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Abstract

In this paper, we study the impacts of variable viscosity , heat and mass transfer
on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined
channel with porous medium . The viscosity is considered as a function of
temperature. The slip conditions at the walls were taken into consideration. Small
Reynolds number and the long wavelength approximations were used to simplify
the governing equations. A comparison between the two velocities in cases of slip
and no-slip was plotted. It was observed that the behavior of the velocity differed in
the two applied models for some parameters. Mathematica software was used to
estimate the exact solutions of temperature and concentration profiles. The
resolution of the equations to the momentum was based on the perturbation method
to find the axial velocity, pressure gradient and trapping phenomenon. The
influences of the various flow parameters of the problem on these distributions were
debated and proved graphically by figures.
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1- Introduction

Nowadays, the peristaltic flow has gained much interest because of its influences in the field of
industry and physiology. Peristalsis is a format of fluid transfer caused by a progressive wave of
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region constriction or extension over the length of a flexible channel. In this format, transmission of
the fluid occurs in the trend of the wave propagation. The peristalsis flow happens in the human body,
as in the movement processes of chyme through digestive tract, urine through the ureter, the
swallowed food through the esophagus. and many others [1,2]. This type of flow is extremely
expedient in designing several biomedical apparatuses, e.g. the heart - lung device to preserve the
blood circulation in dangerous surgeries [3]. This subject was first investigated by Shapiro et al. and
Lew et al. [4,5]. The concept of peristaltic transport was subjected to various suppositions, the most
well-known among which are the lengthy wavelength and the small Reynolds number.

A non-Newtonian fluid is a fluid whose viscosity is variable based on applied stress or force. It is a
fluid whose flow properties are not described by a single constant value of viscosity. It was observed
that the physiological fluids with constant viscosity fail to give an accurate grasp when the peristaltic
transfer is involved in the lymphatic vessels, small blood vessels and gut. Most studies of peristalsis
were applied under constant viscosity. Several recent studies [6-9] investigated the influence of
variable viscosity, when the viscosity is dependent on the distance only. However, some researches
considered the influence of the viscosity when it is dependent on the temperature [10-12]. Also, It was
established that the influences of heat and mass transfer hold significant roles in peristaltic flow, as in
blood flux processes, kidney dialysis and cancer medicament. Interesting research attempts
investigated the link between the influence of heat and mass transfer on magneto hydrodynamic flows,
as studied lately by Zin et al. [13], Gul et al.[14], and Abdellateef et al. [15]. The correlation between
the problems of heat and mass transfer through peristaltic flow of MHD fluid on an asymmetric
channel was investigated by Kothandapani et al.[16].

The porous medium has a significant role in the analysis of transportation process in industrial
mechanisms , bio-fluid mechanics and engineering domains. Several investigators studied the
magneto hydrodynamic flow under convective heat and mass transfer through a porous medium.
Ramesh and Devakar [17] studied the effects of heat and mass transfer of MHD couple stress fluid
with porous medium in a vertical asymmetric channel. Alharbi et al. [18] investigated heat and mass
transfer in MHD visco-elastic fluid flux through a porous medium with chemical reaction. Reddy[19]
discussed the effect of velocity slip on MHD peristaltic flow in a porous medium with heat and mass
transfer.

The aim of the present study is to analyze the MHD fluid with variable viscosity. The related
equations were simulated by adopting conservation laws of mass, momentum, energy and
concentration. The small Reynolds number and the long wavelength were also executed. The
differential equations of the fluid flow were resolved subject to related boundary conditions (slip
conditions). A comparative study between the velocity and slip and no-slip conditions was discussed.
At the end of the paper, graphical results were shown to display the physical conduct of the various
considered parameters.

2- Formulation The Problem:

We consider the MHD fluid flow, with variable viscosity in a tapered inclined asymmetric channel
with the width of (d; + d,), through a porous medium in two dimensions. The motion is made by
sinusoidal wave sequences propagating with constant speed (c) and wavelength on the lengthwise of
the channel walls.

The equations of walls geometry are presented as

h,(X,t) = d, + mX + a,Cos [27” X - cﬂ] Lower wall (1)
hy,(X,t) = —d, — mX — a,Cos [277: X —ct) + (p] Upper wall 2)
where (a,) and (a,) represent the wave amplitudes of the lower and upper walls, respectively, (1)
is the wave length , (c) is the velocity of the peristaltic wave , t is the time, and (in « 1) is a non-
uniform parameter. (X,Y) are the Cartesian coordinates, where X is the direction of wave propagation
while Y is taken normal to it. (@) represents the phase difference with the range (0 < ¢ < ), in which
(¢ = 0) matches up to the symmetric channel with waves out of phase, while (¢ = m) matches up to
the waves in phase, i.e., both channel walls move inward or outward concurrently . Further,
aq,a,,dq, d,, and ¢ satisfy the next relation at the inlet of the divergent channel
a? + a3 + 2a,a, Cos(p) < (d; +d,)? (3)
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3- Fundamental Computation of Lorentz Force 3
To calculate the Lorentz force, we will apply the magnetic field in the Y — direction and, thereafter,
we are interested in the analysis of the impact of magnetic field on the flow. Suppose the fluid to be

electrically conducting in the existence of a uniform inclined magnetic field B = (0,By, 0).

N N

I EA A" B}
VXB = u v 0= Bouk (4)
0 By O

Hence

J= 0(17 X E) = aBouE (5)

Then, by Ohm’s law one has

Tk

JXB=1|0 0 oByu|=—-0Bjul (6)
0 By 0

in which J is the current density vector, (o) is the electrical conductivity of fluid, and (B,) is the
magnetic field strength. It is obvious that the influence of magnetic field on the fluid flux is substantial
in X — direction .
4- The Governing Equations

The governing equations of motion of incompressible MHD fluid model, with variable viscosity,
through an inclined tapered asymmetric channel in laboratory frame are
The continuity equation
ou | v
2t = (7
The momentum equations

U —0U =00 0P 0 [_ 70U 9 [_—, =\ (O0V 0O — =
P E-'_UE-H/W] :_ﬁ+2ﬁ[u(T)ﬁ]+ﬁ ‘U,(T)(ﬁﬁ'ﬁ)] —aB§U+pga1(T—

. = . u(T) =
To) Sin(§) + pgas (€ = Co) Sin(§) ~ 52U ®)
OV =V CoV] _ 9P o 9 [ o dV] 0 [ (37, 00N] _EMD o
p E"’Uﬁ"’vﬁ]_ a?"’za?['“(T)a?]+a)?[“(T)(ax+a?)] r7id ©)

The energy equation
T T = 25 25 =
pCy |3+ U2+ 7 22| = |55 + 55| + 5E+0Q (10)
The concentration equation
aC  ~dC  5aC a%C | 9%C
§+U§+V£=D[ﬁ+ﬁ]+a[ﬁ+ﬁ (11)
where U is the axial velocity, V is the transverse velocity, T is the temperature, and C is the
concentration. p, ko, P, Qo,k, By, D, 0, Ky, T,y, a1, @, represent the density, permeability parameter
the pressure, constant heat addition/absorption, thermal conductivity, constant magnetic field,
coefficient of mass diffusivity, electrical conductivity, thermal diffusion ratio, mean temperature,
coefficient of linear thermal expansion, and coefficient of expansion with concentration, respectively.
By Rosseland approximation [20], the relative heat flux is expressed as
— 46 9T*
ar = 3055 (12)
where (k)and (o) are the mean absorption coefficient and the Stefan- Boltzman constant,
respectively. Taking into account that the temperature variance within the fluid mass that flows is
adequately small, by Taylor expansion and cancelling higher-order terms, we can write

DK [92T aZT]

T* = 4T3T — 3T} (13)
By substituting Eq.(13) into Eqg.(12), we get

_ 160 T3 dT

qr = - 3k'0 E (14)

The boundary conditions at the wall are listed below:
Model-1: The appropriate boundary conditions, including wall slip, convective and concentration, are
given as follows
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U+poSi=0, T=T, C=C at VT=h (15)
U-fo2=0, T=T, C=Cyat ¥ =h, (16)
Model-2: The appropriate boundary conditions, including wall no-slip, convective and concentration ,
are given as follows
U=0, T=T, C=C,at Y=~ (17)
U=0, T=T, C=Cyat Y=h, (18)
The flow phenomenon is fundamentally unsteady in the laboratory coordinate system (X,Y, ).
However, it can be treated as a steady flow in a coordinate system (x, y), rotating with equal angular
velocity as a laboratory coordinate, which moves with the speed of the wave. The relationship between
the two frames is described in the following:
y=Y, x=X-ct,u=U—-c,v=V,p(x,y) =PX,VY,T), T=T, C=C (19)
in which w, v, p, T and C designate velocity components, pressure, temperature and concentration
in the wave frame, respectively.
After using the conversions in Eq.(19), Egs.(7)-(11) in the wave frame will be formed as below

6(u+c) v
6(x+ct) =0 (20)
6(u+c) a(u+c) _d@+a)] _  9p a 6(u+c) v
[ + ( u+tc )6(f+cﬂ v ay T 8(x+ch) 6(9?+cf)[ 6(x+cf)] NET [ (6(x+cf) +
a(+c) : [ (T)
%)] — 0B (@ + ¢) + pgaa (T = T) sin(&) + pgar (€ = Co) sin() = £ (@ + <) (21)
_ov
p [6t t (u+ )(x+cf) tv _y - __+ ay[ ( )6(x+ct)]
v a(u+c) i (T) -
6(x+cf)[ ( ) (6(x+cf) + ay )] B Ko v (22)
_oT] _ 9°T 62_T 6qr
pC [at + (u tc )6(x+cﬂ TV =K [(6(f+cf)2 + 6372)] +Q0 (23)
Coc Tt ooty oker( ot o
ot + (u te )6(x+ct_) 5 =D [(6(x+cf)2 + ay )] + Tm (6(x+ct)2 t 6y2)] (24)
To S|mpI|fy the governing equations, the next dimensionless quantities are introduced
x _ ; ¢ ct _ E _ Ay d1 12
A'y dy’ _A'u_c'v dlc’p_cluo
_h _h Y _ %2 %
hl_dl' Z_dl,a_dl’ _led_dl ’ (25)
T) T-T, (€-Cy) di1 A
w(®) = ( 0= (AT0)¢= Ac0’6=7’ :le_l
J

Where X,y t,u,vpab0,¢p,6,m are the components of the dimensionless coordinates ,the
dimensionless time, the dimensionless axial velocity, the dimensionless transverse component of
velocity, the dimensionless pressure, the amplitudes of the lower wall, the amplitudes of the upper
wall, the dimensionless viscosity, the dimensionless temperature, the dimensionless concentration, the
wave number, and the non-uniform parameter, respectively. AC = (C; — Cy) and AT = (T; — Typ)
denote the mass concentration difference and temperature difference, respectively.

Also, we shall make use of several dimensionless parameters that are registered below:

Gr — pgdi(AT)a, Gm = pgdi(AT)a, M2 = Bédic B = di°Qo _ pdi2c
cuo ' cuo ' to ATk’ Ho (26)
DKrT, 166 T3 C
K=20  sr=_2rTo  go— o Np=10T0 p._ Koty
dyi? UoTm(C—Co) pD 3kdqk

where Gr and Gm are called the Grashof number which stands for the solute Grashof number, M
is the Hartmann number, £ is the heat source / sink parameter, Re is the Reynolds number, K is the
Darcy number, Sr is the Soret number which represents the thermal diffusion effect, Sc is the Schmidt
number, Nr is the thermal radiation parameter, and Pr is the Prandtl number.

By using the dimensionless quantities in (25) and (26), with the flow being steady, the equations

(20) to (24 ) become
ou | @
-~ 5:0 (27)
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g —_% 20 ou 529 L O\ _ a2
Re.S [(u + 1) + v ] 5+ 26 P [M(Q) P ] + = [y(@)( Frs 6y)] M (u+1)+
Gr.0.sin(§) + Gm. ¢.sin(¢) — @ (u+1) (28)
3 o, =% Zi ) 4 2 52 2 (v u))_ 52 KO
Re.s [(u+1)7+v5]_ +26 [ ) ]+ 52 [u(6)8 (ax+ay)] 5282y (29)
29 . a29 226
Re.8.Pr|(u+ 13+ ] = [52 o+ ] +Nr S HAT. B (30)
a¢ a¢ 2 az‘b 2 62
Re.5[u+1)5t+v ay] ~[6253 ] +Sr [5 % 4 —] (31)
The stream function y(x, y, t) and its relatlonshlp Wlth veIOC|ty components is defined below
oY oy
u=Eand U_—a (32)

Now, by the long wavelength approximation §(8 << 1) and considering low Reynolds number
(Re = 0), the Egs. (27)-(31) become

ooy~ oy =0 &
- [ QF ] M2 (""" +1) + Gr.0.sin(§) + Gm. ¢.sin(§) — "Ef)( +1) (34)
Z_Z - 0 (39)
(Nr + 1)62—9+[3 =0 (36)
sl +srliz] =0 @)

For the ease of investigation, most studies on fluid mechanics take fluid with a constant viscosity .
But in several processes, the viscosity is a function of heat, and out of several variations of viscosity
with non-dimensional temperature, the following form was proposed by Slattery [21].
n®) =e*® or u@ =1-ab where a<«<1. (38)
where (a) is the viscosity parameter, which is a constant. Results for the constant viscosity are
obtained for = 0
By the aid of Eq.(38) , the dimensionless Eq.(34) will be
ax [(1 — af) o w] M? (azp + 1) + Gr.6.sin(¢) + Gm. ¢.sin(¢) — (1_:9) (aw + 1) (39)
Eq. (35) shows that the pressure is independent of the dimensionless coordinate ( y ). By combining
Egs. (35) & (39) and after removing the pressure, we get the following

4 3 2 2 2
0= (1—cx@)%—Zoz%M—(xﬂu—(N2 —%a@)u+gae( Wy 1) +Gr — sm($)+

dy oy3 dy?2 0y? dy2  koy
Gm. g—‘;’. sin(§) (40)
N2 = M2 42
The suitable boundary conditions in non-dimensional wave frame are
Model-1:
_E - -1, ¢= =
lp_z '6y ﬁlayz_ 1 ’ 9_1l¢_1 aty_hl (41)
ll)=—§ 61/; ﬁlaylp -1, 60=0,¢=0 at y=h (42)
Model-2
w=§ '%}:0, 0=1,¢=1 at y=h (43)
F a
Y=-7,5=0,60=0,0=0 aty=h (44)
Bo

where B, = ' is the non-dimensional velocity-slip parameter and (F ) is the non-dimensional mean
1

flow rate in the wave frame.
The non-dimensional forms of the lower and upper walls are

hi(x) =1+ m(t+x) + a Cos(2mx) (45)
hy(x) =—d —m(t +x) — b Cosax + ¢) (46)
Also the Eq.(3) in the dimensionless frame is

a? + b% + 2abCos(¢) < (1 + d)? (47)

858



Kareem and Abdulhadi Iragi Journal of Science, 2020, Vol. 61, No. 4, pp: 854-869

5- Rate of Volume Flow
The instantaneous volume flow rate in the laboratory frame of reference is defined as

_ () =, 5 o _

g= fﬁlz((;ff)) U(X,7,©) dY (48)
Likewise , the rate of volume flow in the wave frame is obtained as

_ Rp(ZE) — o o

G =i uE y)dy (49)

Using the conversions (19) in (48), and with (49), we obtain the connection between the volumetric
flow rates as follows

Q=q+c(h(XT) — ha(%,1)) (50)
The mean flow over a period of time T = (%) at afixed position x is given by
0=7), Qat (51)
By substituting (50) into (51), we have
Q=q+c(d,+dy)+2.mx (52)
Let (Q) be the dimensionless time mean flow, where

-4 _Q
F=_gand Q=_- (53)
The dimensionless form of (48) is
Q= fudy (54)
We derive the next relations by using (52)
Q=F+1+d+2m (55)
and

hz a

F =[S dy = p(hy) = (k) (56)

6- Solutions of The Temperature and Concentration Equations
We obtain the exact solution for the temperature Eq.(36), satisfying the boundary conditions (41) &
(42), by the following

o=—-L 1 1yc (57)
2(14nr) T 1T YR

where

C = 2h,+Bh2h,—Bhih3+2h,Nr

1= 2(h1—hy)(1+NT)
2+Bh?—Bh3+2Nr

Cp=——"77"—"—"""—"—

2(=hy+hy)(1+NT)
While the solution of the concentration Eqg. (37), with boundary conditions (41 ) & (42), is given by
2

$1 = s+ Cs + ¥Cs (58)
where
Ca = — 2h,4+2hyNr—Bhi2h,ScSr+Bhihy2ScSr

3 2(hy—hy)(1+NT)
C, = — 2+2Nr—[?h125c5r+ﬂh225c5r

4 2(=hy+hy)(1+NT)
7- The Perturbation Technique

The momentum equation (40) is non-linear. For arbitrary values of the parameters contained in this

equation, the exact solution appears very impossible to obtain. However, the viscosity parameter () is
very small. Therefore, the consideration is concentrated to the perturbation technique for a small fluid
parameter («) . For that, we can widen the stream function () , pressure (P), and the flow rate (F) in

a power series form, as follows
Y =Yg+ ap; +atiP, + -
P =Py +aP;, + a?P, + - (59)
F = Fy + aF; + a?F, + -
By substituting Eq.(59) into Egs.(39) & (40) and then comparing the coefficients of the same power
of up to the first order, we get the following two system zeroth-order and first-order equations:
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7.1- Zeroth Order System

% _ 23 1P0 2 (9o . _ . _m %
x -M ( +1) Gr.@.sm(f) Gm.d).sm(é) - (ay + 1) (60)
0= M (NZ) > ¢° + Gr — sm(E) + Gm — sm(E) (61)
with boundary condltlons
Model-1:
F, EI
ho=5 . % ﬁlay =-1,0=1,¢6=1 at y=h
F, d d (62)
woz_?o,alyo_ﬁlﬁwzo:_l, 9:0,¢:0 at y:hz
Model-2
¢0=% , aaiy—o 6=1, ¢=1 at y=h
63
po=-2 %:0,9:0, =0 at y=h, (63)
By solving the Eq.(61) for Model-1, the final solution for the zeroth order is
2eNYCg+2e~NY Cy+(C,Gm+C,Gr)y2Sin(é) B(GV‘G;“SC“WS““)
_ (1+Nr)
Yo = Cy+yCs oN? (64)
7.2- First Order System
The complemented first order perturbation system is found in the next form
Opy _ %Yy n 0% 000%y 2 9%s , 6 (9%
ax ~ ay3 4 dy3 0y 0y? N ay tx ( + 1) (65)
_ oM g0ty ,000%py 920070 _ 240 w1 4 89%%0 | 106 (9uq
0= ay* 0 oy* dy dy3 dy2 0y? (N ) K ay? s+ Kay( + 1) (66)
with boundary conditions
Model-1:
2
lpl:% ) alpl_l_ﬁla;pzl:oigzlid): at y:hl
67
pr=-2, Mg oh_0,0-0,4=0 a y=h 7
Model-2
F ]
Yo=2 , B=0,0=1,¢=1 a y=h
68
Yr=-2, F=0,0=0,6=0 at y=h (68)

The first order solution gained from the above system is
1

Yy =az +yas + W(e—’vyu + Nr)(B(Cs(—45 — 42Ny — 18N2y?6Ny + 6N?y? +
4N3y3)) — eNY(8(1 + Cg)N*y3 + Cse™NY (45 — 42Ny + 18N2y? — 4N3y3 + kN?(—3 + 6Ny —
6N2y? + 4N3y3)))) + 6N(1 + Nr)(—2C;N(—1 + kN?)(—Cse?M? (=5 + 2Ny) + C¢(5 + 2Ny)) +
C,(Ce(7 + 6Ny + 2N?y? + kN?(3 — 2Ny — 2N?y?)) + eV (4(1 + Cg)N3y? + CseMV (=7 +
6Ny — 2N2y? + kN?(=3 — 2Ny + 2N?y?)))) + 8kN3(e?*NVa, + a,))) — %yz(—ZO(C4Gm +
C,Gr)N?(1+ Nr)2(3C, + 2C,y) — 6B%(Gr — GmScSr)y(20 — 10kN? + N2y?) + 58(1 +
N7)(4C,N?(Gr — GmScSr)y — 3C,GmScSr(12 — 8kN? + N?y?) + 6C,Gr(12 — 6kN? + N2y?) +
3C,Gm(12 — 4kN? + N%y?)))Sin[¢]) (69)
The values of coefficients (Cs, Cg, C7, Cg,aq,a5,a3,a,) are large non-constant and their values can
be calculated with the boundary conditions in Eq.(67) by using Mathematica 11 programs. Also, these
coefficients are changing when we use the no-slip conditions in Eqgs.(63) & (68).
8- Results and Discussion

This section is devoted to study the influences of different parameters on the axial velocity for both
models, i.e., temperature distribution, concentration distribution, and pressure gradient. The results are
described by the graphical clarifications while Mathematica program was used to obtain results. The
trapping phenomenon was also studied for the slip condition through graphs.
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8.1- Velocity Profile

The axial velocity is calculated at the (x = 0.7) cross-section in the cases of slip and no-slip
conditions of the channel, which are compared based on differences in physical parameters such as
Grashof number (Gr) , the non-uniform parameter (m), the solute Grashof number (Gm) , Hartman
number (M), and mean flow rate (Q), via Figures -(1-5).

Figure-1 provides an idea of the difference in the axial velocity that takes place with the variation
in the Grashof number (Gr). When the value of (Gr) is increased, the velocity profile is progressively
reduced down to a definite point which is called the point of inflexion. Next to this point , the
orientation is reflected, where with the augmentation of (Gr), the velocity progressively increases,
with the observation that the velocity profile does not change near the walls of the channel for model-
1. Whereas the velocity increases up to the point of inflexion at (y = —1.61). Following this point,
the velocity decreases down to another point of inflexion at (y = —0.44 ), then it increases again and
also notices that the velocity profile does not change near the walls of the channel for model -2. the
measures of the velocity close in on a specific value at some point of the upper wall of the channel
for model -2. The influence of the non-uniform parameter (m) on the axial velocity is presented in
Figure-2. We observed that the velocity distribution decreases in the middle of the channel by
increasing the non-uniform parameter, with the note that the velocity increases near the walls channel
for both model, Figure-3 denotes that in both model, the axial velocity decreases in a part of the
channel but it increases in another part with increasing the value of (Gm). Figure-4 exhibits the
variation in the axial velocity with the alteration in the value of (M) for both models. It is important to
note the decrease in the velocity near the center of channel (for —0.575 <y < 0.898) and the
increase in the remaining intervals with the increase of (M) for model-1. While in model -2 , we
observed the existence of two points of inflexion. It may be also noted that the orientation of velocity
is reversed after passing the point of inflexion and that the measures of the velocity converge to a
specific value at some point of the upper wall. These results appear as factual because the magnetic
field acts in the transverse trend to the flow and the magnetic force resists the flow. The influence of
the parameter (Q) on the velocity profile is shown in Figure-5. We observed that the velocity
distribution increases with increasing the mean flow rate (Q) for model-1, whereas, for model-2, the
velocity increases in the middle of the channel and decreases near the walls with increasing (Q).

020 f

02f | is=ss . 015 | ,22253s

—— Y YL .3 P .
y "" _‘-—-——\ 010 £ /—\“
\
\

v\ 0.05 |
—_— G =-1 =]

5

702 L

\ 0.00 \
Gr=1 \ 005 [} \
-04 ) ’ 1 “
..... Gr=3 \ —-0.10 [l
06| ‘ ‘ ‘ A —015 f1f TTra =3 ‘ A
-10 -05 00 05 10 15 -15 -10 -05 00 0.5 10
y y
Model-1: slip Model-2: no-slip

Figure 1-The effect of (Gr) on velocity profile at a = 0.5,b = 0.5, = Pi/4,t =03,m=0.1,Q =
24,p,=05¢ = Pi/4,k =1.5a=0.05Nr=08,=1,M=4,d=1, Sc=2,Sr=3,Gm = 2.
02f ‘ ‘ ‘ ‘ ] 02 77 ‘ ‘ ‘ ‘ ‘

01¢ (m ---- Q\ /T
------ >
0.0 Ay 01 // Ce* -® '\“

oL = ool s
702,

=1

-
-
-
——"—‘
-

m=01
- =01
-03} m =015 "
----- m =014 -01f m =015
-4t 0 N1 me=a- m =014

-05¢F -02}

-10 -05 0.0 05 10 15

Model-1: slip Model-2: no-slip
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Figure 2-The effect of (m) on velocity profile at a = 0.5,b = 0.5,¢ = Pi/4,t =0.3,Nr =0.8,Q =
24,3, =05{= Pi/4,k =1.5,Gr=2,0=0.05p=1,M=4,d=1, Sc=2,Sr =3, Gm = 2.
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Figure 3-The effect of (Gm) on velocity profile at a = 0.5,b = 0.5, = Pi/4,t =03,m=0.1,Q =
24, =05(= Pi/4,k =15Gr=2,Nr=08=1,M=4,d=1, Sc=2,Sr=3, o =0.5.
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Figure 4-The effect of (M) on velocity profile at a = 0.5,b = 0.5, = Pi/4,t =0.3,m =0.1,Q =
2.4,[31 =0.5,(=Pi/4,k=15Gr=2,Nr=08B=1,0=0.05d=1, Sc=2,Sr=3, Gm =
2.
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Figure 5-The effect of (Q) on velocity profile at a = 0.5,b = 0.5, = Pi/4,t =03,m =0.1,M =
4,p, =05,{ =Pi/4,k=15Gr=2,Nr=08,=1,0=0.05d=1, Sc=2,Sr=3, Gm = 2.

8.2- Temperature Profile

Figures-(6-10) depict the impacts of heat transfer on the peristaltic flow for several values of
parameters. The plots provide important information that deal with the heat transference in the fluid.
Fig. 6 demonstrates the effects of the heat source / sink parameter () on the temperature distribution.
The graphical results show that the temperature increases with the increase in the heat generation
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parameter. However, the scheme presented in Figure- 7 points to an adverse direction, where the value
of the thermal radiation parameter (Nr) is increased. This figure shows that the temperature
distribution is greatly influenced by (Nr). Here we can make an important remark that the temperature
is reduced with the increase in thermal radiation. Further, Figs. 8-10 demonstrate the effects of the
phase difference (¢) , the amplitude of the upper wall (b). and the amplitude of the lower wall (a) on
the temperature distribution. It can be observed that the temperature distribution increases with
increasing (¢) and (b). The temperature differs significantly at the lower wall and middle part, while
an increase in the amplitude of the lower wall (a) enhances the temperature distribution at the upper
wall as well as in the center of the channel.
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Figure 6-The effect of (B) on temperature Figure7-The effect of (B) on temperature
profile ata x=17,a=05b=05¢= profile at x=17,a=0.5b=05¢=

n/4,t=03,m=01Nr=1,d =1. n/4,t=03,m=01p=1,d=1.
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Figure 8-The effect of (@) on temperature Figure 9-The effect of (b) on temperature
profile at x=17,a=05b=05t= profile at x=17,a=05t=03m=
03,m=01Nr=1p=1d=1. 0.L,Nr=1,p=1,d=1,¢ =1/4.
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Figure 10-The effect of (a) on temperature
profile at x=17,b=05t=03m=
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01,Nr=1,=1,d=1,¢ =n/4.

8.3- Concentration Profile

Iragi Journal of Science, 2020, Vol. 61, No. 4, pp: 854-869

Figures-(11-16) are plotted to illustrate the effects of different parameters on the concentration
profile. In Figures-(11-13), it is noticed that the concentration profile decreases with the increase in
Schmidt number (Sc), Soret number (Sr) and the heat source / sink parameter (3). From Figure-14, it
is obvious that the concentration profile increases with increasing the thermal radiation parameter (Nr)
. Also, the effect of the non-uniform parameter (m) on the concentration is shown in Figure-15 .1t can
be noted that the concentration profile decreases with increasing (m) towards the upper wall of the
channel. While Figure-16 demonstrates that the concentration profile increases in the boundary layer
and progressively decreases upon approaching the upper wall with increasing the phase difference

().

S 04r¢

-05 0.0 0.5 10

Figure 11-The effect of (Sr) on concentration
profileatx = 1.7,a =0.5,b = 0.5,t = 0.3,m =
0.L,Nr=08p=1d=1,Sc=0.2,,¢ =1/4
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Figure 13-The effect of (B) on concentration
profile at x =1.7,a=0.5,b = 0.5,t = 0.3,m =
0.1,Nr=0.8,d =1,5¢c=04,Sr =0.5,,¢ =
n/4
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Figure 12-The effect of (Sc) on concentration
profileatx = 1.7,a = 0.5,b = 0.5,t =
03,m=01Nr=08p=1d=1 ,Sr=
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1,Nr=0.8,d =1,5¢c =0.4,5r =0.5,¢ = /4. 03,m=01,Nr=0.8,d=1,Sc=04,S5r=
05,8 =1.

8.4- Pressure Gradient Profile

Figures-(17-21) show the alteration of pressure gradient against the axial coordinate x for various
wave forms. The impacts of Gr, (Gm) and the heat source / sink parameter () on pressure gradient
are exhibited in Figures-(17-19). It can be observed from Figure-17 that increasing Grashof number
increases the pressure gradient. It is also noticed that increasing (Gm) and () increases the pressure
gradient. In Figures-(20 & 21), it is illustrated that increasing the Soret number (Sr) and Schmidt
number (Sc) leads to decreased pressure gradient . It is noted that, in the wider part of the channels x
€[0, 0.2] and x € [0.7, 1], the pressure gradient is low, so that the flow can be simply passed without
the imposition of high pressure gradient. However, in the tight part of the channel x € [0.2, 0.7], the
pressure gradient is high, that is, a much higher pressure gradient is needed to preserve the same given
volume of flow rate.

dp/dx

00 0.2 04 06 08 10

Figure 18-The effect of (Gm) on the pressure

Figure 17-The effect of (Gr) on the pressure . i
gradient profile at a=0.5b=0.5¢ =

gradient profile at a=0.5b=0.5,¢ =

Pi/4,t=03,m=01,0Q =24,p, = Pi/4,t=03m=010=24p, =
0.5,¢ = Pi/4,k = 1.5,0 = 0.05,Nr = 0.5,{ = Pi/4,k = 15,Gr = 2,Nr =
O.8,B:1,M:4,d:1,SCZZ,Sr:3, 0.8,B=1,M=4,d=1,SC=2,SI‘=3,

0.0 0.2 04 0.6 08 10

Figure 19-The effect of (8) on the pressure  Figure 20-The effect of (Sr) on the pressure

gradient profileata = 0.5,b = 0.5, ¢ = gradient profileata = 0.5,b = 0.5,¢ =
Pi/4,t =03,m=0.1,Q = 2.4,p, = Pi/4,t=03,m=0.1,Q = 2.4,p, =
0.5,{ = Pi/4,k = 1.5,0. = 0.05,Nr = 0.5,{ = Pi/4,k = 1.5,0 = 0.05,Nr =
08,Gr=2,M=4d=1, Sc=2,Sr=3, 08B=1G6Gr=2,d=1, M=4,5r=3,
Gm = 2. Gm = 2.
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dp/dx

Figure 21-The effect of (Sc) on the pressure
gradient profile at a = 0.5,b = 0.5, = Pi/4,t =
03,m=01,Q =24, =05, =Pi/4,k =
1.5,00=0.05Nr=08,B=1,M=4,d=1,
Gr=2,Sr=3, Gm = 2.

8.5- Trapping

Trapping is also an important phenomenon of peristaltic motion, that is a formation of an inside
movable circulating bolus that is closed by numerous streamlines, and shifts with the peristaltic wave
at the speediness of waves. This phenomenon is useful in grasping the motion of the gastrointestinal
tract and in the arrangement of thrombus in veins. Figures-(22-25) show various values of effective
parameters on the trapping stream lines. The influence of the viscosity parameter (o) on trapping is
analyzed in Figure-22 which depicts that the magnitude of the trapped bolus increases with an
increased values of (a). This observation reveals a very significant phenomenon that, as the fluid
viscosity is reduced, the bolus size is increased. The effect of Hartman number is calculated through
Figure-23. It is observed that the larger size of the bolus becomes smaller with the increase of Hartman
number. This result is expected since the Lorentz force opposes the fluid flow and, hence, decreases
the fluid velocity. Therefore, we make here a significant notice that bolus formation can be averted by
setting the force of the applied magnetic field. Figures-(24-25) exhibit that the volume of the bolus
raises with increasing of the Grashof number and the heat source / sink parameter .

r4 e - 2 -0

(a) (b)
Figure 22-The effect of (o) on the streamlines at = 0.5,b = 0.5,¢ = Pi/4,t =0.3,m =0.1,Q =
24, =05(= Pi/4,k=15Gr=2,Nr=08p=1,M=4,d=1, Sc=2,Sr=3, Gm =2
(@) a=0.1 (b) a.=0.5.
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G)) (b)
Figure 23-The effect of (M) on the streamlines at = 0.5,b = 0.5,¢ = Pi/4,t =0.3,m =0.1,Q =
24,8, =05,¢= Pi/4,k =1.5a4=0.05Nr=08,=1,6Gr=2,d=1, Sc=2,Sr=3, Gm =
2. (@M=3 (h)M=4.

(a) (b)
Figure 24-The effect of (Gr) on the streamlines at = 0.5,b = 0.5,¢ = Pi/4,t =0.3,m =0.1,Q =
24,8, =05 ="Pi/4,k=150a=005Nr=08B=1,M=4d=1, Sc=2,Sr=3, Gm =2
. () Gr=5 (b) Gr=8.

(a) (b)
Figure 25-The effect of (8) on the streamlines at = 0.5,b = 0.5,¢ = Pi/4,t =0.3,m =0.1,Q =
24, =05(= Pi/4,k =1.5,a=0.05,Nr=0.8,Gr =2, M =4,d=1, Sc=2,Sr=3, Gm =

2. (@)B=5 (b)p=s.

867



Kareem and Abdulhadi Iragi Journal of Science, 2020, Vol. 61, No. 4, pp: 854-869

9- Conclusions

In this paper, we studied the peristaltic flow of variable viscosity fluid in porous medium through
the tapered inclined asymmetric channel, under the impact of magnetic field, heat, and mass transfer .
The channel asymmetry was generated by selecting the peristaltic waves on the non-uniform walls to
have various amplitudes and phases. The solution was acquired by taking assumptions of lengthy
wavelength approximation and small Renolds number. The main results and conclusions of this
investigation are summarized as follows.
- The slip and no-slip conditions do not influence the fluid velocity with the increase of the values of
(Gm) and (m).
- The (Gr) and (M) parameters have different effects on velocity for both models.
- The increase of the mean flow rate (Q) leads to an increase in the velocity in model-1 and a
decrease near the walls in model -2.
- The temperature distribution is a decreasing function with rising values of (Nr) and an increasing
function with the enhancement of the values of (B), (¢), (b) and (a).
- The concentration profile is diminished due to an increase in (Sr), (Sc), (B), (m), whereas it
increases with the parameter (¢) and (Nr).
- Pressure gradient decreases with the increase of the inclination angle, Grashof number and volume
flow rate, while this trend is reversed in the couple stress parameter.
- Increasing of the megnetic filed decreases the peristaltic pumping size of the trapped bolus.
- The magnitude of the trapped bolus increases through the increase of Grashof number , the heat
source/sink parameter, and viscosity.
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