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Abstract

This paper aims to study a mathematical model showing the effects of mass
transfer on MHD oscillatory flow for Carreau fluid through an inclined porous
channel under the influence of temperature and concentration at a slant angle on the
centre of the flow with the effect of gravity. We discussed the effects of several
parameters that are effective on fluid movement by analyzing the graphs obtained
after we reached the momentum equation solution using the perturbation series
method and the MATHEMATICA program to find the numerical results and
illustrations. We observed an increased fluid movement by increasing radiation and
heat generation while fluid movement decreased by increasing the chemical reaction
parameter and Froude number.
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1. Introduction
The flow of electrically oriented liquids across porous parallel plates has become an important
problem because of their important applications in the sciences that affect human life. This appears in
the extraction of crude oil from the earth as well as in food industry and the study of the movement of
blood and other liquids in the body of the organism. Many researchers studied the oscillator flow to
transfer liquids between two parallel plates under the influence of the magnetic field under different
conditions. The ongoing flow through two parallel horizontal plates of an electrolytic conductive,

viscous and incompressible fluid was examined by Attia and Kotb [1]. Makinde and Mhone [2]
studied the combined effect of a random magnetic field and thermal transfer of radiation to an unstable
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flow of high-optical fluid connected through a channel filled with irregular porous walls under
saturated temperature conditions. Khudair and Al- Khafajy [3] suggested a model of heat transfer on
MHD oscillatory flow for Williamson fluid through the porous plate for two types of flow (Couette
flow and Poiseuille flow). Recently, Ahmed and Al-Khafajy [4] suggested a model of MHD peristaltic
transport for Jeffrey fluid with varying temperature and concentration through a porous medium. Al-
Khafajy [5] studied the effects of MHD oscillatory slip flow for Jeffrey fluid with variable viscosity
through a porous plate with varying temperature and concentration.

The heat transfer and flow of fluids in an inclined channel are of special importance in the
petroleum extraction and transport problems. This fact motivated scientists to explore the flows
confined in an inclined channel [6- 8].

Our objective here is to study the mathematical model for the influence of MHD oscillatory slip flow
for Carreau fluid through an inclined channel with varying temperature and concentration. The
perturbation technique series was used to solve the problem. The results of the physical parameters
problem were discussed using graphs.

2. Mathematical Formulation

Let us consider the flow of a non-Newtonian (Carreau) fluid under the effects of radioactive heat
transfer and electrically-applied magnetic field as depicted through an inclined porous channel with a
width of d (Figure- 1). Fluids are supposed to have very small electromagnetic power produced with a
low electrical conductivity. We think of the system of Cartesian coordinates so that (u(y,t), 0, and 0) is
the velocity vector.
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Figure 1-Physical model

The basic equations governing are given by:
The continuity equation is given by: % + g—; =0 1)
The momentum equations are:
In the x - direction: p( 71 au =T _au) = zz a;_? + = ar"y + pgBrsin(e) (T —T,) +

pgﬂc sm(s) (C—-Cy) — aBgSin2 (e)u - ;u + pgsin(8) (2)
In the y - direction: p ( +u ‘@ +v a;) = g—g a;_? a;—?y - %17 — pg cos(0) (3)

aT K 9T 1 dq , H

The temperature equation is given by: at pTﬁ ~ e,y + p—é’ (T —Typ) 4)

The concentration equation is given by: a_ = D — —K;(C—Cy) + DTKT gyT (5)
where u is the axial velocity, p is the density of the fluid, p is the pressure, ¢ is the electrical
conductivity, B, is the strength of the magnetic field, g is the acceleration due to gravity, T is the
temperature, C is the concentration, C, is the specific heat at constant pressure, q is the radiation heat
flux, K is the thermal conductivity, Hy is the heat generation, D is the coefficient of mass diffusivity,
(0 < & < m) is the angle between velocity field and magnetic field strength, (0 < 8 < m ) is the angle
between the centre channel and the ground acceleration, and Ky is the thermal diffusion ratio. The
corresponding boundary conditions are given by:

u=0T=Ty,, C=Chat y=0and u=0T=T;,C=Czgat y=d. (6)
The radioactive heat flux [9] is given by:

1427



Al-Khafajy Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1426-1432

= an(To—T) 7)
The radiation absorption is denoted by 7.
The basic equation for the Carreau fluid is given as:
S=-pl+t )

n-1
7= e+ =)@+ (YD 7 |E ©)
where p is the pressure, I is the unit tensor, T is the extra stress tensor, Y is the time constant, u, is
the infinite shear rate viscosity, the case for which Y < 1, and u,, = 0. We can write the component of
extra stress tensor according to the following:

T= [1 +(= )Yzyz] E (10)
The Rivlin- Erlcksen tensors are given as: E = VV + (V)T
The stress component is given by:

Ty = Tyz = I [(Z_z) ( 2 )Yz (63/)3] (1)
3. Method of Solution

The governmg equatlons for the non-dimensional conditions are:

_ _ T—T, ph _ phUc, _ hK;
'y —u _T Ta- To’p Pe=— ’KT_T’
v h _ c-C, 4n?h?
We =—, Txyz—‘r@,y— y,C— =—,
h Cq—Cp’ K [ (12)
— R phU D _ GT — pgﬁTh (T— TO) — DKT(Td_TO)
[T hZ' iy T UTh(Cqa—Co)’
oBgh? Hgh? h2(T-T, U2
M2 =28 go = Ut gp B go = pOB ) gy U
D K uu gh /

where U is the mean flow velocity, Da is Darcy number, Re is Reynolds number, M is the
magnetic parameter, Pe is the Peclet number, 7 is the radiation parameter., Sc is the Schmidt number,
S, is the Soret number, # is the heat generation parameter, T,, is the mean temperature, Gr is the
thermal Grashof number , Gc is the solutal Grashof number, K,. is the chemical reaction parameter and
Fr is the Froude number.

By substituting (12) into equations (1)-(6) and (11), we have the following of non-dimensional

equations:
242 +52=0 (13)
ReE =——= + arxy + +Grsin(e) T + Gesin(e) C — (M22 + D—la) u+ i—jsin(@) (14)
Pe aa—f=—+(3c+:tf)fr (15)
‘;—f=$37€—1<€+5r62 (16)
and 7,y = Z—; + () we? (g—;f (17)

whereM, = MSin(e).
By substituting equation (17) into the equation (14), we have
2 52
Re% =——= + 357 i Lk 3(n Dye (ay) ZTZ + Grsin(e) T + Gesin(e) C — (Mz2 + D—la)u + %sin(@)
(18)

4. Solution of the Problem

The solution of the heat equation (15) with boundary conditions7(0) = 0,7(1) =1, (after
offsetting the non-dimensional parameters (12) into equation (6)) is as follows [5]

T (y,t) = Csc(A) Sin(4Ay)e'®t. (19)

The solution of the concentration equation (16) with boundary conditionsC(0) = 0,C(1) =1,

(after offsetting the non-dimensional parameters (12) into equations (6)) is [5]

eB(A%+B2+S, Sc A?)) _ Sy Sc A% Csc[A]Sin[Ay]
COnD) = (e (67 — e70) — HEC Bl gtot, (20)
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whereAd = VK + H — iwPe, B = ,/Sc(K, + iw) and w is the frequency of the oscillation.
To solve the motion equation (18), let

L= —2e™t, u(y,6) = uy(y)e'e* (21)
where A is a real constant and w is the frequency of the oscillation.

By substituting equation (21) into equation (18), we obtain
. 2 52 .
Re—u (y)ela)t Aela)t+_u (y)elwt+3(n 1)W (ayul(y)elwt) aa_yzul(y)elwt_}_

Grsin(e) T + Gesin(e) C — ( 5+ E) uy (y)elt + ;sm(@).

with boundary conditionsu,(0) = u;(1) = 0, (after offsetting the non-dimensional parameters (12)
into equation (6))
After simplifying we obtain

iwRe us () = A+ 21 () + X2 Weze2ot (2, () 2wy (7) + Grsin(e) T 0) +

Gesin(e) C1(y) — (Mz D—a) w () + 2 = ® et sin(p). (22)
where 73 (y) = csc(4) sin(4y)
B(A24B24S, Sc A2 _ » 2
ey )= (U e ) S i)
It is difficult to solve the nonlinear differential equation (22) and, thus, we propose a perturbation
technique to solve this equation by taking a small value for We. Accordingly, we write:
u1 = u10 + Wezu11 + O(We4) (23)
By substituting equation (23) into equation (22), with boundary conditionsu, (0) = u,(1) = 0, then
equating the like powers of We, we obtain the following results presented in the forthcoming
subsections:
4.1. Zeros-Order System (We?)
aaz—;;" - (ine + M2 + D—la) Ug = — (/1 + Grsin(e) T, + Ge sin(e) Gy + — e~ @t sm(@)) (24)
The associated boundary conditions are:u,(0) = u,,(1) = 0.
4.2. First-Order System (We?)
2 2 52
665;1 (la)Re + M2 + )u11 = —@ezm (ag_;o) aa—;;‘) (25)
The associated boundary condltlons are: u;1(0) =uy1(1) =0.
4.3. Zeros - Order Solution
The solution of equation (24) subset to the associate boundary conditions is:
tio = g B D(1+e\/—)( eVP 4¢P y)) (26)
4.4. First - Order Solution
The solution of equation (25) subset to the associate boundary conditions is:

3¢ F3 =D\ ( _3/5,(.6/5 /b /b
11 e~ 3Dy (66 DY + 3VD 4 2(1 — 2yv/D)eVPO+4Y) + 2(1
16D2(1 + VD)3

+ Zy\/E)ez‘/E(”y))

1
- <—(1 " \/5)> ((1 +2eVD + 2(1- 2\/5)e2‘/5 + e3‘/5) eVDy
e

+ (1 +2(1 +2vVD)eP + 2¢2VD 4 e3‘/5) e‘/ﬁ(l‘”)}

where D = iwRe + M2 + D—la and F = A+ Grsin(e) 7, + Gesin(e) G + %e“""t sin(60)
5. Results and Discussion

This section discusses the effects of varying "temperature and concentration™ on MHD oscillation
slip flow for Carreau fluid through an inclined permeable channel. The perturbation technique is
applied to calculate convergent chain solutions’ results obtained for non-dimensional distribution and
displayed graphically. We use the "MATHEMATICA" program to find numerical results and
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illustrations. Numerical assessments of analytical results and some of the graphically significant
results are presented in Figures-(2-9).

Figure-2 shows the influences of the radiation parameter (%) and heat generation parameter () on
the velocity profiles function u vs. y. It was found that u increases with increasing both & and H.
Figure- 3 shows that the velocity profile u goes down by increasing the influences of the Soret number
(S,-) and frequency of the oscillation (w). Figure- 4 demonstrates that the velocity profile u goes down
with increasing the magnetic parameter (M) and that u rises up with increasing Darcy number (Da).
Figure-5 shows the influences of Reynolds number (Re) and Froude number (Fr) on the velocity
profiles function u vs. y. We noted that the increase of Re causes an increased velocity of the fluid,
while the velocity of the fluid is decreased with increasing Fr. Figure- 6 shows that the velocity profile
u rises with increasing both solutal Grashof number (Gc) and thermal Grashof number (Gr). Figure-7
shows the influence of Weissenberg number (We) and pressure parameter (1) on the velocity profiles
function u vs. y. We noted that the increase of We decreases the velocity of the fluid, while the
velocity of the fluid is increased with increasing A. Figure-8 shows the influences of the inclined angle
of the magnetic field (¢) and the inclined angle of the ground acceleration (8) on the velocity profiles
function u vs. y. We observed that the velocity profile u rises with increasing both € and 6. The last
Figure-9 shows the influences of chemical reaction parameter (K,.) and Schmidt number (S.) on the
velocity profiles function u vs. y. We noted that the increase of K, and S, gives increases the velocity
of the fluid.
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Figure 2- Velocity profile for various values of # and H with n=3,w = 1,Gr = 1,Re = 2,Pe =

0.7,M =1,S5¢=0.6,Sr=0.1,6Gc=1,6r =1,K, = 0.5,Da=05Fr=11=1¢= %,9 =§
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Figure 3- Velacity profile for various values of w and Sr with n =3, =2,H = 2,Gr = 1,R
2,Pe=0.7,M =1,5¢=0.6,Gc=1,6r =1,K, =05Da=05Fr=11=1,¢e= %,9 =
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Figure 4- Velocity profile for various values of M and Dawith n=3,w =1, =2,H = 2,G
1,Re =2,Pe=0.7,5c=0.6,5r=0.1,Gc =1,6r =1,K, =05, Fr=1,1=1,e = %,6 =
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y i}
Figure 5- Velocity profile for various values of Re and Fr with n =3, w =1, =2,H = 2,Gr =
1,Pe =0.7,M = 1,S¢ = 0.6,Sr =0.1,6Gc = 1,6r = 1,K, = 0.5,Da = 051=1,¢ = %,9 = %

y 0.0

Figure 6- Velocity profile for various values of Gc and Gr with n=3,w = 1,X =2, H = 2,Re =
2,Pe =0.7,M =1,5¢ = 0.6,5r = 0.1,Gc = 1,K, =0.5,Da=05Fr=1,2=1e=5,0 ==
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Figure 7- Velocity profile for various valuesof Weand Awith n =3, w =1,KX =2,H = 2,Gr =
1,Re=2,Pe=0.7,M =1,5¢=0.6,Sr =0.1,Gc =1,6r =1,K, =05,Da=05,Fr=1,¢ =
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Figure 8- Velocity profile for various values of e and 6 with n =3, w =1, =2,H =2,Gr =1,
Re=2,Pe=07,M=1,5¢=0.6,5v=0.1,6c=1,6r=1,K, =05Da=05Fr=1,1=1.
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Figure 9- Velocity profile for various values of Sc and K, with n =3, w =1,K =2, H =
1,Re=2,Pe=0.7,M=1,5r=0.1,6c=1,6r=1,Da=05Fr=1,1=1¢e= %,9 =

6. Conclusions

We reached interesting results through studying the effects of varying "temperature and
concentration” on MHD oscillatory flow of the Carreau fluid through an inclined permeable channel.
We discussed the effects of several parameters that are effective on fluid movement by analyzing the
graphs obtained after we reached the momentum equation solution using the perturbation series
method and the MATHEMATICA program to find the numerical results and illustrations. A summary
of the results obtained is provided as follow:

The velocity profiles rise up by increasing the parameters of permeability, radiation, heat
generation, pressure, Reynolds number, solutal Grashof number, thermal Grashof number, the inclined
angle of the magnetic field, and the inclined angle of the ground acceleration, while the velocity
profiles go down by increasing the parameters of magnetic, chemical reaction, frequency of the
oscillation, Soret number, Froude number, Weissenberg number and Schmidt number.
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