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Abstract

In this paper, a new class of harmonic univalent functions was defined by the
differential operator. We obtained some geometric properties, such as the coefficient
estimates, convex combination, extreme points, and convolution (Hadamard
product), which are required.
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1. Introduction
A complex - valued continuous harmonic function f = u + iv is harmonic in D whether both u and
v are real harmonic, at any simply connected B < D which may be written as f = h +g , where h and
g are analytic in B .We call "h” analytic part and "g" co-analytic part of f . Clunie and Sheil-Small [1]
noted that the necessary and sufficient condition for the harmonic functions f = h +g a to be locally
univalent and sense-preserving in B is that |h'(z)| < |g'(2)| (z € B).

Let Sy denotes the class of harmonic functions f = h + g , which are univalent and sense-
preserving in the unitdisk Q ={z € C: |z| =1} wherever hand gare analyticin B for which f
0)=h (@)= f,-1=0. And for f = h + g € Sy, we may express the analytic functions h and g as
follows:

h(z)=z+Xh=2aw 2z, 9(@)= Lw=1bwz”, |b|<1. (1)

Notice the Sy decrease of each normalization functions which are analytic univalent, whether the
co-analytic part of f is zero.

And, we symbolize by S 7 the subclass of Sy consisting of all the functions f,(z) = h(z) + gx(2)
, Wherever h and g are given by
h(z) = z- Xh=2 lawl 2%, g(2) = (=DF X1 Iyl 2%, |1l <1. (2

In 1984, Clunie and Sheil-Small [1] investigated the class Sy as well as its geometric subclass and
obtained some coefficient bounds. Many authors studied the family of harmonic univalent function
[2-7].

In 2016, Makinde [8] introduced the F* differential operator as follows
F¥f(z) = 2+ Eq=acwi 2", ©)
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wherever
Cuwk= |W”f!k“ and F¥f(2) =z [z®~D + 3o cpr 2V |k € Ny = N U {0},
and

FOt@)=1@), FIf @ =2+ Xh=acuw1 2"
Then, this implies that F* f (z) is identically the same as f (z) where k = 0, and it reduces the first
differential coefficient of the Salagean differential operator where k = 1.
At f=h+ g, define by (1), Sharma and Ravindar [9] considered the differential operator which
is defined by Equation (3) of fas

Fff@)= F*h @+ (-D*Fkg(2),keN,=NuU{0},zeC, (4)
wherever
F¥h @) =2+ Tiocs Cunn 2%, F* g Q) =2+ Bisc by 2%, and Cupe = 0

In this paper, motivated by a previous study [9], a new class, My(K, @ ,y) k € Ny = N U {0},
0<y <1, 0<a<1,of harmonic univalent functionsin Q={z € C: |z| = 1} is presented and
studied. Moreover, coefficient conditions, distortion bounds, convex combination, extreme points, and
radii of convexity for this class are obtained.

2. Main Results

2.1. The Class My (K, a,v)

Definition 1 ;- Let f, =h+ g, be a harmonic function, where h (z) and g (z) are given by (1).

Then f(z) € My(K, a,v) and it satisfies
. ,
Re< Z(F +1f(Z)) ) > a (5)

(1-y)z+y (FFf(2)
wherek € Ng=NU{0},0<y<1,0<a<1,z€Qand F*f(z) defined by (4)
Let Mz (K, a,y) be the subclass of My (K, a,y) , where M 7 (K, @,y) = Sz N My (K, a, 7).
Remark 1. The class Mz (K, a,v) reduces to the class Bz (K, a )[9] where y = 1.
Then , we give enough status for f in My(K, a,v),
Theorem (1) : Let f(z) =h(z) + g(z) wherever h(z) and g(z) were define by (1) . If

Z%:Z (p [W;k;a;Y] |aW| + Z$=1 p [W,k,a’Y] |bW| < 1’ (6)
wherever
o W,k a,y) = L= ) i
o W, k,a,y) =N (Vﬁ: @y) Cwk

(keNy=NUf0},0<y<1,0<a<1,wEeN)
Consequently, f(z) is harmonic, univalent and sense-preserving in Q and f (z) € My (K, a,v).
Proof : We begin to prove that f (z) is harmonic and univalent in Q, let z; z, € Q for |Z1,| <

|z,| < 1.1f we have z; # z, , consequently
fz)~f (22 ) | 9 @) - g (2 Sto=1 Ibwl (21 —23) 1. | Zio=s wibwl
h(z1)-h(zz)| — h (z1) — h(z3) (z1= 22)=Yp=1lawl (2V-2y) | — 1-Yn=2 W lay|

(Iw=k| w=ay) C
. Tom e by |
- 1 _ oy (w—=klw +ay) CW"I |
w=2 o Ay

hence f isan univalent function in Q.
Observe that f is sense-preserving in Q. This is because

K ()| = 1- zwlawl lz| W"1>1-— Zwlawl >
w=2 w=2

(Iw=k|w=ay) C
1- X, Sk g |

w—k|lw+ay) C
> ( I ¥) Cwk b, >
1—a
w=1 ,
Yow=1 wlby | = X5_ w byl 2V = |g'(2)].
By the condition of Equation (5), we prove that if Equation (6) holds, consequently
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Re (1-y)z+y (Fkf(2) B(2)

Observe that
A@) =z (F*1 f (2))

and
B@)=(1-y)z+ vy (F*f(2)
Using Re (V) > aifandonlyif [V — (1 +a)| < |V + (1 —a)], itis enough to show that
|[A(z)— 1+ a)B(2)|—-1A(=)+ (1 —-a)B(z)| <O0.
We compensate for A(z) and B(z) in |A (z) — (1 + a)B(z)|, then we get
|A(2) — (1+a)B(2)| =
[2(F* f @) =+l (1—y)z+ v (F fF ()| =
[Z + 233:2 WCy(k+1)Aw zV + (_1)k+1 Z;/“i/:lwcw(k+1)bwz_w ]
~(A+a) [A=Pz+yz+y Ti—zCwwaw 2¥ +y (DM T5_ weyw o by 2 ]| 6)

k+1 '
e ). (an

< alz| + w=2 [y + @) = lw =kl w)] |Culayllz[" +Zh=1[(y (1 + a)) + |w —
kI w1l Cyiclby11Z1™
Now, we compensate for A(z) and B(z) in |A (z) + (1 — a)B(z)|, then we get
|4 (2) + (1 -a)B(2)| =

|2(F* f @) + A=l (1= y)z+ vy (FKF@)]|=

[Z + Zﬁ:z W Cw(k+1)Aw zV + (_1)k+1 Z?ffz:lwcw(k+1)bw zv ] +
9)
A-a)[A-pYz+yz+y Xy= Cw(k)Aw z% + V(_l)k Yw=1 Cw(k)bwz_W ]

2 (2-a)lz| - Yw=2lly(@—1) — w = klw]| Cylayllz[" = Xh=l[Ilw — klw —y(1 —
a)] |CyilbyllZ™ .
Then we compensate for Equations (8) and (9), and we get

[A(z)— A+a)B @) -1A(@)+ (1-a)B(2) |
= alz| + Xh=2l[(y (1 + @) — |w — k| w)] |Cyilawllz]"
+2w=1 [[(y(X + @) + lw — k| w)]| Cyclbw | 12]™
+(a—2)|zl + Tn=ally(@ — 1) — lw — kIw]| Cyiclay||2¥
+ Yw=1lllw — klw —y(1 — a)] |Gy | by IZ[™
=2 Yz [ Iw—klw = ay] [Cyilay| +235-1 | [lw = klw + ay] |Cuilby| —2(1—a) <0
then we get

D HIw = klw = ar] [Cuilawl + ) [[Iw = klw +av] [Cue 15w
n=2 w=1

<(1-a).

This completes the proof of Theorem 1.

The function are harmonic univalent
1

t@= 2+ iz sy Xw 2% + Doc iy e (10)
wherever k € Ny and Y-, |Xw!| +2w=1 Y| = 1, indicating that the coefficient bound define by
(6) is true. Because
Z;.;:Z (p(W' k' a, Y)lawl + Z$=1 p (W, k, a, Y )lbwl < 1 )

2(\2:2 4 (W' k' a, Y) m |XW| +Z(\)A';=1 $ (W, k: a:Y)
= Z$=2 |XW| +Z<\)A.;=l |YW| =1.
Here, we need to show that the condition of (6) is as well necessary for functions f, = h + g,
wherever h and g,,are define by (6).
Theorem (2). Let f, = h+ g be given by (6). Consequently, f,(z) € Mz (K, a,y) if and only if
the coefficient in condition of (6) holds .

1
o wkaY) Y
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Proof:- We want to prove the "only if " part of the theorem since Mz(K,a,y) € M z(K, a,y).
Consequently, by (5), we get

re [z (F 1 @)
(1-y)z+y (F¥f (2)
Or, equally

[z+ 3w=2 W Cw (k1) Ow ZV+(-1)2k+ $0_w Cw(k+1)bwz"]
—a [ (1-Y)z+YZ+Y T2 Cw(iyaw 2V +¥ (-1 T _1 cwiobw 27 ]
[(A=V)z+Yz+Y Ygy=z Cwik)aw 2 +Y(=1)2K T%_ cyybw 2V ]

Re

>0 (11)

We note that the above-required of (11) must be for each z in Q. If we choose z be real and z
— 17 ,then we have
(1_5{)_2%:2 (lw=k|lw=ay)Cyilaw|+ 2@:1(|W_klw+ay) Cwilbwl
1-y 3%, Cwklawl 21+ ¥ T2_, Cwklbwl z¥W™1 z0 (12)

Whether the condition (6) does not hold then the numerator in (1.2) is negative for r sufficiently
close to 1. Thus, there exists z, = ry in (0,1) for which the quotient in Equation (12) is negative, and

this contrasts with f, € Mz (K, a, y).
2.2 Extreme points

Herein, we determine the extreme points of the closed convex hull of Mz (K, @,y ) given by class
MK, a,y).
Theorem (3). Suppose that f; is defined by (1.2). Consequently, f;, € M (K, a,y ) if and only if
fk(z) = Z:ﬁ:l (Xw hw (Z) + Yw gkw (Z))
wherever

1

M@ =2 h(D=2- (s
__ _1\k 1 W =

Gy D=2+ (D (cms) 2%, W= 12,0

X, =0Y,>0andX, =1—-Yo_, (X, +Y%,)=0

In particular, the extreme points of Mgz (K, a,y ) are {h,, }, consequently { g} .

Proof. Let

fk(z) = Z:;:l (thw +ngkw)
o0 9] 1 [°e) 1 YV W

=Yt [Xwhw + Y gk, ]| 2- T2 WXWZW+ (—1)k2w=1meZW'

) 2L W=23.....

— 5 _ o 1 w _1)k-1yw 1 w
z n=2 y(wkaY) Xwz" + =1 ZW=1 pWwkaY) Ywz
Therefore

Zw=2 @ (W, k,a,Y)|ay| + X% =1 o W, k,a,Y)|by|

= Tz 0wk, @, Y) (o X ) + Tl 00k @ V) (Simays Yo) =
= Zw=2 [Xwl+2Zp=1 V|l =1-X; <1.

Hence f, € Mg (K, a,y),

Conversely, whether f, € Az (K, «,y ),thus

Set X, = ow,k,a,Y)|a,|,(w=23,..)and¥, = pw ka,Y)(w=12..)
X1 =1= Y02 Xw —Zw=1 Yw .

The required representation is obtained as

fu @ =2z- Tilayl 2V + (=" X5_ilby | 7Y

=Z- Xw=2 —(p(w,llc,a,Y) Xyz¥ + (=1)k1 Z$=1—JO(W;¢Y>W

=2z = Yw=2lz = by (@] Xy + Xi=1[z — g, (D]Yw

=[1- Xh=2 X — Zw=1 Yo lzt 2%;2 hy (2)] X, 'to Yw=1 Ik, @)Yy

= Z Xwhy + Z ngkw
w=2 w=1
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2.3 Convex Combination
Now, we want to show that the class Mz (K, a,y ) is closed under the convex combination of its

members. Suppose that the function f'.; (z) isgiven,where i=1,2,..., m, by

fri @) =2z= X5 -2 |awi| 2¥ + (=1* Zi-i|bw| 7% (13)
Theorem (4): Suppose that f;; (2) is given by (13) in Mz(K,a,y) , foreach i=12,...m.
Therefore c;(z) is given by
@ =XiZ1ti fri(@. 0t <1
and in Mg(K, a,y),wherever 2, t; =1
Proof: By the definition of c;(z), we get

¢i(2)= z— Toa(Titati awi|) 2™ + (—DF Tooa(TE b |bwy|) 2%
Furthermore, because fi; (z) in Mg (K, a,y),per i=1,.2,..., m, then by Theorem 2, we get
Z?COZZ (p(W, k' a, Y) (Z?:l ti_ |an,i |) + ZEI)(O=1 JO(W; k; aY ) (Z?:l ti. |bw,i|)
chp:l ti. (ZCI)(O=2 (p(W, k,a, Y) |aw,i| + 2?6021 JQ(W, k, a;Y)|bW,i| ) < ZCL')O=1 tl'. =1
This completes the proof of the theorem 4.
2.4: Convolution (Hadamard product) Property

Herein, we need to prove that Mgz (K, a,y ) is closed under convolution (Hadamard product)
property. The involution of two harmonic functions

| fi @)=z~ Eh-alayl 2 + (=) Xi_alby|Z% . (14)
an
Ow (2) =2 = Tioallyl 2% + (=1 T5-1l4,1 2" (15)
is given as
(fw* 0D = (@ *0,,(2) = z— ioalawlyl z¥ + (—1D* Ti_qlbyAwl 2% (16)

By (12) - (14), we prove the following theorem
Theorem (5). Let f (z) € Mg(K,a,y) and 6, € Mz (K, u,y). Then
fw* 0y € Mg (K a,y)c Mg (K,u,y). Where 0 <u <a <1,k €Ny, =NuU {0}
Proof: Suppose that
fu @)=z = Thoolayl 2¥ + (=1DF Xi_ilby | 7%
be in the class M7 (K, a,y ) and
Ow (2) =2 = Y=ol | 2% + (=DF Xi_ilAy|Z%
bein Mg(K,u,v) .
Therefore, the convolution f,, = 6,, is defined by (16). We need to prove that the coefficients of
fw * 0, satisfy the condition of Theorem 1.
For 6,, € Mz ( K ,u,y), we note that |L,| <1and |A,| <1. Now consider the convolution
functions f,, * 6,, as follows
ZCI)C():Z (p(W, k, a, Y)laW“Lwl + ZCI)CO=1 JO(W, k! (Z,Y )lbwl |Awlﬁ
<TE0 @ Wk, Vlay| +Ziey oW,k a, Y )by | <1,

Because 0 <u <a <1l,andf,, € Mg(K, a,y) therefore f, * 6, € Mg (K, a,y) € Mz (
K,wy).
2.5 Integral Operator

Herein , we check the closure quality of the class Az (K, a,y) by circular Bernardi-Libera-
Livingston integral T, (f) [10, 11] that is given by

T () =50 J et f(Ddtu > —1 (17)
Theorem 6. Suppose that f,, € Mz(K, @,y ). Therefore

Ty (fi(2)) € Mg (K, a,vy)
Proof. By the definition of T, (f,(z)) defined by (17) , as follows :

+1 (2 ,4— © © —
Tu(fie(2) =55 [ 472t = Sip=ala | €Y + (=1)% Ty | T%) dt,
© +1 © +1 _
=2 = Yhea—layl 2¥ + (=% Thoi == 1by, | 7Y

= z— Yn=2Dy 2% + (1" X511y, 2V
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Wherever
u+1 u+1
w = mlawl and L, = mlbwl
Therefore
u+1 u+1
Z?(OZZ (p(wl k' a'Y)m Iawl +Z?(O=1p(wi k; (Z,Y ) m |bW| )
o0 o0

<> pwkaVlayl+ Y pwkaYlbl <1
w=2 w=1

from Theorem 2.
Hence, we have T, (fx(2)) € Mz (K, a,y).
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