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Abstract 
    The effects of short-range correlation on elastic Coulomb (charge) form factors, 

charge density distributions as well as root mean square charge radii of various fp  

nuclei (for instance, 
46, 48, 50

Ti, 
52, 54

Cr, 
56, 58

Fe, and 
72, 74, 76

Ge
 
nuclei) are examined. 

The one- and two body terms of the cluster expansion together with the single-

particle harmonic oscillator wave functions are utilized. For the purpose of 

embedding these effects into the formulae of charge density )(r  and form factor 

),(qF  we employ the correlation function of Jastrow-type. These formulae depend 

upon the short-range correlation parameter   (which instigates from the Jastrow 

function) and the oscillator size parameter .b   Both   and b  are found by the 

fitting to the measured elastic form factors. It is noticed that the embedding of short-

range correlation effects into the calculations of )(qF  and )(r  is a requisite for 

the achievement of a vital change in the computed results and remarkably vital for 

the characterization of the measured data. 

 

Keywords: short-range correlation effects; electron scattering from atomic nuclei; 

elastic charge form factors; charge densities; root mean square radii. 
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 الخلاصة
ارتباط المدى القرير على عهامل التذكل الكهلهمية المرنة وتهزيعات كثافة الذحنة  دالة تم دراسة تأثيرات     

 ,50Ti, 52 ,48 ,46المختلفة )على سبيل المثال   fpلنهى وكذلك للجذر التربيعي لمعدل نرف قطر الذحنة  

54Cr, 56, 58Fe, and 72, 74, 76Ge لقد تم استخدام حدود الجديم والجدمين للتمدد العنقهدي مع الدالة .)
 r)(المهجة للمتذبذب التهافقي للجديم المنفرد. لغرض ادخال ىذه التأثيرات في صيغ كثافة الذحنة 

. تعتمد ىذه الريغ Jastrow، فإننا ندتخدم دالة ارتباط المدى القرير من نهع  qF)(وعامل التذكل 
من  b و βيتم ايجاد المعلمتين  . b( ومعلمة  حجم التذبذب Jastrow)التي تحفز من دالة  βعلى المعلمة 

ارتباط المدى القرير في  دالة وجدنا بأن ادخال تأثيرات خلال ملائمة عهامل التذكل المرنو المقاسة عمليا.
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حدابات عهامل التذكل الكهلهمية المرنة وتهزيعات كثافة الذحنة مطلهب وضروري لتحقيق ووصف البيانات 
 .المقاسة عمليا بذكل ملحهظ

1. Introduction 

     Estimation of charge densities )(r  and elastic charge form factors )(qF  of atomic nuclei is an 

interesting problem [1]. The opportunity of observing this problem is via using the independent-

particle model (IPM), where the IPM fails for imitating the measured data at large momentum transfer 

[2-11]. As a consequence, alteration of single particle potentials (SPP) must be correctly 

accomplished. Indeed, the repulsion of short-range in the SPP seems proper for light nuclei [12]. For 

example, by the potential of the harmonic oscillator (HO), the elastic )(qF  of light nucleus (such as 
4
He) may be well imitated. While for denser nuclei (such as 

12
C and 

16
O), the potentials of the state-

dependent look are required in despite that the fitting is not well at the high momentum transfer )(q  

region [12]. An additional method, which is to some extent alike, is the introduction of the short-range 

correlation (SRC) into the Slater determinant. Numerous studies [4-11, 13-15] were conducted in this 

tendency through joining light closed shell nuclei in the perspective of the Born approximation. 

   Czyz and Lesniak [2] were the first to demonstrate that the nature of diffraction in the form factors 

of 
4
He may be qualitatively recognized via Jastrow-type correlations [16]. Khana [3] revealed that the 

embedding of SRC provides an acceptable description of electron scattering data from  the nucleus 

Ca40
 and makes predictions for the presentation of the cross section at higher .q  Atti [4,5] exhibited 

that electron scattering at larger q  looks to provide a sufficient sign for the presence of SRCs in 

atomic nuclei. Bohigas-Stringari [8] and Dal Ri et al. [9] demonstrated that the one-body form factors 

offer an adequate check for the existence of SRCs in atomic nuclei. Stoitsov et al. [11] prolonged the 

model of Jastrow correlations to denser atomic nuclei like 
16

O, 
36

Ar and 
40

Ca, where this model 

imitated electron scattering data of these denser nuclei very well. 

   Massen et al. [13-15], adopting the studies of cluster expansion [17-19], derived a formula for elastic 

form factor shortened at the two-body part. This formula was utilized for computations of elastic form 

factor of the closed nuclei 
4
He, 

16
O and 

40
Ca, as well as using a rough technique of open s-, p-, and sd-

shell nuclei. Consequently, Massen and Moustakidis [20] accomplished a methodical analysis for the 

influence of SRC’s on s-, p-, and sd-shell nuclei with completely shifting from their technique 

accomplished in earlier studies [13-15]. Explicit formulae for form factors and densities were derived 

with the factor cluster expansion and Jastrow correlation functions which introduce the SRCs. These 

formulae are governed by wave functions of the single-particle and not by those of the relative motion 

of two-particles as was the situation in our earlier studies [21, 22] and other studies [4, 10, 13]. 

   There is no full investigation for the influence of short-range correlations on form factors and charge 

densities of nuclei away from the sd-shell. Thus, in the present investigation, we aim to explore the 

influence of short-range correlations on elastic charge form factors (ECFF’s), F (q), charge density 

distributions (CDD’s), ρ(r), and root mean square (rms) radii for 
46, 48, 50

Ti, 
52, 54

Cr, 
56, 58

Fe, and 
72, 74, 

76
Ge

 
nuclei. The CDDs and ECFFs formulae depend on the parameters b  (the oscillator size 

parameter) and   (the correlation parameter). Here, b  and   are found by the fit to the measured 

ECFFs. It is noted that the embedding of SRCs is needed for the attainment of a noticeable change in 

the computed ECFFs and CDDs as well as for the spectacular illustration of the experimental data. 

2. Theory 

      For point nucleon system, the ground state density is given by [20] 

,ˆ
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where ),...,,( 21 Arrr  is the nuclear wave function of the many-particle system, A  is the mass 

number of nuclei, 
1

2121 ),...,,(),...,,(


 AAD rrrrrrN  is the normalization factor (found by the 
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relationship  ),1)(
4

0
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and rÔ  is the density operator of the one-particle system 

expressed by 
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   By means of the cluster expansion, the expectation value of the density operator rÔ  is given by  

 .ˆ...ˆˆˆ)(
21 A

rrrDrD

gs

p OOONONr                                                     (3) 

    The cluster expansion causes the separation of one-, two-,..., A-body correlation effects on the 

density. In the present analysis, the three-body term and higher terms are ignored. With this 

approximation, the correlated density )(rgs

p  is expressed as [20] 

 
 .)2,(),(2ˆ

ˆˆ)(

2222
1

21





rOrOON

OONr

rD

rrD

gs

p




                                                        (4) 

     It is evident that the correlated density [eq. (4)] is dependent on the parameter   initiated by the 

correlation of Jastrow-type [16] 

,)(



A

ji

ijrfF                                                                                                             (5) 

     where the two-body correlation function )( ijrf  is a state-independent function that is given by 

].)(exp[1)( 2

jiij rrrf


                                                                                     (6) 

     Note that eq. (6) satisfies the following two conditions: (1) 1)( ijrf  when 
jiij rrr


  is large 

and (2) 0)( ijrf  when .0ijr


 Consequently, the influence of SRC’s becomes essential when the 

value of   is small and vice versa. 

   In eq. (4), the one-body term 
1

ˆ
rO  is given by 
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     where nl  is the occupation probability and )(rnl  is the the radial portion of the single-particle 

harmonic oscillator wave function of the state .nl  

   In eq. (4), the two-body term ),(22 zrO  is given by 

,),,()1(ˆ2),( 2122 ar

A

ji

ijzrrgoijzrO 


                  )2,( z                                 (8) 

where 

),cos2exp()exp()exp(),,( 1221

2

2

2

121 wrzrzrzrzrrg                                                 (9) 

     By expanding the )cos2exp( 1221 wrzr  in terms of  the spherical harmonics [23, 24],  the term 

),(22 zrO  is then formed as [20]  
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where 

2

2

22

0

2

222

*

2*

)2()exp()()(

)exp()()(
4

1
),(

4422

3311

4433

2211

drrzrrizrrr

zrrrzrA

klnln

lnln

klnln

lnln













                                         (11) 

and 000 kll ji
 be the coefficient of Clebsch-Gordan. 

   The CDD )(rgs

ch  for closed shell (with )ZN   nuclei can be related to that of the point nucleon 

system )(rgs

p  by 

),(
2

1
)( rr gs

p

gs

ch           in (e.fm
-3

)                                                                            (12) 

    It is significant to point out that eqs. (7) and (10) are initiated for closed shell (with )ZN   nuclei, 

where nl  is equivalent to 0 or 1. For isotopes of closed shell nuclei, the correlated CDD’s are still 

given by eqs. (7) and (10) because all the isotopic nuclei own similar Z  with the exception that we 

utilize dissimilar values for parameters b  and .  For open shell nuclei, we also utilize eqs. (7) and 

(10) but with .10  nl  

   The mean square charge radii of the nuclei is defined by 

,)(
4
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                                                                                           (13) 

and the normalzation factor of the )(rgs

ch  is given by 





0

2)(4 drrrZ gs

ch                                                                                                  (14) 

     The elastic )(qF  of spin zero nuclei can be related to the ),(rgs

ch  where the incident and scattered 

waves of the electron are characterized by the plane waves. As )(rgs

ch  is spherically symmetric and 

real, then the elastic )(qF  is just the Fourier transform of ),(rgs

ch  i.e. 
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                                                                                 (15) 

By implanting the corrections [25] of the center of mass )4/exp()( 22 AbqqFcm  and finite size 

)4/43.0exp()( 2qqFfs  into eq. (15), we have 

)()()()(
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                                                              (16) 

   It is essential to denote that at ,0q  the target nucleus is assumed as a point particle and with the 

benefit of eq. (14), the elastic )(qF  [eq. (16)] becomes unity, i.e., .1)0( qF
 

3. Results and discussion 

     Computations of elastic )(qF  and )(rgs

ch  of some even fp-shell nuclei (for instance, 
46, 48, 50

Ti, 
52, 

54
Cr, 

56, 58
Fe, and 

72, 74, 76
Ge

 
nuclei) are accomplished on the basis of employing the single particle wave 

functions of the harmonic oscillator with size parameter b  together with eqs. (4), (12) and (16). These 
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nuclei are consisted of a closed shell core of 
40

Ca (i.e., filled 1s, 1p and 2s-1d shells) and active 

particles that move in the orbitals 1f and 2p. Here, we suppose that the number of protons in the 1f- 

and 2p-orbitals is equal to )20( 2 paZ   and pa 2  protons, respectively. Two cases of calculations 

are studied, which designate the computations accomplished by the harmonic oscillator wave 

functions without and with the effect of SRCs. In the first case, the computations are dependent only 

on the parameter b  while in the second case they are dependent on the parameters b  and .  In case 1 

(or case 2), the parameters are determined for each nucleus independently by changing b  (both b  and 

)  so as to fit the computed elastic form factors  to those of experimental ones. The best fit values for 

,b    and for the ,2  

,
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Table 1-Fitted values for b and β, and the computed rms charge radii of the one-body, two-

body and total densities for various fp-shell nuclei found by the χ
2
 fit to the experimental ECFFs. Here, 

case 1 denotes calculations of the one-body term (without SRCs) while case 2 denotes those when 

SRC’s effect is included. The experimental  are taken from [26, 27]. 

Case Nucleus 

Proton Occ. 

probability b 

(fm) 

β 

(fm
-2

) 
χ

2 
 

η1f η2p NSR(HO) SRC Total Exp. 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

46
Ti 

46
Ti 

48
Ti 

48
Ti 

50
Ti 

50
Ti 

52
Cr 

52
Cr 

54
Cr 

54
Cr 

56
Fe 

56
Fe 

58
Fe 

58
Fe 

72
Ge 

72
Ge 

74
Ge 

74
Ge 

76
Ge 

76
Ge 

0.143 

 

 

 

 

 

0.286 

 

 

 

0.429 

 

 

 

0.714 

 

 

 

 

 

0 

 

 

 

 

 

0 

 

 

 

0 

 

 

 

0.333 

 

 

 

 

 

2.009 

1.887 

2.015 

1.891 

2.033 

1.910 

2.002 

1.880 

2.048 

1.924 

2.073 

1.948 

2.070 

1.946 

2.155 

2.026 

2.157 

2.027 

2.167 

2.039 

----- 

2.003 

----- 

2.007 

----- 

2.011 

----- 

1.992 

----- 

2.004 

----- 

2.017 

----- 

2.015 

----- 

1.932 

----- 

1.882 

----- 

1.856 

0.461 

0.179 

0.387 

0.175 

0.543 

0.177 

0.276 

0.136 

0.378 

0.161 

0.311 

0.176 

0.292 

0.164 

0.473 

0.271 

0.491 

0.305 

0.506 

0.278 

3.558 

3.342 

3.568 

3.349 

3.599 

3.382 

3.609 

3.389 

3.691 

3.468 

3.791 

3.563 

3.785 

3.559 

4.062 

3.823 

4.066 

3.824 

4.084 

3.847 

----- 

1.191 

----- 

1.187 

----- 

1.174 

----- 

1.238 

----- 

1.197 

----- 

1.200 

----- 

1.202 

----- 

1.354 

----- 

1.392 

----- 

1.414 

3.558 

3.548 

3.568 

3.553 

3.599 

3.580 

3.309 

3.608 

3.691 

3.669 

3.791 

3.760 

3.785 

3.757 

4.062 

4.055 

4.066 

4.070 

4.084 

4.095 

3.564 

 

3.577 

 

3.567 

 

3.643 

 

3.689 

 

3.801 

 

3.783 

 

4.060 

 

4.075 

 

4.081 

 

are shown in Table- 1. In Table- 1, the calculated root mean square (rms) charge radii
2/12  chr  as 

well as the partaking of SRC’s, 

            1

222/1

2

2  chch rrr ,                                                                                      (18) 

to the 
2/12  chr  are also displayed and compared with the corresponding measured data .2/1

.exp

2  chr  

Table- 1 exhibits that the oscillator parameter b  (considered in cases 1 and 2) holds the inequality 

(b case 1 () b case 2 ),  where the inserting of SRCs leads to raise the relative distance between the 

nucleons which sequential causes to raise the nuclear size. Accordingly, the parameter ,b  which is 

related to the nuclear radius (experimentally fixed), must come to be lesser. 
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   In Figure-1, the ECFF’s of 
46, 48, 50

Ti-isotopes calculated without SRCs (designated by the dashed 

line) and with SRC’s (designated by the solid line) are exposed and compared with the corresponding 

measured data (designated by the symbols) [28-30]. In these isotopes, the occupation number of 

proton in 1f- and 2p-orbitals is assumed to have 143.01 f  and ,02 p  correspondingly. The 

dashed line, in Figures-1(a)-(c), predicts the measured data very well at the momentum transfer region 

10  q  fm
-1

 and under-predicts them at 1q  fm
-1

. On the other hand, including the influence of 

SRCs (the solid line) increases the magnitude of ECFFs at the second maximum region which 

sequential tends to drive them into the position of accordance with the measured data. Moreover, the 

first diffraction minimum in addition to the first and second diffraction maxima exposed in the 

measured data is imitated in the right position by the solid line. Besides, both the presentation and 

magnitude of ECFF’s (shown by the solid line) reveal a well accordance with the measured data. 

 

 
 

Figure 1-Elastic charge form factors for 
46, 48, 50

Ti-isotopes are plotted versus the momentum transfer q 

(in fm
-1

). The dashed and solid curves are the computed form factors without and with the effect of 

SRCs, correspondingly. The experimental data (the symbols of open circle) for 
46

Ti (a) and 
50

Ti (c) is 

taken from [28] while that for 
48

Ti (b), the symbols of open circle and triangle are taken from [29] and 

[30], correspondingly. 

 

     In Figures-(2 and 3), the ECFF’s of 
52, 54

Cr-isotpes and 
56, 58

Fe-isotopes, respectively, that are 

computed without SRCs (labeled by the dashed line) and with considering of SRC’s (labeled by the 

solid line) are exhibited and compared with the corresponding observed data (labeled by the symbols).  

Here, the occupation number of proton in 1f- and 2p-orbitals is supposed to have 286.01 f , 

02 p  [ 429.01 f  and ],02 p  correspondingly. It is evident that the observed data at 1.1q  

and 8.1q  fm
-1

 [ 85.0q  and 7.1q  fm
-1

] is good estimated by the dashed line, whereas at 

8.11.1  q  fm
-1

 [ 7.185.0  q  fm
-1

], the observed data for the first minimum 

[second maximum] is markedly deviated [underestimated] by this line. Inclusion of the influence of 

SRCs (the solid line) tends to enhance the calculated results of ECFFs at 8.11.1  q  fm
-1

 

[ 7.185.0  q  fm
-1

] which sequential tends to bring these ECFFs into the position of accordance 

with the observed data. Generally, the manner and magnitude of the solid line exhibit a good 

accordance with the observed data. Furthermore, all diffraction minima and maxima calculated by the 

solid line are in remarkable agreement with the observed data. 
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Figure 2-Elastic charge form factors for 

52, 54
Cr-isotopes. The organization of the figure, e.g. symbols 

and lines, is similar to that of Fig. 1. The experimental data (designated by the open circle symbols) is 

taken from [31]. 

 

 
Figure 3- Elastic charge form factors for 

56, 58
Fe-isotopes. The organization of the figure, e.g. symbols 

and lines, is similar to that of Fig. 1. The experimental data (labeled by the open circle symbols) is 

taken from [32]. 

 

     In Figure-4, the ECFFs of 
72, 74, 76

Ge-isotopes computed without SRCs (referred to by the dashed 

line) and with SRCs (referred to by the solid line) are shown and compared with those of measured 

data. In these isotopes, the proton occupation number in 1f- and 2p-orbitals is presumed to have 

714.01 f  and ,333.02 p  correspondingly. It is obvious that the data at 8.0q  fm
-1

 (along the 

second, third and fourth diffraction maxima) is obviously under-predicted by the dashed line. 

 
Figure 4-Elastic charge form factors for 

72, 74, 76
Ge-isotopes. The organization of the figure, e.g. 

symbols and lines, is similar to that of Figure-1. The experimental data (designated by the open circle 

symbols) is taken from [33]. 
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     In addition, the first [third] diffraction minimum found in the data is slightly [markedly] deviated 

toward the high momentum transfer by the dashed line. Inserting the influence of SRCs modifies the 

calculated ECFFs (the solid line) at 8.0q  fm
-1

 which sequential tends to take them along the 

position of accordance with the data. Commonly, the presentation of the solid line reveals a very good 

agreement with the measured data along the whole considered q  values.  Moreover, all measured 

maxima and minima are mimicked at correct places of momentum transfer axis. 

 

 
Figure 5-Charge density distributions for 

46, 48, 50
Ti-isotopes. The computed densities without the effect 

of SRCs (described by the dashed line) and with the effect of SRCs (described by the solid line) are 

exposed and compared with those fitted to the experimental ones (described by the open circle 

symbols) [28]. The difference between the dashed and solid distributions is labeled by the symbol 

).(2 r   

     In Figures-(5-8), the ground state CDDs, ),(rgs

ch  of a number of fp-shell nuclei computed without 

SRCs (denoted by the dashed line) and with SRCs (denoted by the solid line) are exposed and 

compared with those fitted to the data (denoted by the open circle symbols) [26, 27]. Additionally, the 

partaking of SRCs 
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Figure 6-Charge density distributions for 

52, 54
Cr-isotopes. The organization of the figure, e.g. symbols 

and lines, is similar to that of Figure-5. The experimental data (designated by the open circle symbols) 

is taken from [26, 27]. 
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Figure 7-Charge density distributions for 

56, 58
Fe-isotopes. The organization of the figure, e.g. symbols 

and lines, is similar to that of Figure-5. The experimental data (designated by the open circle symbols) 

is taken from [26, 27]. 

 

 
Figure 8-Charge density distributions for 

72, 74, 76
Cr-isotopes. The organization of the figure, e.g. 

symbols and lines, is similar to that of Figure-5. The experimental data (designated by the open circle 

symbols) is taken from previous articles [26, 27]. 

 

 

     The )(rgs

ch  is also shown in the above figures and the presentation of )(2 r  is described by some 

oscillations around the r-axis. It is understandable from the above figures that the possibility of a 

proton to exist nearby the central fragment ( fmr 30  ) of )(rgs

ch  is greater than the tail fragment 

( 3r  fm
-1

). Besides, taking into account the SRCs effect leads to diminish considerably the central 

fragment of )(rgs

ch  and to increase slightly the tail fragment of )(rgs

ch  as illustrated by the solid 

lines of the above figures. This means that the insertion of SRCs causes to increase the possibility of 

relocating the protons from the central fragment of the nucleus toward its surface which sequential 

causes to enlarge the rms charge radii and hence reduces the rigidity of nuclei. To keep the size of 

nuclei within the fixed experimental value, the parameter b  must be diminished when taking into 

account the influence of SRCs, see Table- 1. On the other hand, inclusion of SRCs leads to modify the 

computed distributions of )(rgs

ch  (solid line) and improves the degree of accordance with the data.  

4. Conclusions 

     It is concluded that introducing short-range correlation effects is essential for the attainment of a 

remarkable adjustment in the estimated ECFFs and necessary for the spectacular description of 

electron scattering data over the complete range of measured q. 
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