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Abstract

In this paper, we consider a two-phase Stefan problem in one-dimensional space
for parabolic heat equation with non-homogenous Dirichlet boundary condition.
This problem contains a free boundary depending on time. Therefore, the shape of
the problem is changing with time. To overcome this issue, we use a simple
transformation to convert the free-boundary problem to a fixed-boundary problem.
However, this transformation yields a complex and nonlinear parabolic equation.
The resulting equation is solved by the finite difference method with Crank-
Nicolson scheme which is unconditionally stable and second-order of accuracy in
space and time. The numerical results show an excellent accuracy and stable
solutions for two test examples.
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1.Introduction
The classical Stefan problem is the name given to an initial —boundary value problem, which
involves both fixed and moving boundaries. Stefan problems model has been involved in many real-
world engineering situations in which there is a freezing or melting that are causing a boundary to
change in time, as in melts solidification, water and food freezing, crystal growth, etc. Stefan direct
problems are boundary value problems for parabolic heat equations in regions with unknown and
moving boundaries, which requires determining the temperature [1].
In a previous article [2], the numerical solution for the free boundary problems has been investigated

through the finite difference method (FDM) and the minimax approach. Whilst, the numerical solution
for the free problem in fluid mechanics such as gas-liquid interface problem was considered in another
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study [3]. Also, a one-side Stefan problem for parabolic equation was solved numerically using shifted
Chebyshev operational matrix [4]. Other authors [5,6] were concerned with the numerical solution of
one-phase Stefan problem in addition to the reconstruction of some unknowns which hold physical
meaning such as the thermal conductivity, heat capacity, and fluid velocity. It is worth to mention that
Stefan problems are basically restricted to heat transfer problems. However, they can be applied to full
parabolic equations.

In this work, we consider the numerical solution for a two —sided Stefan problem where the free
boundary depends on time only. This problem is solved by FDM with Crank-Nicolson scheme.
This paper is organized as follows. In Section 2 the mathematical formulation of the two-sided Stefan
problem is given. The numerical solution for the problem under consideration using FDM is discussed
in Section 3. Whilst, the stability analysis for the proposed method is considered in Section 4. In
Section 5, the results and discussion are presented. Finally, conclusions are highlighted in Section 6.
2.Mathematical formulation
Consider the one-dimensional two-phase Stefan problem [7],
Uy = a(x, Oy + b(x, Hu, + c®u + f(x, t), (x,t) € Qr, D
where the free domain Q = {(x,t): h,(t) <x < h, (t),0<t <T},and hy = hy(t),

h, = h,(t) subject to the initial condition
u(x' 0) = QD(X), X € [hl(o)'hZ(O)]ﬁ (2)
and the non-homogenous Dirichlet boundary conditions are
uChy (), t) = ui (8), u(h(6),t) =, (1),  t€[0,T], (3)

where h{(0) = hyq, h,(0) = hy, are given and u is the solution of problem, i.e. temperature. In

order to solve this problem, we change the variables y = % t =t to reduce the free
2 -

boundary domain problem (1) — (3) to the following fixed boundary domain problem for the
unknown solution v(y,t), where h;(t) = h,(t) — hy(t). Assume the transformed
v(y, t) = u(yhs(t) + hy(0), 1),
in the area with a fixed domain
Qr ={(y,t):0<y<1,0<t<T}

where the continuous functions ¢(x), u, (t), and u, (t) are given. This model has been investigated
theoretically [7] and no numerical solution was obtained.
After performing the transformation, the complicated problem turns to a fixed domain problem.
However a nonlinear equation is obtained.

The unique solvability of the direct problem is guaranteed by the continuity of the coefficients
a,b,c, f,hiand h,, as previously reported [8].
Now, the problem in fixed domain has the following form which will be solved numerically in the
next section using a finite-difference scheme.
a(yhs () +hy (8),t) b(yhs(O)+hy (O),)+yh'3(O)+h'1 (1)

vy = ~T0) vy e vy, +c(®)v
+f(yh3 (t) + hl (t)' t) (y' t)E QT' (4)
v(y,0) = ¢(yh3(0) + hoy), y €[0,1], (5)
U(O, t) = U (t), U(l, t) = Uz (t), te [Or T]' (6)

3. Solution of the direct problem

In this section, consider the direct initial boundary value problem (IBVP) (4) — (6), where the
functions a(x,t), b(x,t),c(t), p(x) and y;(t),i = 1,2 are known and the solution v(y,t) is to be
computed. We employ the Crank-Nicolson finite-difference scheme which is unconditionally stable
and second order accurate in time and space [9].
3.1 Discretization of the problem

The discrete form of the problem (4) — (6) is as follows: We divide the domain
Qr = (0,1) x (0,T) into M and N subintervals of equal lengths Ay and At , where the uniform space

and time increment are Ay = % , At = % , respectively. We denote the solution at the node point (i, j)
is vij:=v(yit;), a(xi ) = aij, e (8) = haj ho () = hyj,

b(xl-, t]) = bl]'c(t]) = Cj and f(xi,tj) = fU where Vi = lAy, tj =]At, i = O,M,j =0,N.

In order to apply the CN-scheme for equation (4), we simply assume the right hand side as follows:
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Q(t,y,v,v,v,,) = a(yhs(t) + hy(t), 1)
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_— b(yhs(t) + hy (), 1) + yh's(t) + k' (1)

h3 () 7 hs(t) "y

+e(®v + f(yhs(8) + by (0), 1) , )€ Qr
Therefore, equation (4) can be approximated as
1%
SN Qe+ Q) )
with the initial and boundary conditions
v(y1,0) = ¢(y;h3(0) + ho1), i=0,M (8)
v(0,t;) = us(t5), v(1,¢) = (), j=0,N. 9)

_ a(yiha(t))+ha(t)t)) (Viraj=2vijHvioaj\ b(iha(t))+ha () t))+y ks () +h'1(¢))

Where @y = n2()) ( @y)? ) )
Vit1j=Vi-1j
+ (i

) + c(t )UU + f(ylh3(t ) + hl(t ) j)
After simple arrangement we obtain the following difference equation

—A(Lj+ D41 1+ B+ D]vijer — CUJ + DVigg s

=A(, j)vi—q;+[1 — B3, )D]vij + CU, jvigq; + 2 [fij + fije1] (10)
o At At At At o At At
AL J) = Waij 4AybL]'B(l J)=—=¢j— Waijrc(l'])

at each time step ¢;, for j=0,N -1

2(4y)2
M-1)x (M- 1)system of linear equations of the form

Av™t1l =Byt + d
Where vn+1 = (vl‘j+1, %) 1 UM_1'j+1) trand Un = (Ul jr (%] jr
(M — 1) x (M — 1) matrices as follows
[1+B

4Ay
1, the above difference equation (10) can be reformulated as a

bl]’

,Vm-1,)"", Aand B are
1is1 —Cuijaa 0 0 0 0
_A?_,j+1 l+sz+1 _C2,j+1 0 0 0
A= : : . ) . .
0 _AM—Z,J+1 1+B 2, j+1 C -2, j+1
L 0 0 -A 1, j+1 1+BM—1]+1
1- B, C,; 0 0 0 0 ]
Az,j 1 Bz,j C2,j 0 0 0
B = O 0 O vee AM—Z,] 1_BM72.j CM—Z,j
0 0 O e O AM—l,j 1_B|V|—l,j
A1 j+1V0j+1 + (f11 +f1 ]+1)
7(](2,1' + fz,j+1)
0
d :
0
At
> (fM—zj + fu-2 j+1)
At
| Cu— 1]+177M]+1+ (fu- 1j + fu- 1]+1)
4. Stability Analysis

It is worth to mention that the numerical scheme still has the stability properties, which are
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unconditionally stable for space and time even when we have the full parabolic equation with variable
coefficients. Since these coefficients are continuous functions over closed sets, that means that they
are bounded and hence we can denote them as follows:

A = maxpyenyon,xorial O, B = max iy pern, n,ixor b 1,

C = max|c(®)l.f = If (x, 01,

te[0,T] (x rt)E[hlth]x[OrT]
thats mean that components of the matrices above are constant. Recall equation (10) as

Av™tl = By™ + d.
Where d is the column vectors of known boundary values and zeros and the values of an known
function f. Hence,
vl =A471By" + A71d.
Which can be expressed more conveniently as

vl = Ky 4+ d,

where K = A"1B and d = A~1d, since A and B are symmetric metrics, this implies that K is also
symmetric matrix and their eigenvalues are real, and shows that

4
K|, =|a"1B| = |Aa~1||IIB
K1, = [|a=*B] = 4= [[1BIl = ”B” = p(K).

Since A and B are tridiagonal matrices, it can easily be shown that ||K]|, = p(K) < 1, for all
values of Ax and At (i.e. for all values of M,N). See the reported reference [9] for more details. This
proves that the Crank-Nicolson scheme is unconditionally stable.
5.Numerical Results and discussion
5.1 Example 1
In this example, we consider the case when the coefficients in equation (1) are set of polynomials of
first order in x and t. Moreover, we assume the free boundary as a linear function in time, as
illustrated in the following quantities.

a(x,t) =1+ xt, b(x,t) =1+x, c(t)=1+t¢,
x—hy(t)

— 42 —
ulx,t) =x*+2t+1, y @)
fl,t)=2-21+xt) —2x(1+x)— (1 +)(x®>+ 2t + 1),

after performing the transformation
ay,t) =14+ +1D)A+0)t, by, ) =1+ +1DA+0),
vy, )=+ DA+ +1+2t, o) =@ +1*+1,
M) =(1+t)?+2t+1, My(t)=41+t)*>+2t+1,
ft)=2-2(1+ty+DA+0) -2+ D+ D1+ @+ 1A +1))
—A+)((y+1D2A + )% + 2t +1).
We test our numerical scheme for multivalues of M and N which starts as M = N € {10,20,40,80}.
For simplicity, we take T = 1. Figures 1 — 5 and Table 1 show the numerical solution for the direct
problem (4) — (6) with various mesh sizes. In comparison with the exact solution, the absolute error
between exact and numerical solutions is included. From these figures, it can be easily seen that an
excellent agreement is obtained for all the selected mesh sizes. A very low magnitude of error is
obtained, which is of the order 0(10713) — 0(10~1%). This result is expected since the scheme is
unconditionally stable and a second order accurate for space and time.
Table 1-The exact and the numerical solution for interior point for direct problem with different
values of mesh, for some seletced nodes, Example 1

M=N
Numetical 10 20 40 80 100 exact
solution
(0.1,0.1) 2.6641 2.6641 2.6641 2.6641 2.6641 2.6641
(0.1,0.2) 3.4124 3.4124 3.4124 3.4124 3.4124 3.4124
(0.5,0.5) 7.0625 7.0625 7.0625 7.0625 7.0625 7.0625
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‘ (0.9,0.8) ‘ 14.2964 14.2964 14.2964 14.2964 14.2964 14.2964

Exact solution Numerical solution

vy
vy
Absoluts arror

Yy 0 0 t Y 0O 0 1 Y 0o 0 t

Figure 1-Exact and numerical solutions for v(y, t) and the absolute error obtained with
M = N = 10, for Example 1.

Exact solution Numerical solution
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Figure 2-Exact and numerical solutions for v(y, t) and the absolute error obtained with
M = N = 20, for Example 1.

Exact solution Numerical solution

vyt)
Absolute arroe

Figure 3- Exact and numerical solutions for v(y, t)and the absolute error obtained with
M = N = 40, for example 1.
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Canct nolution Numerical solution

I
}
e

Figure 4-Exact and numerical solutions for v(y, t)and the absolute error obtained with
M = N = 80, for Example 1.

Exact solution Numerical solution

viyt)
viyt)

Absolute error

Figure 5-Exact and numerical solutions for v(y, t)and the absolute error obtained with
M = N = 100, for Example 1.

5.2 Example 2
In this example we consider a nonlinear case for the coefficients, and a linear for the free boundary

hy, hy.

a(x,t) = (1+x+1t)? b(x,t) = x? + sin(t), c(t) =t +t?
h(t) =1+t3, hy(t) = 2 + t2, hs(t) = hy(t) — hy(t) = 1+ t? — t3,
_x=h(D)

ulx,t) =x3+2t>+1, y=—>F-2
(x.0) 0)

fle,t) =4t —6t(1+t+x)? — (t+t3)(1 + 2t? + x3) — 3x? (x2 + sin(t)),
after performing the transformation
ay,t) =QR+t+t3+ (1 +t2-t3y)?
b(y,t) = (1+t3+ (1 +t? — t3)y)? + sin(¢),

vy, ) =1+2t2+ (A +t3+ A +t2 =33 0() =1+ (y+1)3,

M(t) =1+ 2t>+ (1 +t3)3, My(t) =1+ 2t% + (2 + t2)3,
f,t)=4t—6(1+t3+ 1A +t2—t3)Y)QR+t+t3+ (1 +t?—t3)y)?

—(t+tHA+2t2+ @A +3+ @A +t2=t3)y)3)
-3+ 3+ @ +2 =Y (1 + 3+ (1 +t2—-t>y)? +sin(t)).
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As we

did

in

Example 1,
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the

problem

is

performed

in

various

mesh  size,

M = N € {10,20,40,80,100}. Figures 6-10 and Table 2 show a very good agreement with exact
solution has been obtained. However, the magnitude of error is 0(10~3) — 0(10~%) which is higher
than that in the previous example, and this is expected since nonlinear coefficients are used. However,
the results are still acceptable and free from occilations and unstable behavior.
Table 2-The exact and the numerical solution for interior point for direct problem with different
values of mesh, for some seletced nodes, Example 2.

=N
Nurnerical 10 20 40 80 100 exact
solution
(0.1,0.1) 2.3584 2.3580 2.3579 2.3579 2.3579 2.3579
(0.1,0.2) 2.4523 2.4522 2.4521 2.4521 2.4521 2.4521
(0.5,0.5) 6.3074 6.3059 6.3055 6.3055 6.3054 6.3054
(0.9,0.8) 18.4216 18.4208 18.4206 18.4206 18.4206 18.4206
Exact solution Numerical solution
107
20 | 20 § > %
= = @
“ 10 ~ 10) E ‘
= 'Y

t

Figure 6-Exact and numerical solutions for v(y, t) and the absolute error obtained with

M = N = 10, for Example 2.

30

20

viy.t)

Exact solution

viyt)

Numerical solution

0 o0

Absolute error

Figure 7-Exact and numerical solutions for v(y, t) and the absolute error obtained with
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M = N = 20, for Example 2.

Exact solution Numerical solution

<10
25,

viyt)

Absolute error

i Y o o t y o 0 t ¥ o ;o t
Figure 8-Exact and numerical solutions for v(y, t) and the absolute error obtained with
M = N = 40, for Example 2.

Exact solution Numerical solution

viyv.t)

Absolute error

Figure 9- Exact and numerical solutions for v(y, t) and the absolute error obtained with M = N = 80,
for Example 2.

Exact solution Numerical solution
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Y 0 o0 t

Figure 10-Exact and numerical solutions for v(y, t) and the absolute error obtained with
M = N = 100, for Example 2.
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6. Conclusions

The problem of free (Stefan) boundary in the full parabolic heat equation with non-homogenous
Dirichlet boundary conditions has been numerically investigated. The transformed problem which is in
a fixed domain has been solved using FDM with Crank-Nicolson scheme which is unconditionally
stable and second order accurate in space and time. The proposed method is efficient and produces a
highly accurate solution. Two test examples are introduced in order to test and explain the accuracy
and stability of the used scheme. The results are accurate and satisfactory.
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