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Abstract

The process of converting coordinates is, still, considered an important and
difficult issue due to the way of conversion from geographic ellipsoidal system to
the projected flat system. The most common method uses contiguous UTM system
as one of the most accurate systems in the conversion process, but the users of the
system face problems related to contiguity, especially at the large areas that lie
within more than one zone. The aim of the present research is to solve the problem
related to the multiple zones coverage found in the Iraqi territory using a
mathematical model based on the use of Taylor series. The most accurate conversion
equation used in this paper was based on the 4" order polynomial of two variables.
The calculation of equations’ coefficients was performed using least square criterion
for the coordinate’s values, i.e., either latitude, longitude) or East (E), North (N)
coordinates. The two basic determinations, for the forward and backward, were
applied. In the first stages, the conversion of the coordinates from Longitude/
Latitude to East/ North was determined. Then, the second conversion stage was
determined, i.e., the coordinates conversion from East, North to Longitude,
Latitude). For each phase, a spatial accuracy assessment was conducted. The results
showed that the adopted mathematical model was successful to accomplish the
conversion process. A very small error average of about 3 cm at east and less than 5
cm at north was reached using the 4th order polynomial equations.

Keywords: Geographic Coordinate System, UTM, Polynomial Representation,
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1. Introduction

The Universal Transverse Mercator (UTM) is a projection coordinate system. It is a type of plane
coordinate system, also called Cartesian coordinate system [1]. The position of a point in the
rectangular coordinate system is defined by its distance from the x and y axes. The two distance values
are the X and Y coordinates of the point, with the use of a measurement unit such as meters,
kilometers, etc. [2, 3].

A position on the Earth is given by the UTM zone number and the easting and northing planar
coordinate pair in that zone. The origin point of each UTM zone is the intersection of the equator and
the zone's central meridian [4]. To avoid dealing with negative numbers, the central meridian of each
zone is defined to coincide with 500000 meters East. In any zone, a point that has an easting of
400000 meters is about 100 km west of the central meridian [5]. For most such points, the true
distance would be slightly more than 100 km, as measured on the surface of the Earth, due to the
distortion of the projection. UTM eastings range from about 167000 meters to 833000 meters at the
equator [6, 7, 8].

The UTM system covers almost every surface of the earth. Only polar areas latitudes that are
higher than 84° North and 80° South are excluded. The UTM system divides the Earth surface into 60
zones, each is with 6 degrees. In addition, the zone is numbered west to east from 1 to 60, starting at
180° West longitude [9, 10]. We cannot imagine the flattening of the Earth's surface without
converting it to a plane form. The UTM system is the designer to provide a tool of representing each
point on the Earth using a set of flat (X, Y or Easting, Northing) coordinates [11]. The advantages of
representing locations on the Earth with flat coordinates are the easy planar mapping, easily derived
spatial information (e.g., distances, angles, areas, etc.) from the location coordinates, and the ability to
calculate the coordinates of a point based on spatial information. In UTM, all measurements are
achieved in meters. Therefore, the calculation of distances, directions, and areas can be performed
much more conveniently in comparison to the geographic coordinate system [12].

2. Contiguous Problem related to UTM

The UTM system, like any other system, has some problems when converting coordinates, but
these problems are less than those found in other conversion systems. The principle of this system is
based on the division of the world into zones, but each chip has certain characteristics that do not
apply to other zones. Most states contain more than one chip and here lies the problem, so that when
moving from one chip to another the results of the conversion would be unrealistic [13, 14]. For
example, the United States is located within ten UTM zones and the fact that there are many tight
UTM zones can produce troubles. For instance, Philadelphia city in Pennsylvania is east of the city of
Pittsburgh. If the Eastings of centroids representing the two cities are compared, the result would be
that the Easting of Philadelphia (almost 486 km) is less than that of Pittsburgh (almost 586 km).
Despite that the two cities are both located in the state of Pennsylvania, they are existing in two
various zones of the UTM system; Philadelphia is nearer to the Zone 18 than Pittsburgh which is
located at the Zone 17.
over the Iraqi territory, the same type of problem exists, where Iraq is located in three zones (37, 38
and 39) within the UTM system. The zone 37 covers parts of western Irag, the zone 38 covers the
middle area which represents most of Irag, and the zone 39 covers a small part of the city of Basra in
east-south Irag. Figure 1 illustrates the zones 37, 38 and 39 covering the territory of Irag.
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Figure 1-The 37, 38 and 39 zones covering Iraq’s area.

3. Theoretical Framework
In this section, the mathematical framework of the two phases of conversion, i.e., the forward and
the backward, is provided.
3.1 Forward Representation
The coordinate value of East and North (X and Y) can be represented mathematically as
X=Fp1), Y=0G6(A1) €Y
These functions are continuous over most of the regions of globe, except the poles. Thus, the
Taylor series [15] of both functions near the point (¢,, 4,) are

AF™t (g, A — )" (A= A"
X = Fo,, °)+ZZ gﬁa) (@ — @)™ ( )

)

m! n!
m=0n= Polo
where n + m > 0 (2)
aG™ " (e, ) (@ = @)™ (A —2,)"
V'=6(9020) + z Z oM "2 m! n
m=0n= Poto
wheren +m > 0 3

In the case that the neighborhood of (¢, 4) is bounded to an area extended to few degrees far from
@o, Ao then the values of m and n can be bounded to be small, i.e., less than 3 or 4. In such case, the
above equations can be approximated to be:

Order i

X= Z zan(i)+j(A<P)i"j (A’ (4a)
i=0 j=0
Order i

V= " baayj@0) T (A1) (4b)
i=0 j=0

1
where, n(i)=§i(i+1), Ap=¢p—¢p, M=21-1,

For the 2™ Order Polynomials
X =ay+ a;A¢ + a, AL + az(A@)? + a,ApAd + as(AN)? (5a)
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For the 3rd Order Polynomials
X =ag+ a;80¢0 + a, AL + az(Ap)? + a,ApAd + as(AN)? + ag(Ap)3 +
a; (A@)?AL + aghp(A)? + aq(AR)3 (6a)

Y = by + biA@ + by AL + b3 (Ap)? + byA@AL + bs(AL)? + ag(Ap)® +
a; (A@)? AN + aghp(A1)? + ag(A1)3 (6b)
For the 4th Order Polynomials
X =ag + a;8¢0 + a, A + az(Ap)? + a,ApAd + as(AV)? + ag(Ap)3 + a; (Ap)2AA
+agA@(A1)* + ag(B1)® + a10(Ap)* + ay1 (Ap)*AL + a;,(Ap)? (A1)?
+as300(A1)° + ags(A)* (7a)

Y = by + biA@ + b,AL + b3 (A@)? + byA@AL + bs(AX)? + ag(Ag)® + a,(Ap)?AL
+agAp(A)? + ag(A1)? + byo(Ap)* + by1(A@)3 AL + by, (A@)?(AL)?
+b13A(p(Aﬂ)3 + b14(A/1)4 (7b)

3.2 Backward Representation
Also, the inverse mapping equations can be approximately written in the form:

p=HXY), 1=0X)Y) (8)
Also, the equation is continuous in the region on interest (i.e., the lraqgi territory), so the Taylor
series [16, 17] for both equations no. 2 and 3 can be written as in equations 9 and 10 below:

OH(X,Y X —X,)™ (Y —Y,)"
ponry e Y S I O

’

m! n!
m=0n=
where n + m > 0 €©)
O QMY (X=X ) (Y =)
A= 0, Yo) + Z Z amx ony m! n
m=0n=0 Xo'/lo
wheren+m >0 (10)

The same mathematical manipulation can be performed to rewrite the above equations in terms of
2D polynomials:

Order i
0= D D cae@X)TI@Y) (11a)
i=0 j=0
Order i
A= )0 duayey XY AY)) (11b)
i=0 j=0

1
where, n(i)=§i(i+1), Ax = x — x, Ay=y -y,

For the 2™ Order Polynomials
© = o+ 1 Ax + Ay + ¢3(Ax)? + c,AxAy + c5(Ay)? (12a)

A =dy+ d;Ax + dyAy + d3(Ax)? + dAxAy + ds(Ay)? (12b)
For the 3" Order Polynomial
© = o+ 1 Ax + Ay + ¢c5(Ax)? + cuAxAy + c5(Ay)? + cg(Ax)3 +
c;(Ax)?Ay + cgAx(Ay)? + co(Ay)3 (13a)

A=dy +d;Ax + dyAy + d3(Ax)? + dAxAy + ds(Ay)? + dg(Ax)3 +
d,(Ax)?Ay + dgAx(Ay)? + do(Ay)3 (13b)
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For the 4™ Order Polynomials
© = o+ 1 Ax + Ay + c3(Ax)? + c,AxAy + c5(Ay)? + cg(Ax)3 + c;(Ax)%Ay
+cgAx(Ay)? + co(Ay)? + c10(Ax)* + ¢11(Ax)3 Ay + ¢, (Bx)* (Ay)?
+e138x(Ay)° + cia(By)* (14a)

A =dy + diAx + dyAy + d3(Ax)? + d AxAy + ds(Ay)? + dg(Ax)3 + d,(Ax)%Ay
+dgAx(Ay)? + do(AY)? + dio(Ax)* + dy1(Ax)>Ay + dy(Ax)? (Ay)?
+dy30x(Ay)? + d1a(Ay)* (14b)

4. Results and data sets
4.1 Datasets

The datasets represent grid points of the coordinates of longitude, latitude covering the Iraqi
territory and some adjacent areas; so that the distance between each two points in the grid is 0.5
degrees. These coordinates are then converted to X, Y coordinates using UTM system conversion
software in the conversion process, but we will determine this program on zone 38 and calculate X, Y
coordinates values, as shown in Table-1 and Figure-3.
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4.2. Results

4.2.1 For forward representation

This step represents the calculation rate of error for the first test at X east and Y north using the 2nd,
3rd, and 4th order polynomial equations, depending on normalization conversion process.

1. Tables-(1 and 2) represent the values of coefficients rate error, respectively, at X east and y north
using the 2nd order polynomial equations 5a and 5b. Also, the error distributions could be drawn as
shown in Figures-(4 and 5).

Table 1-Values of coefficients using the 2™ order polynomial equations (5a & 5b)

Coefficients Coefficients
ag 0.056233205 bo 0.000481156
a; 10.67302884 by -0.010988732
a, 0.093370086 b, 1.002562804
as -0.097019663 b3 0.232457867
ay -4.023212612 by -0.005665115
as 0.012356132 bs 0.001717335
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Table 2-The error rate values using the 2™ order polynomial equations (5a & 5b)

rate error at X easting (m)

rate error at Y northing (m)

Maximum 479.237 303.906
Minimum 0.639 0.0794
Average 111.704 57.995

Calculate the error value at Y northing using a 2nd order polynomials
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Calculate the error value at X easting using a 2nd order polynomials
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Figure 3-present the distribution of error values at
X easting using a 2nd order polynomials

Figure 4- present the distribution of error values
at Y northing using a 2nd order polynomials

2. Tables-(3 and 4) represent the value of coefficients and rate error, respectively, at X east and y
north using the 3rd order polynomial equations (6a and 6b. Also, the error distributions were drawn as
shown in Figures-(6 and 7).

Table 3-Values of coefficients using the 3" order polynomial equations (6a & 6b)

Coefficients Coefficients
ag 0.056052815 bo 0.000474652
a 10.67656151 b, -0.010679744
a 0.090270214 b, 1.002351623
as -0.025197051 b3 0.235597899
ay -3.979903972 by -0.005187345
as 0.039522455 bs 0.002347984
A 0.477670176 be -0.008588967
ay 0.133050544 b, 0.121444681
ag -1.730962083 bg 0.005931998
g 0.004883848 by 0.001189638
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Table 4-The error rate values using the 3" order polynomial equations (6a & 6b)

rate error at X easting (m) rate error at Y northing (m)
Maximum 21.369 25.593
Minimum 0.027 0.025
Average 3.609 4.604
Calculate the error value at X easting using a 3rd order poly lak Calculate the error value at ¥ northing using a 3rd order polynomlals
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Figure 5-present the distribution of error values at Figure 6-present the distribution of error values
X easting using a 3rd order polynomials at Y northing using a 3rd order polynomials

3.Tables-(5 and 6) represent the values of coefficients and rate error, respectively, at X east and y
north using the 4th order polynomial equations (7a and 7b. In addition, the error distributions are
shown in Figures-(8 and 9).

Table 5-Values of coefficients using the 4™ order polynomial equations (7a & 7h)

Coefficients Coefficients
ao 0.056057752 bo 0.000474249
a 10.67676232 b, -0.010706578
a 0.090342133 b, 1.002359723
as -0.029358049 bs 0.235608589
a, -3.976320625 by -0.00550418
as 0.040289721 bs 0.002570736
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as 0.429537911 bs -0.003416047
a7 0.086420031 b; 0.120813626
ag -1.771913844 bs 0.007168094
ag -0.004921159 be 0.000421948
1o 0.005952919 b1o 0.038056529
an -1.274823713 b1 0.000846899
a1z -0.007804927 b1, -0.155828198
13 0.212538737 D13 0.00083605

14 -0.000689277 D14 -0.000231149

Table 6-The error rate values using the 4" order polynomial equations (7a & 7b)

rate error at X easting (m)

rate error at Y northing (m)

Maximum 0.154 0.286
Minimum 0.000 0.002
0.025 0.0498

Calculate the error value at X easting using a 4th order polynomials
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Figure 7-present the distribution of error values
at X easting using a 4th order polyno
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Calculate the error value at Y northing using a 4th order polynomlals
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Figure 8- present the distribution of error values
at Y northing using a 4th order polynomials
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4.2.2 For Backward Representation
This step represents the calculation of the rate of error for the first test at Longitude and Latitude

using the 2ed, 3rd, and 4th order polynomials equations depending on the normalization conversion
process.

3. Tables- (7 and 8) represent the values of coefficients and rate error, respectively, at longitude and
latitude using the 2nd order polynomial equations (5¢c and 5d). Also, we could draw the distributions
of error as shown in Figures-(10 and 11).

Table 7-Values of coefficients using the 2™ order polynomial equations (5¢ & 5d)

Coefficients Coefficients
Co -0.005277382 do -0.000558245
Cy 0.093634296 d; 0.001283094
Cy -0.010933052 d, 0.996970094
Cs 0.000192554 ds -0.001977919
Cy 0.035602483 dy 0.001464073
Cs -0.002324351 ds -0.000721924
Table 8-The error rate values using the 2" order polynomial equations (5¢ & 5d)
rate error at Longitude (sec) rate error at Latitude (sec)
Maximum 37.16646 21.56515
Minimum 0.006929 0.02133
Average 8.603299 4.401512
Calculate the error value at Longitude using a 2nd order polynomials Calculate the error value at Latitude using a 2nd order polynomials
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Figure 9-present the distribution of error values at Figure 10-present the distribution of error values at
Longitude using a 2nd order polynomials Latitude using a 2nd order polynomials

4. Tables-(9 and 10) represent the values of coefficients and rate error, respectively, at longitude and
latitude using the 3rd order polynomial equations (6c and 6d). Also, we could draw the distributions of
error as shown in Figures-(12 and 13).
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Table 9-Values of coefficients using the 3 order polynomial equations (6¢ & 6d)

Coefficients Coefficients
Co -0.005244783 do -0.00053587
C1 0.093622695 d; 0.001232322
C> -0.010410525 d, 0.997474459
Cs 9.98601E-05 ds -0.002055162
Cs 0.034756186 ds 0.001557791
Cs -0.008846928 ds -0.002855796
Cs -9.6549E-05 ds -7.26E-06
C7 0.00024294 d, -0.002572616
Cg 0.02920124 ds 0.000388714
Coy -0.000340033 dg 8.01967E-05
Table 10-The error rate values using the 3" order polynomial equations (6¢ & 6d)
rate error at Longitude (sec) rate error at Latitude (sec)
Maximum 1.57353 0.609209
Minimum 0.001294 0.000471
Average 0.334704 0.124751

Calculate the error value at Longitude using a 3rd order polynomials

1w e e "

Figure 11-present the distribution of error values at
Longitude using a 3rd order polynomials

Calculate the error value at Latitude using a 3rd order polynomials
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Figure 12-present the distribution of error values at
Latitude using a 3rd order polynomials

6. Tables-(11 and 12) represent the values of coefficients and rate error, respectively, at the longitude
and latitude using the 4th order polynomial equations (7c and 7d). Also, we could draw the

distributions of error as shown in Figures-(14 and 15).
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Table 11-Values of coefficients using the 4™ order polynomial equations (7c & 7d)

Coefficients Coefficients
Co -0.0052448 do -0.000535607
Cy 0.093626764 d; 0.001230629
(o -0.010379846 d, 0.997480429
C3 9.43143E-05 ds -0.002058185
C4 0.034719336 ds 0.001541364
Cs -0.008476756 ds -0.002716049
Co -0.000104558 ds -4.9682E-06
(o 0.000145654 d, -0.002572951
Cg 0.028262383 ds 0.000585766
Co -0.004602165 dg -0.000539866
C10 -6.20839E-07 dio 3.54477E-06
C11 -0.000147522 diy -1.34117E-05
C1o 0.000218654 di, -0.000989218
Ci3 0.015117426 dis 0.000108676
C14 0.000652888 di4 0.000217122
Table 12-The error rate values using the 4th order polynomial equations (7¢ & 7d)
rate error at Longitude (sec) rate error at Latitude (sec)

Maximum 0.094228 0.038256
Minimum 0.000124 2.36E-05

Average 0.018406 0.005913

Calculate the error value at Longitude using a 4th order polynomials
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Figure 13-present the distribution of error values at
Longitude using a 4th order polynomials
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Calculate the error value at Latitude using a 4th order polynomials
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Figure 14-present the distribution of error values at
Latitude using a 4th order polynomials
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5. Conclusions

When the first test was used, the attained results held a very high error rate, leading to the failure of
the conversion process. But, when the second test of the normalization method was used, the rate of
error was gradually reduced to the lowest ratio, using the fourth-order polynomials equation. This
resulted in the success of the conversion process and produced results that were near to idealism, as
described in the following:

Using the second-order polynomial equation, the result of the error average values was
approximately 120 meters at X east and about 50 meters at Y north. The average error value decreased
when the third-order polynomial equation was used, where the average error values were less than 4
meters at the X east and about 5 meters at the Y north. The final conversion process was successful,
causing a very large drop of average error values when the fourth order polynomial equations were
used, where the average error values were less than 3 cm at X east and about 5 cm at Y north. These
results are very good and we can depend on this model for the conversion process of X east and Y
north to longitude and latitude for the Iraqi territory, due to the high precision of this model.
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