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Abstract  

     In this paper, we consider a two-phase Stefan problem in one-dimensional space 

for parabolic heat equation with non-homogenous Dirichlet boundary condition. 

This problem contains a free boundary depending on time. Therefore, the shape of 

the problem is changing with time. To overcome this issue, we use a simple 

transformation to convert the free-boundary problem to a fixed-boundary problem. 

However, this transformation yields a complex and nonlinear parabolic equation. 

The resulting equation is solved by the finite difference method with Crank-

Nicolson scheme which is unconditionally stable and second-order of accuracy in 

space and time. The numerical results show an excellent accuracy and stable 

solutions for two test examples. 
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 الحل العددي لمسألة ستيفان ذات الجانبين
 

  *محمد صباح حسين ,زهراء عادل
 الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراققسم 

 الخلاصة
في هذا البحث ، نحن اعتبرنا مسالة ستيفان ذات الجانبين في مساحة أحادية البعد، لمعادلة الحرارة      

المكافئة مع الشروط الحدودية غير المتجانسة. هذه المسالة تحتوي على حدود حرة معتمدة على الزمن. لذلك ، 
يتغير شكل الحدود مع الزمن. للتغلب على هذه المشكلة ، استخدمنا تحويل بسيط لتحويل مسالة الحدود الحرة 
إلى مسالة حدود ثابتة. ومع ذلك ، فإن هذا التحويل ينتج عنه معادلة مكافئية معقدة وغير خطية. تم حل 

الذي يكون مستقرا دون قيد أو شرط   Crank-Nicolson المعادلة الناتجة بطريقة الفروق المنتهية مع مخطط
و ذا دقة مضاعفة من حيث البعد والزمن. أظهرت النتائج العددية دقة الحلول وتم إيجاد حلول مستقرة من 

 .خلال مثالين اختباريين
1.Introduction  

     The classical Stefan problem is the name given to an initial –boundary value problem, which 

involves both fixed and moving boundaries. Stefan problems model has been involved in many real-

world engineering situations in which there is a freezing or melting that are causing a boundary to 

change in time, as in melts solidification, water and food freezing, crystal growth, etc. Stefan direct 

problems are boundary value problems for parabolic heat equations in regions with unknown and 

moving boundaries, which requires determining the temperature [1]. 

In a previous article [2], the numerical solution for the free boundary problems has been investigated 

through the finite difference method (FDM) and the minimax approach. Whilst, the numerical solution 

for the free problem in fluid mechanics such as gas-liquid interface problem was considered in another 
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study [3]. Also, a one-side Stefan problem for parabolic equation was solved numerically using shifted 

Chebyshev operational matrix [4]. Other authors [5,6] were concerned with the numerical solution of 

one-phase Stefan problem in addition to the reconstruction of some unknowns which hold physical 

meaning such as the thermal conductivity, heat capacity, and fluid velocity. It is worth to mention that 

Stefan problems are basically restricted to heat transfer problems. However, they can be applied to full 

parabolic equations. 

     In this work, we consider the numerical solution for a two –sided Stefan problem where the free 

boundary depends on time only. This problem is solved by FDM with Crank-Nicolson scheme. 

This paper is organized as follows. In Section 2 the mathematical formulation of the two-sided Stefan 

problem is given. The numerical solution for the problem under consideration using FDM is discussed 

in Section 3. Whilst, the stability analysis for the proposed method is considered in Section 4. In 

Section 5, the results and discussion are presented. Finally, conclusions are highlighted in Section 6.    

2.Mathematical formulation 

Consider the one-dimensional two-phase Stefan problem [7], 

    (   )     (   )    ( )   (   )                      (   )                                                       ( )  
where the free domain     {(   )   ( )       ( )      } , and        ( )   
       ( ) subject to the initial condition 

                         (   )   ( )                  [  ( )   ( )]                                                                ( ) 
and the non-homogenous Dirichlet boundary conditions are 

                                       (  ( )  )    ( )     (  ( )  )    ( )             [   ]     ( )                          
where   ( )        ( )       are given and u is the solution of problem, i.e. temperature. In 

order to solve this problem, we change the variables     
    ( )

  ( )   ( )
        to reduce the free 

boundary domain problem ( )  ( ) to the following fixed boundary domain problem for the 

unknown solution    (   )  where    ( )    ( )    ( )  Assume the transformed 

 (   )   (   ( )    ( )  )  
in the area with a fixed domain 

   {(   )            }  
     where the continuous functions  ( )    ( )  and   ( ) are given. This model has been investigated 

theoretically [7] and no numerical solution was obtained. 

After performing the transformation, the complicated problem turns to a fixed domain problem. 

However a nonlinear equation is obtained. 

     The unique solvability of the direct problem is guaranteed by the continuity of the coefficients  

       ,  and   , as previously reported [8]. 

Now, the problem in fixed domain has the following form which will be solved numerically in the 

next section using a finite-difference scheme.   

    
 (   ( )   ( )  )

  
 ( )

    
 (   ( )   ( )  )   

 
 ( )  

 
 ( )

  ( )
    ( )                                                                                 

                                                          (   ( )    ( )  )            (   )                                                        ( )                                                                                                      
                                              (   )   (   ( )     )               [   ]                              ( )                                                                     
                                           (   )    ( )     (   )    ( )        [   ]                              ( )                                                                    

3. Solution of the direct problem 

      In this section, consider the direct initial boundary value problem (IBVP) ( )  ( )  where the 

functions  (   )  (   )  ( )  ( ) and   ( )       are known and the solution  (   ) is to be 

computed. We employ the Crank-Nicolson finite-difference scheme which is unconditionally stable 

and second order accurate in time and space [9]. 

3.1 Discretization of the problem 

     The discrete form of the problem ( )  ( ) is as follows: We divide the domain 

    (   )  (   ) into M and N subintervals of equal lengths    and    , where the uniform space 

and time increment are    
 

 
 ,    

 

 
 , respectively. We denote the solution at the node point (   ) 

is        (     )   (     )        (  )        (  )        

 (     )       (  )     and  (     )      where                      ̅̅ ̅̅ ̅̅ ,       ̅̅ ̅̅ ̅̅  

In order to apply the CN-scheme for equation (4), we simply assume the right hand side as follows: 
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 (            )  
 (   ( )    ( )  )

  
 ( )

    
 (   ( )    ( )  )    

 
 ( )   

 
 ( )

  ( )
   

                                                                                          ( )   (   ( )    ( )  )           (   )     
Therefore, equation ( ) can be approximated as  

                            
         

  
 
 

 
[         ]                                                                 ( ) 

with the initial and boundary conditions 

                (    )   (    ( )     )                  ̅̅ ̅̅ ̅̅                             ( ) 

 (    )    (  )      (    )    (  )                    ̅̅ ̅̅ ̅̅                           ( ) 

Where           
 (    (  )   (  )   )

  
 (  )

 (
                

(  ) 
)
 (    (  )   (  )   )    

 
 (  )  

 
 (  )

  (  )
 

                                            (
           

   
)   (  )     (    (  )    (  )   ). 

After simple arrangement we obtain the following difference equation    

  (     )        [   (     )]       (     )        

= (   )     +[   (   )]     (   )      
  

 
[         ]                               (  )                                                    

 (   )  
  

 (  ) 
    

  

   
     (   )  

  

 
   

  

(  ) 
     (   )  

  

 (  ) 
    

  

   
     

at each time step   , for        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , the above difference equation (  ) can be reformulated as a 

(   )  (   )system of linear equations of the form 

 

                                                                                                      (  ) 
where      (                        ) 

  and    (                  )
  ,    and   are 

 (   )  (   ) matrices as follows  
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
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
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4. Stability Analysis 

      It is worth to mention that the numerical scheme still has the stability properties, which are 
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unconditionally stable for space and time even when we have the full parabolic equation with variable  

coefficients. Since these coefficients are continuous functions over closed sets, that means that they 

 are bounded and hence we can denote them as follows:      

  ̃     (   ) [     ] [   ]| (   )|    ̃     (   ) [     ] [   ]| (   )|  

  ̃     
  [   ]

| ( )|   ̃     
(   ) [     ] [   ]

| (   )|  

thats mean that components of the matrices above are constant. Recall equation (  ) as 

 

             
Where   is the column vectors of known boundary values and zeros and the values of an known 

function  . Hence,  

                . 

Which can be expressed more conveniently as  

           ̃ 
where        and  ̃      , since   and   are symmetric metrics, this implies that   is also 

symmetric matrix and their eigenvalues are real, and shows that  

‖ ‖  ‖ 
   ‖  ‖   ‖‖ ‖  

‖ ‖

‖ ‖
  ( )  

     Since   and   are tridiagonal matrices, it can easily be shown that   ‖ ‖   ( )   , for all 

values of    and    (i.e. for all values of M,N). See the reported reference  [9] for more details. This 

proves that the Crank-Nicolson scheme is unconditionally stable.   

5.Numerical Results and discussion  

5.1 Example 1 

In this example, we consider the case when the coefficients in equation ( ) are set of polynomials of 

first order in   and  . Moreover, we assume the free boundary as a linear function in time, as 

illustrated in the following quantities. 

 (   )        (   )                    ( )        
  ( )            ( )                       ( )    ( )    ( )       

 (   )            
    ( )

     ( )
  

 (   )     (    )    (   )  (   )(       )  
after performing the transformation   

 (   )    (   )(   )       (   )    (   )(   )  
 (   )  (   ) (   )           ( )  (   )     

  ( )  (   )
               ( )   (   )

        

 (   )     (   (   )(   ))   (   )(   )(  (   )(   ))

 (   )((   ) (   )      )  
We test our numerical scheme for multivalues of   and   which starts as     {           }  
For simplicity, we take    . Figures     and Table   show the numerical solution for the direct 

problem ( )  ( ) with various mesh sizes. In comparison with the exact solution, the absolute error 

between exact and numerical solutions is included. From these figures, it can be easily seen that an 

excellent agreement is obtained for all the selected mesh sizes. A very low magnitude of error is 

obtained, which is of the order  (     )   (     )  This result is expected since the scheme is 

unconditionally stable and a second order accurate for space and time. 

Table 1-The exact and the numerical solution for interior point for direct problem with different 

values of mesh, for some seletced nodes, Example 1 

M=N 

Numerical 

solution 
                exact 

(       )                                           

(       )                                           

(       )                                           
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(       )                                                 

 

 

 

 

                                                                                                             

 

 

 

 

 

 

 

 

 

 

 

Figure 1-Exact and numerical solutions for  (   ) and the absolute error obtained with 

         for Example  . 

 

 

 

                                                                                                                    

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2-Exact and numerical solutions for  (   ) and the absolute error obtained with  

        for Example   . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- Exact and numerical solutions for  (   )and the absolute error obtained with 

       , for example  . 
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Figure 4-Exact and numerical solutions for  (   )and the absolute error obtained with 

       , for Example  . 

                                                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-Exact and numerical solutions for  (   )and the absolute error obtained with 

        , for Example  . 

 

5.2 Example 2 

     In this example we consider a nonlinear case for the coefficients, and a linear for the free boundary 

     . 

 (   )  (     )   (   )        ( )                ( )         
  ( )     

        ( )     
                  ( )    ( )    ( )     

      

 (   )                 
    ( )

     ( )
       

 (   )       (     )  (    )(        )      (      ( ))   
after performing the transformation   

 (   )  (       (       ) )   
 (   )  (     (       ) )     ( )  

 (   )        (     (       ) )   ( )    (   )   
  ( )      

  (    )                   ( )      
  (    )   

 (   )      (     (       ) )(       (       ) ) 

 (    )(      (     (       ) ) )
  (     (       ) ) ((     (       ) )     ( ))  
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     As we did in Example 1, the problem is performed in various mesh size, 

    {               }  Figures 6-10 and Table 2 show a very good agreement with exact 

solution has been obtained. However, the magnitude of error is  (    )   (    ) which is higher 

than that in the previous example, and this is expected since nonlinear coefficients are used.  However, 

the results are still acceptable and free from occilations and unstable behavior.  

Table 2-The exact and the numerical solution for interior point for direct problem with different 

values of mesh, for some seletced nodes, Example 2. 

    
Numerical 

solution 
                exact 

(       )                                           

(       )                                           

(       )                                           

(       )                                                 

 

 

 

 

 

 

                                                                                                                       

 

 

 

 

 

 

 

 

 

 

Figure 6-Exact and numerical solutions for  (   ) and the absolute error obtained with 

         for Example  . 

 

 

 

                 

                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-Exact and numerical solutions for  (   ) and the absolute error obtained with 
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         for Example  . 

 

 

 

 

                                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

Figure 8-Exact and numerical solutions for  (   ) and the absolute error obtained with 

         for Example 2. 

 

                                                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9- Exact and numerical solutions for  (   ) and the absolute error obtained with         
for Example  . 

 

 

 

                                                                                                                                               

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10-Exact and numerical solutions for  (   ) and the absolute error obtained with  

         for Example  . 
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6. Conclusions   

    The problem of free (Stefan) boundary in the full parabolic heat equation with non-homogenous 

Dirichlet boundary conditions has been numerically investigated. The transformed problem which is in 

a fixed domain has been solved using FDM with Crank-Nicolson scheme which is unconditionally 

stable and second order accurate in space and time. The proposed method is efficient and produces a 

highly accurate solution. Two test examples are introduced in order to test and explain the accuracy 

and stability of the used scheme. The results are accurate and satisfactory.  
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