Influence of Laser Energy and Annealing on Structural and Optical Properties of CdS Films Prepared by Laser Induced Plasma

Wadaa S. Hussein1, Ala' Fadhil Ahmed2*, Kadhim A. Aadin1
1Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq
2Department of Astronomy and Space, College of Science, University of Baghdad, Baghdad, Iraq

Received: 4/8/ 2019 Accepted: 22/10/2019

Abstract

The current study was achieved on the effect of laser energy and annealing temperature on x-ray structural and optical properties, such as the UV-Visible spectra of cadmium sulfide (CdS). The films were prepared using pulsed laser deposition technique (PLD) under vacuum at a pressure of 2.5×10² mbar with different laser energies (500-800 mJ) and annealing at a temperature of 473K. X-ray diffraction patterns and intensity curves for the CdS showed that the formation of CdS multi-crystallization films at all laser energies. The optical properties of the films were studied and the variables affecting them were investigated in relation to laser energy and changes in temperature.

Keywords: Pulsed laser deposition (PLD), CdS thin films, Structural and optical properties.

Introduction

Cadmium Sulfide is classified within the composite semiconductors II-VI, which possess an energy gap estimated at 2.42eV at R.T [1]. CdS is considered to be one of the materials used in many applications such as solar cells, optical reagents and optoelectronic devices [2, 3]. In addition, the n type CdS is utilized as a window layer in the non-homogeneous solar cells [4]. There are several techniques that can be used for the purpose of sedimentation, including chemical bath deposition.
(CBD), magnetron sputtering (MS), chemical vapor deposition (CVD), and pulsed laser deposition (PLD) [5-7]. Among the techniques listed above, PLD was used for the deposition CdS films. Thin film growth is achieved by directing the laser on the target (pellet), which leads to the evaporation of the material and its growth on the substrate. The laser used for the growth method of films is Nd: YAG laser with a wavelength of 1064 nm. The evaporation process depends on laser parameters such as laser energies and pulses duration [8]. X-ray diffraction (XRD) was used to calculate the crystalline structure and grain size of the CdS films prepared by PLD techniques. The grain size (D) was calculated by using Scherrer's equation [9].

\[
D = \frac{k\lambda}{\beta \cos \theta}
\]

(1)

Where \(k \) is a constant taken to be 0.94, \(\lambda \) is the wavelength of X-ray 1.54Å, \(\beta \) is full width at half maximum (FWHM), and \(\theta \) is Bragg’s angle [10].

The optical properties were studied using a double beam UV-Vis spectrophotometer (Metertech SP8001, Taiwan). The absorption spectra of the prepared NPs at different conditions were examined within the spectral range of 100 -1100. The optical band gap was estimated graphically by applying Tauc’s relation for direct transition [11].

\[
(\alpha h\nu)^{1/n} = A(h\nu - E_g)
\]

(2)

where \(\alpha \) is the absorption coefficient, \(A \) is constant, \(h \) is plank’s constant, \(\nu \) is the incident photon frequency, \(E_g \) is optical energy gap, and \(n \) is a constant depending on the nature of transition.

Experimental

In this work, the hydraulic piston was used for the purpose of preparing a target of cadmium sulfide powder, where 3 g of the material was pressed at a pressure of 6 ton for 10 minutes. Also, pulse laser deposition technique (PLD) was used to prepare CdS films where the films were prepared using different laser energies (500 to 800 mJ), with 200 pulses per energy under a pressure of \(P = 2.5 \times 10^{-2} \) mbar using the Varian DS219 Rotary pump. Nd: YAG laser with a fundamental wavelength of 1064nm and frequency of 6 Hz was used as a source of PLD. The laser was shed on the target at an angle of 45° for the purpose of depositing the material on the substrate which was placed on a distance of 2.5 cm from the target, as shown in the Figure-1. Finally, thin films were treated thermally at a temperature of 473 K for one hour using an electric oven.

![Figure 1](image)

Figure 1-Schematic diagram of pulses laser deposition (PLD) experiment

Results and Discussion

Figure-2 shows the XRD patterns for the CdS powder, from which it can be deduced that CdS has a cubic structure with diffraction peaks at crystalline 111, 200, 311 and 331 corresponding to 2θ of 26.5744, 43.7370, 52.0415 and 70.8651, respectively. The values are in good agreement with the standard values of the reported data (JCPDS No. 96-900-8840). Table-1 shows the structural parameters for the CdS powder which include the Bragg angle (2θ), full width half maxima (FWHM), experimental inter-plane spacing, and crystalline size as calculated by Scherrer’s equation.
Table 1-XRD for the CdS powder in comparison with the standard

<table>
<thead>
<tr>
<th>2θ (Deg.)</th>
<th>FWHM (Deg.)</th>
<th>d_{hkl} Exp.(Å)</th>
<th>G.S (nm)</th>
<th>d_{hkl} Std.(Å)</th>
<th>Phase</th>
<th>hkl</th>
<th>card No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.7370</td>
<td>1.1765</td>
<td>2.0680</td>
<td>7.3</td>
<td>2.0570</td>
<td>Cub.CdS (220)</td>
<td>96-900-8840</td>
<td></td>
</tr>
<tr>
<td>52.0415</td>
<td>1.3841</td>
<td>1.7559</td>
<td>6.4</td>
<td>1.7542</td>
<td>Cub.CdS (311)</td>
<td>96-900-8840</td>
<td></td>
</tr>
<tr>
<td>70.8651</td>
<td>1.7301</td>
<td>1.3287</td>
<td>5.6</td>
<td>1.3347</td>
<td>Cub.CdS (331)</td>
<td>96-900-8840</td>
<td></td>
</tr>
</tbody>
</table>

Figures-(3, 4) show the effects of laser energy on the structural properties of the CdS films. XRD results show that all the spectra have a polycrystalline structure and that the main phase of the thin films is a hexagonal phase. The results also demonstrated a continuous increase in intensity with increasing laser energy from 500 to 800 mJ, which was also associated with increased grain size. Also the effect of temperature change was evident as the grain size was increased after annealing, while the FWHM was decreased with annealing. This implies that crystalline films have been improved due to system regularity and reduced defects.

Figure 2-X-ray pattern of CdS Powder.

Figure 3-X-ray diffraction patterns of CdS films at R.T.
Figure 4-X-ray diffraction patterns of CdS films at 473 K.

From Figures-(5, 6), we can notice the decrease in absorbance with increasing the λ for all samples. The absorbance spectral characteristics are affected by increasing laser energy, as observed with the absorbance intensity which was increased with increasing laser energy. The absorption peak intensity values of the samples deposited with annealing temperature of 473 K were lower than the values than those for the samples deposited at R.T.

Figure 5-Absorbance spectrum of CdS films prepared by PLD at different laser energy

Figure 6-Absorbance spectrum of CdS films prepared by PLD at different laser energy
Figures (7, 8) show the energy gap of CdS thin films deposition by PLD at R.T and annealing at 473K. From this figures, it can be observed that the energy gap value was decreased with increasing laser energies. The effect of temperature change was evident in two cases, where the energy gap values were increased by increasing temperatures, the values show in the Table-2.

Table 2-The values of energy gap of CdS thin films

<table>
<thead>
<tr>
<th>E(mJ)</th>
<th>Eg(eV)</th>
<th>Eg(eV) at T= 473 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>2.8</td>
<td>2.95</td>
</tr>
<tr>
<td>700</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>800</td>
<td>2.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Figure 7-Direct transition of CdS prepared by PLD at different laser energies.

Figure 8-Direct transition of CdS prepared by PLD at different laser energies.

Conclusions
CdS thin films were deposited on a glass substrate using PLD technology with different laser energies under vacuum, where the films were heat treated at 437 k for one hour. Based on the results, it can be seen that the structure of CdS films is a polycrystalline structure and the preferred
orientations are of 101 levels for all films. The optical properties of films exhibited a strong dependence on the ambient conditions, as for the increase in absorption with increasing laser energy. While, decreasing the value of the energy gap under the same conditions of growth temperature played an important role in changing the crystal structural and optical properties of CdS thin films. The values of energy gap for the annealed films were greater than those for the films deposited at room temperature.

References