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Abstract  

  Recently, bitter leaf (Vernonia amygdalina) was found to prevent petroleum – 

induced toxicities on the kidney whereas it potentiates the toxic effect of petroleum 

adulterated diet on the testes of animal model. This differential action has elicited 

further inquest into the role of bitter leaf extract in other organs in the midst of 

petroleum affronts. The hepatoprotective ability of Vernonia amygdalina methanol 

extract (VAME) is the objective of this investigation.  Administration of VAME 

significantly (P <0.05) reduced serum liver function indices relative to the control. 

In addition, the activities of liver oxidative enzymes, energy metabolizing enzymes 

and oxidative stress indices altered by crude oil adulterated diet were significantly (P 

< 0.05) reversed near control values. Similarly, VAME injection restored the 

histopathological indices caused by crude oil adulterated diet. It is obvious that all 

the liver damage indices induced by crude oil contaminated feed were prevented by 

the intake of VAME, indicating the hepatoprotective ability of bitter leaf  
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1. Introduction 

It is an unhidden truth that petroleum- related resource is a major source of income in some countries 

of the world. However, as it generates revenue for the country, its deleterious effect to the unbundling 

of our environment continues to be a serious case for worry. Release of environmental petroleum-

related substances occurs in several ways and manners that range from industrial oil spills in pipelines 

and tankers, mechanic workshops and even in some cases domestic accidents [1-4]. 

     Today, man stands a greater risk of being consciously or unconsciously exposed to several 

petroleum products and its allied constituent chemicals [5,6].Several compounds related to petroleum 

are broken down to free radicals or highly activated metabolites that often results in several illnesses 

such as cancer, neurodegenerative and metabolic syndromes[7-9] . The noxiousness of environmental 

petroleum is highly documented as numerous reports also indicate that food borne allied exposure of 

petroleum to man remains a serious challenge that must be undaunted [10, 11]. Although several plant- 

related materials such as Monodora myristica [12]; Moringa oleifera [13]; Honey [14]; Palm oil 

[15,16] have been explored for controlling of food borne petroleum toxic consequences, there remains 

scarcity of reports on the beneficial role of bitter leaf on ameliorating food borne petroleum 

noxiousness in the liver.  

     With the understanding that the liver is the primary site of xenobiotic metabolism [17], it is 

justifiable to state that it will be most vulnerable to the toxic effects of food borne petroleum toxicity 

in man. Earlier, the beneficial role of Vernonia amygdalina had been published on kidney and 

haematological indices of rat [18, 19]. This report presents the ameliorative role of Vernonia 
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amygdalina methanolic extract (VAME) on petroleum contaminated diet induced hepatocellular 

changes in rats. 

2. Materials and Methods 
     The bitter leaf (Vernonia amygdalina) was obtained from a farm at Abraka, treated and the 

methanolic extract was prepared and administered( at a concentration of 100 mg/ pbwt and 200 

mg/pbwt)  as reported previously [18].This research is a continuation to a previous study. Therefore, 

animal mobilisation and experimental design followed a previously published experimental design 

[18] .The feed composition and feeding regimen were published earlier [18].  

2.1 Sample Collection and treatment 
     The male (Rattus norvegicus) rats after treatment period were sacrificed by cervical decapitation 

under chloroform sedation on the 31
st
 day after an overnight fasting. The Blood and liver samples were 

collected and prepared for serum and tissue homogenate analysis as previously reported [18] 

2.2 Biochemical Analysis 
     Determination of serum AST, ALT, ALP, ACP, Glucose, Total Protein, Albumin, Globin and Lipid 

Profile (Cholesterol, TAG, HDL and LDL) were done using commercial Randox diagnostic kits. 

While Glucose-6- phosphate dehydrogenase activity was determined following the method of Henry 

[21] All other reagents used for biochemical assay were of analytical grades and employed the use of 

the experimental procedures such as Gutteridge and Wilkins [20] method for lipid peroxidation 

(MDA) ,Omarov et al. [22], D'Errico et al [23] and McEwen [24]   for aldehyde oxidase (AO) , 

sulphite oxidase; xanthine oxidase (XO) and monoamine oxidase (MO) activities respectively. The 

level of reduced glutathione in the liver was determined using the procedures of Ellman [25] while 

vitamin C estimation employed the method reported previously [26]. The following methods were 

adopted during the determination of enzymatic antioxidants activities , which were Misra and 

Fredorich [27], Cohen et al. [28] Habig et al. [29], Khan et al [30]  for superoxide dismutase (SOD), 

Catalase ( CAT),  gluthatione-s-transferases (GSTs) and  glutathione peroxidase (GPx) activities, 

respectively. 

2.3 Histological Analysis 
     The examination of the liver tissues followed the method of Al-Attar et al.[31] which has been 

described in detail by Achuba [18]  

2.4 Statistical Analysis 
      The Statistical Package for Social Sciences (SPSS 17) was employed to perform analysis of 

variance (ANOVA) and Post hoc examination (multiple groups comparisons ) performed with 

Bonferroni at p<0.05  significance point. 

Results and Discussion 
     The continual search for antidote for petroleum toxicity remains an onus task for scientists as 

people living in oil producing areas of the world contend with several illnesses arising from petroleum 

pollution and cross contaminations [32, 33]. Evidences from this present study indicates that the 

consumption of petroleum contaminated diets elevated the various liver function enzymes in the serum 

(AST, ALT, ACP, ALP) while reducing serum glucose, total protein, albumin and globulin levels 

compared to rats that did not consume petroleum tainted diets (Table-1). 
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Table 1-Effect of VAME on serumBiochemical liver function parameters of rats fed petroleum 

contaminated diet  

 A B C D E F 

AST(UL-1) 58.98±0.59a 53.47±1.03ab 56.05±0.57b 69.94±1.61c 54.17±10.35c 57.09±7.76d 

ALT(UL-1) 41.62±0.94a 40.97±1.48b 44.99±1.21b 59.33±3.92c 43.70±2.89d 48.09±4.65d 

ACP(UL-1) 4.48±0.36a 5.87±0.56b 5.07±0.88c 11.88±0.61d 7.99±1.62e 7.82±1.27f 

ALP(UL-1) 

Glucose(gdl-1) 

TotalProtein             

(gdl-1) 

Albumin(gdl-

1) 

 

Globin(gdl-1) 

112.63±0.83a 

137.50±1.29a 

6.30±0.37ac 

 

3.55±0.13a 

 

2.70±0.08a 

 

 

126.77±2.61b 

133.00±0.82a 

6.45±0.13ac 

 

3.70±0.14a 

 

2.55±0.34a 

130.94±1.00c 

132.25±1.71b 

6.25±0.13ac 

 

3.18±0.13b 

 

3.00±0.18ab 

149.15±5.03d 

121.50±5.20b 

4.70.0.18ac 

 

2.50±0.22ab 

 

1.40±0.37b 

 

142.01±5.51e 

123.67±0.57b 

5.77±0.15b 

 

3.10±0.10b 

 

2.77±0.15ab 

146.55±5.47f 

119.50±1.29b 

5.65±0.33b 

 

2.66±0.13c 

 

2.93±0.22ab 

     Group A=Feed; Group B=Feed+100 mg kg−
1
 body weight of VAME; Group C=Feed+200 mg 

kg−
1
 body weight of VAME; Group D= Tainted feed; Group E= Tainted feed +100 mg kg−

1
 body 

weight of VAME; Group F= Tainted feed +200 mg kg−1 body weight of VAME.  

All data stated as Mean± SEM. Values with different superscript in each column designates a 

significant difference 

     There is no doubt that petroleum contamination has been severely implicated in the up regulation of 

liver function enzymes such as the tansferases and phosphatases [14, 34]. The observed up-regulation 

of the liver enzymes (transferases and phosphatases) and the concomitant reduction in serum protein 

levels may be indicative of critical threats to the liver integrity and is similar to the once reported by 

Okpoghono et al.[35], Achuba and Ogwumu [16] who reported on the consumption of petroleum 

contaminated cat fish meal and petroleum tainted diet an upsurge in these enzymes and reduction in 

the serum proteins. Treatment with both doses (100mKg
-1

 and 200mgKg
-1

) body weight of Bitter leaf 

methanolic extract was observed to mitigate the liver enzymes while modulating the total protein, 

albumin and serum glucose levels. This observation is consequential with reports made in previous 

studies as to the ability of plant materials to mitigate the upsurge in serum liver enzymes. It is 

important to note that the high phytonutrients and phytochemicals inherent in plant materials have 

been previously reported to contribute to the eventual mitigation and reversal of petroleum induced 

upsurge in AST, ALT, ACP, ALP as reported by Achuba et al. [13], Okpoghono et al.,[35] and 

Achuba and Ogwumu [16].   

     Serum lipid profiling has been identified as a very significant marker for possible cardiovascular 

disorders [13, 36]. Likewise serum lipid profile has also been used as a significant marker for the 

integrity of liver cells [35]. The observed drop in total cholesterol, triglyceride, HDL-cholesterol and 

concomitant rise in LDL-cholesterol in rats consuming only petroleum contaminated diets and rats 

treated with both doses of VAME after consumption of petroleum tainted diets compared to normal 

control (Table-2) is in line with the report of Achuba and Otuya [37] who reported the ability of 

antioxidant vitamins to modulate positively the lipid panel of rats fed with petroleum tainted diet.  
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Table 2-Effect of VAME on serum lipid profile of rats fed petroleum contaminated diets 

 A B C D E F 

Cholesterol(mg

/dl) 
104.25±0.96a 101.50±1.29b 101.50±1.29b 115.25±0.96a 111.00±1.00c 

105.00±0.82d 

 

 

TAG(mg/dl) 130.50±1.91a 123.00±2.58b 108.25±2.06c 126.25±2.36b 127.00±1.00c 
124.25±1.25d 

 

 

HDL(mg/dl) 18.25±0.96a 13.00±0.82bc 12.75±1.25b 14.00±0.82ac 18.00±1.00ac 15.50±1.29c 

 

LDL(mg/dl) 40.03±24.96a 33.33±0.73b 35.05±1.10b 43.50±0.51b 36.17±2.86b 
37.27±1.96b 

 

 

 

Group A=Feed; Group B=Feed+100 mg kg−
1
 body weight of VAME; Group C=Feed+200 mg kg−

1
 

body weight of VAME; Group D= Tainted feed; Group E= Tainted feed +100 mg kg−
1
 body weight of 

VAME; Group F= Tainted feed +200 mg kg−1 body weight of VAME.  

     All data stated as Mean± SEM. Values with different superscript in each column designates a 

significant difference 

     Several plant materials have been reported to contribute to eventual reversal of such trends near 

control values [13, 38, 39]. The trend in the observations made in this study further gives credence to 

an earlier implication of extracts of bitter leaf on lipid profiles [40]. 

     Another significant observation in this study was the fluctuations in key enzymes of energy 

metabolism (Figure-1). The observed drop in glucose 6 phosphate dehydrogenase and increased lactate 

dehydrogenase activities in rats fed only petroleum contaminated diets and those treated with both 

doses of VAME after consumption of petroleum polluted diets relative to the control group may be 

indicative of a starve in energy demand owing to the toxicity impact of petroleum diet consumption 

and the eventual counter-effective functions of the VAME.  
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     Group A=Feed; Group B=Feed+100 mg kg−

1
 body weight of VAME; Group C=Feed+200 mg 

kg−
1
 body weight of VAME; Group D= Tainted feed; Group E= Tainted feed +100 mg kg−

1
 body 

weight of VAME; Group F= Tainted feed +200 mg kg−1 body weight of VAME.  

 

Figure 1-Effect of VAME on key enzymes of energy metabolism in the liver of rat fed crude oil 

contaminated diet 

 

     It is important to note that the G6DPH is a significant enzyme catalyzing the oxidation of glucose 6 

phosphate in the pentose phosphate partway while contributing to the supply of reducing energy 

potentials to cells for the continuation of the energy cycle and to tissues involved in the biosynthesis of 

fatty acids[ 41-43]. This drop in the G6DPH activity could be the justification of the increased 

activities of LDH which could be said to have been triggered for the promotion of anaerobic 

respiration for replenishing the increased depletion of NADPH within the cells which has been cut-

short by possible inhibition of the G6DPH. A further drop in the SDH activities also gives credence to 

our earlier claim and suggestion of possible drop in energy supply owing to shortfall of certain 

metabolites. Succinate dehydrogenase has been reported to be a very significant enzyme in the citric 

acid cycle (TCA) and the electron transport chain (ETC). In the TCA cycle, it catalyses the oxidation 

of succinate to fumarate which eventually supplies the FADH2 needed for the reduction of ubiquinone 

to ubiquinol [44- 46]. By implication therefore, the alternative promotion of LDH activities within the 

metabolic cycle could be said to have not been effective enough for the supply of the needed substrates 

that promotes the TCA cycle hence drop in the SDH activities. 

     Increase in lipid peroxidation (MDA) and activities of the oxidative enzymes (AO, SO, MO and 

XO) has been noted as very significant indicators of metabolic stress (Table-3).  

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

A B C D E F

G6DPH

LDH

SDH



Achuba and Ichipi-Ifukor.                      Iraqi Journal of Science, 2020, Vol. 61, No. 11, pp: 2820-2830 
 

2825 

Table 3-Effect of VAME on lipid peroxidation and oxidative enzyme activities in the liver 

Groups 
MDA 

μmolml
-1

 

AOUnitsg
-

1
tissue 

SO Unitsg
-

1
tissue 

MO Unitsg
-

1
tissue 

XO Unitsg
-

1
tissue 

A 40.19±0.49
a 

76.00±3.65
a 

666.75±28.55
a 

157.75±12.55
a 

62.25±1.71
a
 

B 40.58±0.67
a 

85.75±5.38
b 

705.25±32.55
ab 

166.00±11.17
ab 

66.70±1.71
ab

 

C 44.96±0.96
b 

89.50±5.44
b 

747.25±19.24
b 

182.75±2.98
b 

70.50±2.08
bc 

D 43.65±1.16
bc 

93.00±2.94
b 

772.25±13.67
bc 

189.75±2.74
bc 

73.50±2.38
c 

E 42.38±1.78
ab 

106.00±7.70
c 

790.25±12.71
bc 

193.75±4.35
bc 

76.00±2.16
d 

F 41.37±1.51
ac 

119.00±3.56
d 

804.75±5.37
c 

203.00±5.10
c 

80.00±2.16
d 

Group A=Feed; Group B=Feed+100 mg kg−
1
 body weight of VAME; Group C=Feed+200 mg kg−

1
 

body weight of VAME; Group D= Tainted feed; Group E= Tainted feed +100 mg kg−
1
 body weight of 

VAME; Group F= Tainted feed +200 mg kg−1 body weight of VAME 

All data stated as Mean± SEM. Values with different superscript in each column designates a 

significant difference 
     The increased MDA levels in rats only fed petroleum tainted diets is in response to the generation 

of reactive oxygen species while the rise in the oxidative enzymes occurred as a result of a second 

messenger response for the clearance of the oxidative radicals generated within the tissues so as to 

help reduce the rising MDA and is in agreement with the studies of Okpoghono et al. [35]; Achuba et 

al. [13]. Although treatment with both doses of VAME further led to a rise in MDA levels and 

increase in oxidative enzyme activities this must have occurred as a result of the abilities of VAME to 

promote or induce the oxidative enzyme activities to rise up to the increasing challenge of petroleum 

induced oxidative stress. On the other hand rising lipid peroxidation and increase in ROS has been 

reported to be a significant inducer of several antioxidant enzymes to aid the clearance of the oxidative 

radicals. Such enzymes as SOD, catalase, GPx and GSTs are known buffers for oxidative stress 

defense systems. Other non-enzymatic antioxidants such as vitamin C and GSH are also said to 

contribute to this oxidative buffering system but may be depleted when overpowered by a high degree 

of ROS generation. As in other studies, there were observed depletion in non-enzymatic antioxidants 

Vitamin C and GSH as well as catalase, and GSTs activities while GPx increased in rats consuming 

only petroleum polluted diets compared to control (Table-4).  
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Table 4-Effect of VAME on some enzymatic and non-enzymatic antioxidant profiles in liver 

 

Vit.C 

mgg
-1

Fwt 

 

GSH 

µmolmg
-1

 

protein 

CAT 

µmolmg
-1

 protein 

GPx 

µmolmg
-1

 protein 

GSTs 

µmolmg
-1

 

protein 

A 4.13±0.44
a 

0.37±0.84
a 

168.06±1.99
a 

0.39±0.03
a 

390.75±29.48
a 

B 4.83±0.17
a 

0.41±0.72
a 

170.20±1.76
a 

0.41±0.03
ac 

418.25±39.28
ab 

C 4.93±0.30
a 

1.57±2.29
a 

213.04±1.46
b 

0.92±0.04
b 

455.25±21.75
b 

D 3.55±0.34
a
 0.31±0.06

a 
162.99±0.70

c 
0.78±0.07

b 
343.00±8.04

ac 

E 3.45±0.31
a
 0.29±0.05

a 
113.57±1.10

d 
0.80±0.07

b 
359.00±18.31

c
 

F 2.18±0.66
c
 0.23±0.05

a
 112.32±0.51

d
 0.55±0.09

c 
316.00±10.86

c
 

Group A=Feed; Group B=Feed+100 mg kg−
1
 body weight of VAME; Group C=Feed+200 mg kg−

1
 

body weight of VAME; Group D= Tainted feed; Group E= Tainted feed +100 mg kg−
1
 body weight of 

VAME; Group F= Tainted feed +200 mg kg−1 body weight of VAME 

All data stated as Mean± SEM. Values with different superscript in each column designates a 

significant difference 
     Treatment with both doses of VAME alone was also observed to have boosted the levels of these 

antioxidants, post treatment of VAME after petroleum diet consumption was observed to have further 

declined compared to control and the rats not treated after petroleum diet consumption (Figure-2).  

 

 
Group A=Feed; Group B=Feed+100 mg kg−

1
 body weight of VAME; Group C=Feed+200 mg kg−

1
 

body weight of VAME; Group D= Tainted feed; Group E= Tainted feed +100 mg kg−
1
 body weight of 

VAME; Group F= Tainted feed +200 mg kg−1 body weight of VAME.  

Figure 2- Effect of VAME on Liver CuZnSOD, MnSoD and total SOD activities. Different alphabet 

different superscripts on bars of the colour designate a significant difference.  
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     The possible justification for this trend is that although VAME contributed to antioxidant defense, 

the veracity of ROS generation due to petroleum metabolism within the liver tissue may have 

overpowered the continual upsurge in the antioxidant defense hence the eventual depletion. In giving 

further explanation to this phenomenon various authors submitted that metabolic stress inducers are 

also significant inducers of several antioxidant and oxidative enzymes which act competitively until 

either of them (stressor or antioxidant) is overpowered to achieve metabolic stability or instability[ 47-

49]. 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 
 

 

 

 

 
 

 

 

Group A=Feed; Group B=Feed+100 mg kg−
1
 body weight of VAME; Group C=Feed+200 mg kg−

1
 

body weight of VAME; Group D= Tainted feed; Group E= Tainted feed +100 mg kg−
1
 body weight of 

VAME; Group F= Tainted feed +200 mg kg−1 body weight of VAME.  

Figure 3A-F: Photomicrographs of rat liver fed petroleum contaminated diets and treated with bitter 

leaf extract. Haematoxylin and Eosin x 100 magnification 

A Normal hepatic cells showing visible 

nucleus (x) and hepatic vein (Y) 
B  Normal hepatic cells showing round 

nucleus (X) and congested veins (Y) 

C Normal hepatic cells showing slight 

congestion of hepatic vein (X) and round 

nucleus (Y) 

D ballooning of hepatic veins (X) and Inflammation 

and congestion of nucleus (Y) Hepatic Necrosis (Z) 

E 

Reduced hepatic necrosis showing very clear 

nucleus (X) Hepatic sinusoid (Y) 
E Reduced necrosis showing very clear nucleus (X) 

and slight inflammation and congestion of central 

vein (Y) 

X 
X 
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     The liver histology revealed that rats administered only petroleum contaminated diet indicates a 

very visible distortion of the liver architecture which gives further credence to the observed depletion 

in antioxidant defence systems ( Figure-3A-F).  Treatment with both doses of BLME conferred 

protection on the liver integrity; this is in agreement with similar observations made in the kidney by 

Achuba [18] which also reported the prevention of petroleum induced kidney necrosis by BLME. This 

further gives credence to earlier report by Kambizi and Afolanya [50] on the efficacy of bitter leaf.  

Conclusions 

     The present study further established the role of petroleum contaminated diet consumption in the 

induction of several metabolic anomalies; it also showed the ability of VAME to confer certain levels 

of protection to the liver on the outcomes of these anomalies. 
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