.

Proof.

(1 *- s*)∈ *H* ⊆ *Q*, which is a contradiction. Thus, by

(1 - s_i) $\Gamma G \subseteq R \Gamma z$. It follows that $(1-s_1)\Gamma G$
 $(1-s_1)\Gamma S = F \Gamma z$ where *F* is an ideal such that *H F* $(1-s_1)\Gamma F$ *F* $G = F \Gamma (1-s_1)\Gamma G \subseteq F \Gamma z \subseteq S$

(1 - s_i) $\$ To prove (i), suppose that *G* is a multiplication R_Γ-module. Let $I_{\lambda}(\lambda \in \Lambda)$ be any non-empty collection of ideals of a *Γ*-ring *R* and let $I = \bigcap_{\lambda \in \Lambda}$ $=$ λ $I = \bigcap I_{\lambda}$. Clearly, $I \Gamma G \subseteq \bigcap (I_{\lambda} \Gamma G)$ $\lambda \in \Lambda$ $\Gamma G \subseteq \bigcap (I_{\lambda} \Gamma G)$. Let $x \in \bigcap (I_{\lambda} \Gamma G)$ $\lambda \in \Lambda$ $\in \bigcap (I_{\lambda} \Gamma G)$ and let $J = \{ g \in R : g \gamma x \in I \Gamma G \}$. Suppose that $J \neq R$, then there exists a maximal ideal *P* of *R* such that $J \subseteq P$. Clearly, $x \notin T_{P}$ (*G*) and hence *G* is *P*-cyclic by Theorem 3.6. There exist $t \in P$ and $m \in G$ such that $(1-t)\Gamma G \subseteq R \Gamma m$. Then $(1-t)\beta x \in \bigcap_{\lambda \in \Lambda}$ $(1-t)\beta x \in \bigcap (I_{\lambda} \Gamma m)$ for λ each $\beta \in \Gamma$. There exists $a_{\lambda} \in I_{\lambda}$ such that $(1-t) \beta x = a_{\lambda} \beta m$. Choose $\alpha \in \Lambda$ for each $\lambda \in \Lambda$,
 $a_{\alpha} \beta m = a_{\lambda} \beta m$ and, so, $(a_{\alpha} - a_{\lambda}) \beta m = 0$. Now,
 $(1-t) \Gamma (a_{\alpha} - a_{\lambda}) \Gamma G = (a_{\alpha} - a_{\lambda}) \Gamma (1-t) \Gamma G \subseteq (a_{\alpha} - a_{\$ $a_{\alpha} \beta m = a_{\alpha} \beta m$ and, so, $(a_{\alpha} - a_{\lambda}) \beta m = 0$. Now, implies $(1-t) \Gamma(a_{\alpha} - a_{\lambda}) \Gamma G = (a_{\alpha} - a_{\lambda}) \Gamma(1-t) \Gamma G \subseteq (a_{\alpha} - a_{\lambda}) \Gamma K \Gamma m = 0$
 $(1-t) \Gamma(a_{\alpha} - a_{\lambda}) = 0$. Therefore, $(1-t) \Gamma a_{\alpha} = (1-t) \Gamma a_{\lambda} \in I_{\lambda}$, $(\lambda \in \Lambda)$ and, hence, $(1-t)\Gamma(a_{\alpha} - a_{\lambda}) = 0$. Therefore, $(1-t)\Gamma a_{\alpha} = (1-t)\Gamma a_{\lambda} \in I_{\lambda}$, $(\lambda \in \Lambda)$ and, hence,
 $(1-t)\Gamma a_{\alpha} \in I$. Thus $(1-t)\Gamma(1-t)\Gamma x = (1-t)\Gamma a_{\alpha} \Gamma m \in I_{\lambda}$. It follows that $(1-t)\Gamma(1-t) \in J \subseteq P$, which is a contradiction and, hence, $J = R$ and $x \in I \Gamma G$. Thus $(I_{\lambda} \Gamma G) \subseteq I \Gamma G$. $\lambda \in \Lambda$

Now to prove that (ii), let *S* be a R_Γ-submodule of *G* and *A* be an ideal of a *Γ*-ring *R* such that $S \subseteq A \cap G$. There exists an ideal *C* of a *Γ*-ring *R* such that $S \subseteq C \cap G$. Let $B = A \cap C$. Clearly, $B \subset A$ and $S = A \cap G \cap C \cap G = (A \cap C) \cap G = B \cap G$, by (i). $B \subset A$ and $S = A \Gamma G \cap C \Gamma G = (A \cap C) \Gamma G = B \Gamma G$, by (i).

Conversely, suppose that (i) and (ii) hold. Let *S* be a R_Γ-submodule of *G* and let $S = \{I | I$ be an ideal of a *Γ*-ring *R* and $S \subseteq I \Gamma G$, let $I_{\lambda} (\lambda \in \Lambda)$ be any non-empty collection of ideals in *S*. By (i), $I_{\lambda} \in S$ $\bigcap_{\lambda \in \Lambda}$ $A_{\lambda} \in S$. By Zorn's Lemma, *S* has a minimal member *A*, then $S \subseteq A \Gamma G$. Suppose that $S \neq A \Gamma G$

, by (ii) there exists an ideal *B* with $B \subset A$ and $S \subseteq B \cap G$. In this case, $B \subset S$, contradicting the choice of *A*, and, thus, $S = A \Gamma G$. It follows that *G* is a multiplication R_Γ-module.

Lemma 3.8. Let *P* be a prime ideal of a *Γ*-ring *R* and *G* a R_Γ-faithful multiplication R_Γ-module. Let $h \in R$, $\alpha \in \Gamma$ and $u \in G$, satisfying that $h \alpha u \in P \Gamma G$. Then $h \in P$ or $\alpha u \in P \Gamma G$.

Proof

Suppose that $h \notin P$ and let $J = \{s \in R : s \gamma u \in P \Gamma G\}$. Suppose that $J \neq R$, then there exists a maximal ideal *Q* of a *Γ*-ring *R* such that $J \subseteq Q$. Clearly, $u \notin T_{Q}$ _{Γ}(*G*). By Theorem 3.6., *G* is *Q*cyclic, that is there exist $m \in G$, $q \in Q$ such that $(1-q)\Gamma G \subseteq R \Gamma m$. In particular, $(1-q)\alpha u = h \alpha m$ and $(1-q)\alpha h \beta u = p \alpha m$ for some $\beta \in \Gamma$, $p \in P$ and $s \in R$, thus $(h \gamma s - p) \gamma m = 0$; $\gamma \in \Gamma$. Now, $[(1-q)\Gamma a n n_{R_r}(G)] \Gamma G = 0$ implies $(1-q) \Gamma a n n_{R_r}(G) = 0$, because *G* is R_Γ-faithful, and, hence, $(1-q)\alpha h\beta s = (1-q)\alpha p \in P$. But $P \subseteq J \subseteq Q$ so that $s \in P$ and $(1-q)\alpha u = s \alpha m \in P \Gamma G$. Hence, $(1-q) \in J \subseteq Q$, which is a contradiction. Thus $J = R$ and $\alpha u \in P \Gamma G$.

Corollary 3.9. The following statements are equivalent for a proper R_Γ-submodule *S* of a multiplication R_Γ -module G :-

i.*S* is prime R_Γ -submodule of *G*.

ii. $ann_{R_{\Gamma}}(G/S)$ is a prime ideal of a *Γ*-ring *R*.

iii. $S = P \Gamma G$ for some prime ideal *P* of a *Γ*-ring *R* with $ann_{R_{\Gamma}}(G) \subseteq P$.

Proof. $(1 \rightarrow 2)$

Let *I* and *J* be ideals of a *Γ*-ring *R* such that $I \Gamma J \subseteq ann_{R_{\Gamma}}(G/_{S})$. Then, $G \Gamma I \Gamma J \subseteq S$. Since *S* is a prime R_{Γ} -submodule of *G*, $G \Gamma I \subseteq S$ or $J \subseteq ann_{R_{\Gamma}}(G / S)$. Therefore, $I \subseteq ann_{R_{\Gamma}}(G / S)$ or $J \subseteq ann_{R_{\Gamma}}(G/_{S})$.

$$
(2 \rightarrow 3)
$$

Let *S* be R_Γ-submodule of G. Then $S = I \Gamma G$ for some *I* is an ideal of a *Γ*-ring *R*, therefore $I \subseteq ann_{R_{\Gamma}}(G/S) \subseteq P$. Then, $S = I \Gamma G \subseteq P \Gamma G \subseteq S$. Consequently, $S = P \Gamma G$. $(3 \rightarrow 1)$

Suppose that *P* is a prime ideal *P* of *R* such that $ann_{R_{\Gamma}}(G) \subseteq P$. Let *K* be a R_Γ-submodule of *G* such that $K \not\subset S$ and let *I* be an ideal of a *Γ*-ring *R*, $I \not\subset ann_{R_{\Gamma}}(G/_{S})$. But $K \Gamma I \subseteq S$, where *K* is a R_Γsubmodule of *G*. Since *G* is multiplication R_Γ -module, then $G \Gamma J \subseteq K$ where *J* is an ideal of a *Γ*-ring *R*. Then $K \Gamma I = G \Gamma J \Gamma I$ and, so, $J \Gamma I \subseteq ann_{R_{\Gamma}}(G/G)$ by (ii), and $I \not\subset ann_{R_{\Gamma}}(G/G)$, $J \subseteq ann_{R_{\Gamma}}(G/_{S})$. Therefore $K = GTJ \subseteq S$. This is a contradiction.

Theorem 3.10. Let *G* be a multiplication R_Γ -module and let *S* be a proper R_Γ -submodule of *G*, then $G - rad_\Gamma(S) = \sqrt{A} \Gamma G$, where $A = ann_{R_\Gamma}(G /_S)$.

Proof. Let *P* denotes the collection of all prime ideals of a *Γ*-ring *R* such that $A \subseteq P$. If $B = \sqrt{A}$ then $B = \bigcap P$ and, hence by Theorem 3.7, $B \Gamma G = \bigcap P \Gamma G$. Let $G = P \Gamma G$ then $G - rad_{\Gamma}(S) \subseteq P \Gamma G$. eΛ *i i* $\in \! \Lambda$ If $G \neq P \Gamma G$ then $S = A \Gamma G \subseteq P \Gamma G$ implies $G - rad_{\Gamma}(S) \subseteq P \Gamma G$ by Corollary 3.9. It follows that $G - rad_{\Gamma}(S) \subseteq B \Gamma G$.

Conversely, suppose that *K* is a prime R_Γ -submodule of *G* containing *S*. By Corollary (3.9), there exists a prime ideal Q of R such that $A \subseteq Q$ and by Lemma (3.8) and hence $B \subseteq Q$, thus $B \Gamma G \subseteq K$ It follows that $B \Gamma G \subseteq G - rad_{\Gamma}(S)$ and, therefore, $B \Gamma G = G - rad_{\Gamma}(S)$.

Theorem 3.11. Let *G* be a multiplication R_Γ -module and *S* be a proper R_Γ -submodule of *G*, then (S) is that $B \rvert C \rvert \rvert C$, that $\lvert C \rvert C$ is the contract of $\lvert C \rvert C$.

(S) = { $u \in G$; $(u \Gamma)^n \rvert C \rvert S$ for some $n \ge 0$ }. *n* **Theorem 3.11.** Let G be a multiplication R_Γ -module ar
 $rad_\Gamma(S) = \{ u \in G : (u \Gamma)^n \subseteq S \text{ for some } n \ge 0 \}.$

Proof.

Proof.
Let $K = \left\{ u \in G : (u \Gamma)^n \subseteq S \text{ for some } n \ge 0 \right\}$, to show that K is R_Γ-submodule of *G*. Let $x, y \in K$ and *I*, *J* be ideals, respectively, of *x*, *y*. Then, $(x\Gamma)^s = (I\Gamma)^s$ and $(y\Gamma)^r = (J\Gamma)^r$ such that $(I\Gamma)^s \subseteq S$ and $(J \Gamma)^r \subseteq S$ for some $s, r > 0$. Let $k = \max\{s, r\}$, then and $(J \Gamma)^r \subseteq S$ for some $s, r > 0$. Let $k = \max\{s, r\}$, then $(x - y)^k = (I \Gamma - J \Gamma)^k = ((I - J) \Gamma G)^k$, that is $x - y \in K$. Also, for $x \in K$ and $h \in R$, we have $(x \Gamma r)^s \subseteq S$ since $(x \Gamma)^s \subseteq S$. Thus *K* is R_Γ-submodule of *G*. Suppose that $u \in K$ and *B* is presentation of *u*. Then $(u\Gamma)^n = B^n \Gamma G \subseteq S$ for some $n > 0$ and, hence by Theorem (3.10), we have presentation of u. Then $(u\Gamma)^n = B^n \Gamma G \subseteq S$ for some n:
 $G - rad_\Gamma((u\Gamma)^n) = \sqrt{B^n \Gamma G} = \sqrt{B} \Gamma G \subseteq G - rad_\Gamma(S)$.

 $G - rad_\Gamma((u\Gamma)^n) = \sqrt{B^n \Gamma G} = \sqrt{B \Gamma G} \subseteq G - rad_\Gamma(S)$.
Thus $G - rad_\Gamma((u\Gamma)^n) = \sqrt{B^n \Gamma G} = \sqrt{B \Gamma G} \subseteq G - rad_\Gamma(S)$, which this implies that $K \subseteq G - rad_{\Gamma}(S)$. Conversely, let $u \in G - rad_{\Gamma}(S) = \sqrt{I \Gamma}G$, where $I = ann_{R_{\Gamma}}(G/g)$. Then 1 *n* $i^{\boldsymbol{\mu}}i^{\boldsymbol{\mu}}i$ *i* $u = \sum h_i \alpha_i u$ $f_i = \sum_{i=1}^n h_i \alpha_i u_i$ for $h_i \in \sqrt{I}$, $\alpha_i \in \Gamma$ and $u_i \in G$. Thus, $h_i^{n_i}$ $h_i^{n_i} \in I$ for some $n_i > 0$. Thus, for a sufficiently large *n*, we have $(u\Gamma)^n \subseteq I \Gamma G = S$ and, hence, $G - rad_\Gamma(S) \subseteq K$. Therefore, $G - rad_{\Gamma}(S) = K$.

Lemma 3.12. Let *G* be a multiplication R_Γ -module, *S* be a R_Γ -submodule of *G*, and φ : $G \rightarrow G/S$ is a natural R_Γ-homomorphism. Then, every R_Γ-submodules S_1 and S_2 of *G*, $S_1 \Gamma S_2 \subseteq S$ if and only if $\overline{S_1} \Gamma \overline{S_2} = \overline{0}$.

Proof.

Let $S_1 = I_1 \Gamma G$, $S_2 = I_2 \Gamma G$ and $S = J \Gamma G$ for some ideals I_1, I_2 and *J* of a *Γ*-ring *R*. Obviously, *G* S is multiplication R_Γ-module. Then $\overline{S_1} \overline{\Gamma} \overline{S_2} = \overline{0}$ if and only if $(I_1 + J) \Gamma (I_2 + J) \Gamma \frac{G}{S} = S$, which is equivalent with $(I_1+J)\Gamma(I_2+J)\Gamma G \subseteq S$. But $S = J \Gamma G$, therefore $(I_1+J)\Gamma(I_2+J)\Gamma G \subseteq S$ if and only if $S_1 \Gamma S_2 = (I_1 \Gamma I_2) \Gamma G \subseteq S$.

Theorem 3.13. Let *G* be a multiplication R_Γ -module and *S* be a proper R_Γ -submodule of *G*. Then the following statements are equivalent:

- 6. *S* is semiprime RΓ-submodule of *G*.
- 7. $x \Gamma x \subseteq S$ implies $x \in S$ such that for all $x \in G$.
- 8. $rad_{\Gamma}(S) = S$.
- 9. *G* \int has no non-zero nilpotent.

10. $K_1 \Gamma K_2 \subseteq S$ implies $K_1 \cap K_2 \subseteq S$, for every K_1, K_2 are proper R_Γ-submodules of *G*. **Proof.** $(1 \rightarrow 2)$

Let $x \Gamma x \subseteq S$ for some $x \in G$. Let I be an ideal in R; $I \Gamma x = R \Gamma x$. Since S is semiprime R_Γsubmodule of *G*, then $(I\Gamma)^2 G \subseteq S$ and, hence, $x \in R \Gamma x = I \Gamma x \subseteq S$. Thus, $x \in S$. $(2 \rightarrow 3)$

It is clear that $S \subseteq rad_{\Gamma}(S)$. Let $m \in rad_{\Gamma}(S)$ by Theorem (3.11), then.

i. If *n* is even, $n = 2k$; $0 < k < n$, then $((m\Gamma)^k)^2 = (m\Gamma)^n \subseteq S$. Let $(m\Gamma)^k = m_0\Gamma$ then $m_0\Gamma \subseteq S$ and so $(m\Gamma)^k \subseteq S$, which is a contradiction.

ii. If *n* is odd, $n=2k+1$; $0 < k < n$, then $((m\Gamma)^{k+1})^2$ $(m\Gamma)^{k+1}$ ² = $(m\Gamma)^{n+1}$ \subseteq $(m\Gamma)^n$ \subseteq S . Let $\Gamma)^{k+1} = m_0 \Gamma$ $\mathbf{0}$ $(m\Gamma)^{k+1} = m_0 \Gamma$ then $m_0 \Gamma \subseteq S$ and, so, $(m\Gamma)^{k+1} \subseteq S$, which is a contradiction. Then, $n = 1$ and, thus, rad _{Γ} $(S) = S$.

 $(3 \rightarrow 4)$

Let $m + S \in G/S$. Suppose that $\frac{G}{S}$ S is nilpotent, then $(m+S)^n = S$ for some $n \ge 0$. By Lemma (3.12) , $m^n \subseteq S$, and by Theorem (3.11) , $m \in rad_\Gamma(S) = S$, then $m + S = S$, which is a contradiction. Thus, *G S* has no non zero nilpotent.

$$
(4 \rightarrow 5)
$$

Let $K_1 \Gamma K_2 \subseteq S$, for some K_1, K_2 are proper R_Γ-submodules of *G*. Let $w \in K_1 \cap K_2$, then $w \in K_1$ and $w \in K_2$ and, so, $w \Gamma w \subseteq K_1 \Gamma K_2 \subseteq S$ Then by Lemma (3.12), $(w + S)^2 = (w + S) \Gamma(w + S)$ $(w + S)^2 = (w + S) \Gamma(w + S) = S$. Since G S has no non zero nilpotent, hence $w + S = S$. Thus, $w \in S$.

 $(5 \rightarrow 1)$

Let $I \Gamma I \Gamma G \subseteq S$ for some *I* is an ideal in *Γ*-ring *R*, then $(I \Gamma G)(I \Gamma G) = (I \Gamma G)^2$ *I* ΓG $(I \Gamma G) = (I \Gamma G)^2 \subseteq S$ by (5), then $I \Gamma G \subseteq S$. Thus, *S* is semiprime R_Γ-submodule of *G*.

Definition 3.14. Let *G* be an R_Γ-module and *S* be a proper R_Γ-submodule of *G* that is called R_Γinjective envelope of *S* in *G*, denoted by **Definition 3.14.** Let G be an R_I-module and S be a proper R_I-s injective envelope of S in $E_{GT}(S) = \{h = g \gamma m : g \in R, m \in G \text{ such that } g \gamma g \gamma m \in S \}$

Proposition 3.15. Let *G* be an R_Γ-module and *S* be a proper R_Γ-submodule of *G*, then *S* is semiprime if and only if $E_{G\Gamma}(S) = S$.

Proof: Suppose that *S* is semiprime R_Γ -submodule of *G*, to show that $E_{G_\Gamma}(S) = S$.

Clearly, $S \subseteq E_{G\Gamma}(S)$. Let $h = g \gamma m \in E_{\Gamma G}(S)$, where $g \in R$, $m \in G$ such that $g \gamma g \gamma m \in S$. But *S* is semiprime R_Γ-submodule of *G*, then $h = g \gamma m \in S$, thus $E_{\Gamma G}(S) = S$.

Conversely let $g \in R$, $m \in G$ such that $g \gamma g \gamma m \in S$, then $g \gamma m \in E_{\Gamma G}(S) = S$. Thus, *S* is semiprime R_Γ -submodule of G [8-10].

Refrences

- **1.** Nobusawa, N. **1964**. "On a Generalization of the Ring Theory". *Osaka Journal of Mathematics*, **1**(1): 81-89.
- **2.** Ameri, R. and Sadeghi, R. **2010**. "Gamma Modules". *Ratio mathematica*, 2010. **20**(1): 127-147.
- **3.** Sengu, U.T.U. **2005**. "On Prime ΓM-Submodules of ΓM-Modules". *International journal of Pure and Applied Mathematics*, **19**: 123-128.
- **4.** Abbas, H.A. **2018**. "Projective Gamma Modules and Some Related Concepts", in department of Mathematics, Al Mustansiryah University: Baghdad, Iraq.
- **5.** Athab, E.A. **1996**. "Prime and Semiprime Modules", in Department of Mathematics ,College of Science, University of Baghdad: Baghdad, Iraq.
- **6.** Nobusawa, N. **1964**. On a generalization of the ring theory. *Osaka Journal of Mathematics*, **1**(1): 81-89.
- **7.** Abbas, M.S. **2018**. ΓR-Multiplication and ΓR-Projective Gamma Modules. *International Journal of Contemporary Mathematical Sciences*, **13**(2): 87-94. Nekooei, M.E.a.R., "On Generalizations of Prime Ideals". *Communications in Algebra*, 2012. **40** (4).
- **8.** Estaji, A.A., Khorasani, A.A.S. and Baghdari, S. **2014**. "On Multiplication Γ-Modules". *Ratio Mathematica*, 2014. **26**: 21-38.
- **9.** Al-Mothafar, N.S. and Athab, I.A**. 2017**. "J- Semiprime Submodules". *International Journal of Science and Research* (IJSR), July 2017. **6**(7).
- **10.** Kasch, F. **1982**. "*Modules and Rings*", London: Academic Press I ns