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Abstract 
     Some researchers are interested in using the flexible and applicable properties of 

quadratic functions  as activation functions for FNNs. We study the essential 

approximation rate of any Lebesgue-integrable monotone function by a neural 

network of quadratic activation functions. The simultaneous degree of essential 

approximation is also studied. Both estimates are proved to be within the second 

order of modulus of smoothness. 
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 التقريب الأساسي الحافظ للرتابة باستخدام الشبكات العصبية ذات دالة تفعيل
Lp تربيعية في الفضاء   

 

 حوراء عباس الطرعب*, إيطان سطير بهية

 قدم الرياضيات ، كلية التربية للعلهم الررفة ، جامعة بابل ، الحلة ، العراق
 

 الخلاصة
التربيعية من خرائص تطبيقية مرنة، فقد قام الباحثهن باستخدامها في العديد  نظراً لما تتمتع به الدوال     

من الذبكات العربية التقدمية. قمنا في هذا البحث بدراسة درجة التقريب الأساسي لدوال رتيبة قابلة للتكامل 
متزامن لتلك الذبكات، ليبيكياً بهاسطة شبكات عربية ذات دالة تفعيل تربيعية. كما قمنا بدراسة درجة التقريب ال

 لنحرل بذلك على درجة تقريب متعلقة بالمقياس الثاني للنعهمة لكلا الحدين.
1. Introduction 

     In the field of Artificial Neural Networks, researchers can use the neural network to approximate a 

function with an acceptable close degree to the original function. 

     In 1989, Cybenko [1] introduced the Universal Theorem of Approximation, which states that for 

any continuous function   defined on a compact space X, there exists a neural network     such that 

‖      ‖    
Other researchers concluded similar results in that period [2, 3]. 

     In spite of the importance of the above theorem, it suffered from a number of limitations, including 

being primitive for the following aspects; the used function space, the degree of approximation and the 

nature of the neural network itself. Cybenko took the function   from a very tight space. Other spaces 

were studied later  such as Banach Space [4],  Sobolov space [5], Hilbert spaces [6], and other wider 

spaces [7, 8]. 
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     In addition, the activation function of the neural network defined above by Cybenko is not 

specified. He proved it for any neural network with any arbitrary activation function. The importance 

of the activation function is not only to create a relationship between inputs and outputs but also to add 

the ability to the network to learn any type of data. To build a more powerful network, it is essential to 

choose a suitable activation function depending on various issues, such as type of data, number of 

hidden layers, and the network’s model. Sigmodal, threshold, binary, identity, tan and arctan are 

examples of some types of functions that activate the neural network. 

     Cybenko’s Theorem was for any arbitrary activation function. Later, different types of neural 

networks with specified activation functions were defined  to achieve good approximation [9-20]. 

For deep learning applications, the squared activation functions were used efficiently in different areas 

to achieve favourable properties, which generated expressive networks with good learning abilities 

[21]. Here, we define the quadratic activation function as 

 ( )         ,   -                                                               (1) 

Divide ,   - into   subintervals    each of length at most   
    (   ) 
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                    we define 

   (  )   
   

 
 ∑ ,  (     )    (     )     (  )- 
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which satisfies that 
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                                                                    (3) 

 

If       ,     -        and for some        the following neural network operator is defined 

    (    )   ∑   .
 

 
/    (

 
     )                                                        (4) 

We name   to be the set of all neural networks of type Error! Reference source not found.. 
Now, we move to the criterion of approximation that makes the rate of approximation as accurate as 

possible. 

  ( )  ‖   ‖    
                                                      (5) 

      

     The rate of monotone approximation of a function   on   ( ) by elements of                  ( ). 

Modulus of smoothness is the best measure of the rate of approximation, since it judges the accuracy 

of the best approximation of a function as the error of approximation is estimated. Smoothness of 

functions can be measured by the following modulus [22]: 

  (   )          ‖  
  ( )‖                                                                       (6) 

 

     which is called the rth modulus of smoothness, where the rth symmetric difference of   is 
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                                    (7) 

2. Auxiliary Lemmas 

     At the beginning, we need some useful facts about the relationships among moduli of smoothness 

and/or the rate of approximation. These facts were previously proved in details by other authors [23-25]  

Lemma 1 
     The first inequality gives a relationship between the error of approximation, while the second is a 

more general one 

 ( )     (  | |  )                                                                           (8) 

    ( )     (  | |  )                                                                        (9) 

Lemma 2  

     To derive    in (Error! Reference source not found.) , let                 then 
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which easily implies that the derivative of the operator Error! Reference source not found. is: 

    
( )(    )  ∑    .

 

 
/  

( )(  )
 
                                                                     (11) 

 

3. Main Results 

     Let   be an increasing function in   , and since                is increasing on ,   - as well, then 

so is     (   )  for any       . So we conclude a monotone approximation for the function   to be 

equivalent to the second modulus of smoothness for both upper and lower bounds. 

We begin with the following main result for the upper bound of   ( )   
Theorem 1  

If       ,   -      , then there exists       , such that 

‖      ( )‖ 
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Proof 

By (Error! Reference source not found.) and (Error! Reference source not found.), 
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By using Taylor Series of  ∑ (  
 )
  

    for |  |     we have 
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Also, we can prove the lower bound to get an essential approximation to the function   by     . 

Theorem 2  

If       ,   -      , then there exists       , with        such that 

   (  |  |) 
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]  

Proof 

Let        *        +  then we get the expansion of       in Error! Reference source not 

found. as follow 
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For        suppose that  
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So, we get 

   (   ) 
 
 
 ( )

    
[‖ ‖ 

 
   ( ) 

 
]   

 

Now, for derivatives of the function and its operator, we find that 

Theorem 3  

If       
 ,   -      , then for any               there exists       , with        

that satisfies the following 
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Proof  

Using the derivatives of (Error! Reference source not found.) and Error! Reference source 

not found. located in (Error! Reference source not found.) and (Error! Reference source 

not found.), respectively, we have 
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Using the same techniques as the last proof, we  get 
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It is easy to conclude that the essential approximation also holds for derivatives of any    
   
 ,   -      . 

Corollary 4  

If       
 ,   -      , then for any               there exists       , with        that satisfies 

the following 
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