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Abstract

This paper deals with the estimation of the stress-strength reliability for a
component which has a strength that is independent on opposite lower and upper
bound stresses, when the stresses and strength follow Inverse Kumaraswamy
Distribution. D estimation approaches were applied, namely the maximum
likelihood, moment, and shrinkage methods. Monte Carlo simulation experiments
were performed to compare the estimation methods based on the mean squared error
criteria.
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1. Introduction
The stress-strength model in the reliability research describes the life of a component which has a
random strength X and is subjected to a random stress Y. This problem arises in the classical stress—
strength reliability where one is interested in estimating the proportion of the times the random
strength X of a component exceeds the random stress Y to which the component is subjected [1]. An
important case is the estimation of R = P(¥; < X < Y,) which represents the situation where the
strength X should not only be greater than stress Y; but also be smaller than stressY,. Because of that,

modern engineering systems may have more than two components [2].
For instance, many electronic components cannot work at very high or very low voltages.

Similarly, person's blood pressure should lie within two limits, i.e., systolic and diastolic. The stress-
strength model of P(Y; < X <Y,) was studied in many branches of science, such as psychology,
medicine, pedagogy, etc.[3].
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Singh introduced the maximum likelihood, minimum variance unbiased, and empirical estimators of
R=P(Y; < X <Y,), where X, Y; and Y, are mutually independent random variables based on normal
distribution [4]. In 1998, lvshin investigated the Maximum Likelihood (MLE) and the UMVUE of R
when X, Y; and Y, are either uniform or exponential random variables with unknown location
parameters [5]. Wang et al., in 2013, made statistical inference for P(Y; < X < Y,) via two methods,
which are the nonparametric normal approximation and the jackknife empirical likelihood. Then,
classical and real data sets were analyzed using these two proposed methods [6]. In 2013, Hassan et al.
focused on the estimation of R=(Y; < X <Y,), where stresses ¥; and Y, and the strength X have
Weibull distribution with common known shape and scale parameters in presence of k outliers, where
MLE, Moment method (MOM), and mixture estimators are obtained. The results of the simulation
study showed that the mixture estimators are better and easier ones [7].

This paper focuses on the estimation of the R= P(Y; < X <Y,), under the assumption that, X, Y;,
and Y, are independent and that these stress and strength variables have Inverse Kumaraswamy
Distribution. The maximum likelihood estimator, moment estimator, and some shrinkage estimation
methods were used. In addition, Monte Carlo simulation was performed for comparing the different
methods of estimation.

The rest of the paper is organized as follows: Section 2 clarifies the Inverted Kumaraswamy
Distribution. Section 3 describes the stress-strength models. Section 4 deals with the Maximum
likelihood Estimation , Moment Method , and Shrinkage Estimation Method of P(Y; < X < Y,).
Section 5 presents the simulation study. Section 6 demonstrates the effectiveness of the proposed
methods through numerical results. Finally, in Section 7, a conclusion is provided.

2. Inverted Kumaraswamy Distribution

In 1980, Kumaraswamy proposed the Kumaraswamy Distribution (KumD) by fixing some
parameters for beta distribution [8]. However, it has a closed-form cumulative distribution function
which is invertible and for which the moments do exist. The KumD method was widely applied for
testing natural phenomena such as test scores, temperatures and daily hydrological data of rain fall,
[9-12].

After that, Abd Al-Fattah [13] derived the inversion of KumD by using the transformation X = # ;
T~KumD (a , ) [8].

The probability density function (pdf) of a r.v.X which follows the inverted Kumaraswamy

distribution, X~ IKum (o , ), can be written as:

f,a,p)=afl+x)"@DA1 -1 +x)" 1 ,x>0;a,B>0 (1)
where a and f are shape parameters.
Also, the cumulative distribution function (CDF) of X has the form below:
Fx;ao,f) =1 -1 +x)"%f ,x>0,a,>0 (2)
3. Stress-Strength models P(Y; < X <Y,)

The reliability of a component (or system) under such a situation may be defined as R = P(¥; <
X <Y,), where Y;,Y, are two independent random stress variables, such that ¥; ~IKumD(a, ;) ,
Y, ~IKumD(a,B3) and X be an independent random strength variable, such that
X~IKumD (a, $;), with a known parameter a. Therefore, the (S-S) reliability is defined as below:
R=P(Y, <X <Y,)
= [P, <X, X <Y)f(x)dx

= Jy B, (0 B, () f)dx = [, Fy,(0)[1 = Fy, (0)]f (x) dx
= Jy Fy100f(x) dx — [ Fy; (x) Fy, () f (x)dx

= 2 [T - A0 - A+ )™ B (14 07@ D (1 - 1+ 0™ dx

= . —(a+) (1 — ~a)(B1+Ba+B3)-1
5ig Foapap Jo @Bt B2+ B3 +x) 1-1+ %™ dx
Then we get
B1 B1
R(x) = -
(X) B1+B2 B1+B2+Bs3
R(x) = B1B3 @)

(B1+B2)(B1+B2+P3)
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4. Estimation methods of R= P(Y{ < X <Y3,)
4.1 The Maximum Likelihood Estimation (MLE)

The maximum likelihood has been an important and commonly used method, since it contains the
properties required for good estimation. The likelihood function is given by:
I = L(x1,%x5, ., X B1,0)

= [Tz f ()
When x4, x5, ..... x,, is a strength random sample of X from IKumD («, ,), where £3; is an unknown
parameter and « is known
=T @By (1 +2) ™D (1 - (1 + %)~ A
= o BRI, (1 +x) @D L, (- 1+ x) At (@)
By taking In to both sides, we have
ml=nmna+nnp;—(a+DYL, mA+x)+ B —DY, n(1 -0 +x)"%)

The partial derivative of In [ with respect to 8, which is equal to zero is given by:
=TI (1 +x)™) = 0
1 1
Hence, the MLE estimator for the unknown shape parameter S, will be:
5 -n

Pruie = S, In(1-(1+x)~%) ®)
In the same way, let y, ,y1,, -, Y1, and y5,,¥2,, -, Y2, , be stress random variable from IKumD

(a, B,) and IKumD (e, B3), respectively, and the MLE for the unknown shape parameters 3, , 85 will
be

-my

A — — 6

ﬁZMLE Z;'Lllln(l—(ﬁylj) ) ”
~ _ —m,

ﬁ3MLE - z;"zzlln(1—(1+y2r)‘“) ¥

By substitutingequ ation (5), (6) and (7) in equation (3), we get

R\ _ BlMLE‘B3MLE 8
MLE = @

(ElMLE"'BZMLE)(BlMLE+EZMLE+E3MLE)
4.2 The Moment Method (MOM)

In this subsection, the moment estimation method will be used to estimate the parameter g for
IKumD, when the parameter « is known based on equality of the sample and population means.
Assume that X~IKumD (a, B), then the non —central moment of X will be:

— r -j J —
EX™) = BYq (]) —17-/B (1 - E,B)r— 12,....
Hence, population means of X,Y; and Y, when a>1 are respectively given by
1
EX) =gB(1-3,5)-1
1
E(r) =48 (1-2,8,) -1

1
E(r) =B (1-2,635) - 1
where B(.,.) refer to Beta distribution.
And when equalizing the sample mean with the corresponding population mean we get

F=Et=pp(1-7p)-1

r=daY_ g B(1-1.p8)-1
1= m, - P2 a’ 2
_ T2y 1
Y, =%=323(1 —;,33) -1
R 1+2?=1%
Consequently, gi,,,,, = m 9)
a’Plo
s I 10
ﬂZMOM - B(l_é,ﬁzo) ( )
R 14y 2
and 2 (11)

where g; isaprior value of g;, i= 1,2,3
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By substituting the equations (9),(10) and(11) in the equation (3), we get the approximate estimator of
R as below:

ElMOMB3MOM (12)

R = — — 0 A —
o (‘BlMOM+BZMOM)(ﬁ1M0M+B2M0M+B3M0M)

4.3 The Shrinkage Estimation Method (Sh)

In 1968, Thompson proposed the shrink usual estimator B (ex. MLE or Unbiased estimator) of the
parameter § to prior information B, using shrinkage weight factor (), such that 0< Y (B) <1.
Thompson stated that "We are estimating 3 where we believe that (3, is close to the true value of  and
something bad happens if B, = 8, and we do not use B,". Thus, Thompson gave the form of shrinkage
estimator of B say fgy, as bellow:

Bsh = W(B)Bup + (1 —W(B))Bo (13)
where the unbiased estimator [3,,, was applied as a usual estimator of 3, B, is a very close value to 3 as
a prior information (initial estimate), and s (B) denotes the shrinkage weight factor as mentioned
above, such that 0< ljJ(G) < 1, which may be a function of Eub, a function of sample size, a constant,
or may be found through minimizing the mean square error of B, ( ad hoc basis) [14- 17].

There is no doubt if our assumption in this work is to take g;, = [B; — 0.001] as a prior information
of g; fori=1,2, 3.

Note that 8;,,, . is a biased estimator, since E(ﬁ’iMLE) = %ﬁ’i + [3;, A refers to n, my or m,.

Thus, f; , = %Bimg becomes an unbiased estimator of g;, whereasE(f;, ) = B;.
Likewise,

. YIS
var(B, ) = 2L je.,

(1—2)1
~ _ n-—
Blub T -3, In(A-(14x)%) i~
A my—1

_ _ 15
ﬁzub —Z;.nzllln(l—(1+Y1j) ) -
and Bsub = o uo

= 5,2, In(1=(1+y2r) ™)
4.3.1 The Constant shrinkage factor (Sh1)
In this subsection, the constant shrinkage weight factor will be assumed as ¥ (B,) = ¥(5,)

= ¥(p5) = 0.01, and this implies to the following shrinkage estimators

Bron = (B1)Broy+(1 =¥ (B)) B, (17)
Basn =¥ (B2) Byt (1 =¥ (B2)) B, (18)
ﬁ35h1=ly (.33).331”7"' (1 -¥ (33)) Bs3, (19)

The substitution of the equations (17), (18) and (19) in equation (3) leads to the estimation of (S-S)
reliability using the constant shrinkage estimator R, as below:

. Big,. B3
RShl = 7= — Sfl Shi — (20)
(Blsm +325h1)(315h1 +Bagy, +B3Sh1)

4.3.2 The modified Thompson type shrinkage weight factor (Th)
The shrinkage weight factor, which was considered by Thompson in 1968, will be modified in this
subsection as follows:

—~ —~ 2
5 Bi,p,—Bi
o(p) = — L Pul_
(Bup=Bio) +var(Biy,)
where, var(f; , ) is as defined in section (4.3).
In consequence, the modified Thompson type shrinkage estimator will be:

Binw = 0(B)Bry + (1= 0(B)) By fori=1,2,3 22)

(0.001) fori=1, 2, 3 (21)
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By substituting the equation (22) in the equation (3), we get the modified Thompson type shrinkage
estimation of the S-S reliability as below

5 B, Bs
Rpyp=7——<FTh 23
m (ﬂlTh"'ﬂZTh)(ﬂlTh"'ﬂZTh+ﬁ3Th) ( )
4.3.4 The squared shrinkage weight function (Sq)
This subsection is concerned with the shrinkage estimator based on squared shrinkage weight

function which is defined as below:
2

v(B) = P ®Pus/ o) | o~ 0001, fori=1,2 3 (24)

’Var(ﬁiub/ﬁio)

The shrinkage estimator should be:
Bisy = V(Biup)Biuy + (1= ¥(Biuy) ) By 1 1=1,2,3 (25)
When substituting the equation (25) in the equation (3), the squared shrinkage estimation of the (S-S)
reliability becomes:
. BigqPssq
Ryg = m———t——
(Blsq+BZSq)(ﬂ15q+ﬂZSq+B3Sq)

5. Simulation study

The Monte Carlo Simulation (MCS) is an artificial sampling method which may be used for
solving complicated problems in analytic formulations and for simulating purely statistical problems
[18]. Therefore, MCS is used in this section to investigate the effectiveness of the different estimators
of reliability. Different sample sizes (20, 50 and 100) were used based on MSE criteria, with 1000
replicates. The steps of simulation using Mote Carlo approach are as follows:
Stepl: Generating random sample sizes of 20, 50 and 100 from the uniform distribution which is
defined on the interval (0,1) as uy,uy, ..., Upn ; V1, Vg ., Uy, @Nd Wy, Wy, ..., Wiy, respectively.
Step2: Appling the cumulative distribution function to convert the uniform random samples to
random samples following the IKumD, as shown below:
FO) =1 - (1 +x)"9h
u=(1—1+x) A

1

(26)

14——=

Xi = [1 - (ul)ﬁ_l] ¢ -1
After that, we get y,; and y,, by using the same method
1

I
vy = 1= ()] -1
1

117 a

YVor = [1_(Wr)ﬁ3] -1
Step3: Computing the MLE for reliability using equation (8).
Step4: Finding the moment estimate for reliability using equation (12).
Step5: Computing the shrinkage estimators of reliability using equations (20), (23) and (26).
Step6: Based on L=1000 trials, MSE is calculated as follows:
MSE =:¥%, (R, — R)®
6. Numerical Results

In this section, simulation results are introduced based on three parameters (8, B2 , B3) and three
sample problem sizes (20, 50,100) that implemented 1000 duplicates. In addition, Tables- 1 to 8
explain the results of the proposed estimation methods. Tables- 2, 4, 6, and 8 present the simulation
results for MSE of all the proposed estimation methods. Based on the simulation data, the shrinkage
estimator (Ryy,), using the modified Thompson type shrinkage weight factor shown in these tables,
showed the best results and had less MSE for the R= P(Y; < X <Y,) of the Inverse Kumaraswamy
distribution. While the estimator (ﬁsq) was in the second rank, followed by Sh1l, MOM and MLE.

Table 1- Estimation value of R, whena =5, f; =2, f, =4 and 33 = 2.5.
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‘ (n, my,my) R Ruve Ruom Rsn Ry ﬁsq
(20,20,20) 0.098039 | 0.099443 | 0.098186 | 0.09801018 | 0.09801784 | 0.09801554
(50,20,20) 0.098039 | 0.099618 | 0.098011 | 0.09800121 | 0.09801775 | 0.09800840
(50,100,20) | 0.098039 | 0.101208 | 0.098071 | 0.09805960 | 0.09801965 | 0.09803481
(20,100,20) | 0.098039 | 0.100487 | 0.097933 | 0.09806347 | 0.09801898 | 0.09804146
(100,50,50) | 0.098039 | 0.099100 | 0.098137 | 0.09801825 | 0.09801864 | 0.09801840
(50,50,50) 0.098039 | 0.098343 | 0.097874 | 0.09801373 | 0.09801802 | 0.09801877

(100,100,100) | 0.098039 | 0.098021 | 0.097881 | 0.09801357 | 0.09801786 | 0.09801695
(50,100,100) | 0.098039 | 0.098665 | 0.098207 | 0.09802404 | 0.09801859 | 0.09802204
(20,50,100) | 0.098039 | 0.098963 | 0.098330 | 0.09802996 | 0.09801887 | 0.09802378
(20,100,50) | 0.098039 | 0.099164 | 0.098030 | 0.09804206 | 0.09801877 | 0.09802901

Table 2- MSE value of R= 0.098039 whena =5, ; =2, f, =4 and f; = 2.5.

(n, my,my) Rywe Ryom Rsn1 Rpn Ry best

(20,20,20) 0.009726 | 0.000726 1.210E-06 1.256 E-08 | 7.475E-07 Rrp
(50,20,20) 0.009010 | 0.000724 1.109 E-06 1.190 E-08 | 4.375E-07 Rrn
(50,100,20) 0.004466 | 0.000344 4.853E-07 6.962 E-09 | 1.824 E-07 Rrn
(20,100,20) 0.004338 | 0.000324 4.908 E-07 7.218 E-09 | 3.674 E-07 Rrn
(100,50,50) 0.003468 | 0.000288 3.684 E-07 6.750 E-09 | 6.165 E-08 Rrn
(50,50,50) 0.003800 | 0.000316 4.284 E-07 7475E-09 | 1.110 E-07 Rrn

(100,100,100) | 0.001860 | 0.000163 | 2.0137 E-07 | 5.944E-09 | 3.235E-08 Rrn
(50,100,100) | 0.001975 | 0.000168 2.077 E-07 5.693 E-09 | 3.881 E-08 Rrn
(20,50,100) 0.003556 | 0.000264 4.008 E-07 6.839 E-09 | 1.064 E-07 Rrn
(20,100,50) 0.002972 | 0.000203 3.273 E-07 6.323 E-09 | 7.535E-08 Rrn

Table 3- Estimation value of R, whena =5, f; = 1.5, f, = 2and 3 = 3.

(n, my,my) R Ryie Ryom Rsn1 Ry Rsq

(20,20,20) 0.197802 | 0.196879 | 0.198410 | 0.1977912 | 0.19780724 0.19777577
(50,20,20) 0.197802 | 0.196774 | 0.197665 | 0.19777175 | 0.19780671 0.19779584
(50,100,20) | 0.197802 | 0.200070 | 0.198072 | 0.19785809 | 0.19780927 0.19782717
(20,100,20) | 0.197802 | 0.199459 | 0.197572 | 0.19787192 | 0.19780912 0.19783801
(100,50,50) | 0.197802 | 0.198355 | 0.198036 | 0.19780780 | 0.19780900 0.19780958
(50,50,50) 0.197802 | 0.197600 | 0.197781 | 0.19780524 | 0.19780854 0.19780896

(100,100,100) | 0.197802 | 0.197080 | 0.197757 | 0.19780080 | 0.19780805 0.19780703
(50,100,100) | 0.197802 | 0.198354 | 0.197935 | 0.19782131 | 0.19780931 0.19781412
(20,50,100) | 0.197802 | 0.198183 | 0.198076 | 0.19782628 | 0.19780925 0.19780830
(20,100,50) | 0.197802 | 0.198486 | 0.198029 | 0.19784449 | 0.19780929 0.19782415

Table 4- MSE value of R= 0.197802when=5, f; =15, f, =2 and ;3 = 3.

(n, my,my) Rype Ryom Rsn1 Ry Ry, best
(20,20,20) 0.002268 | 0.000163 3.056 E-07 1.894 E-09 2.864 E-07 R
(50,20,20) 0.002113 | 0.000160 2.704 E-07 1.650 E-09 1.590 E-07 R
(50,100,20) 0.009942 | 0.000793 1.162 E-06 7.619 E-09 4.429 E-07 R
(20,100,20) 0.001049 | 0.000072 1.303 E-07 8.088 E-010 5.788 E-08 Ry
(100,50,50) 0.008370 | 0.000665 8.979 E-07 5.888 E-09 1.349 E-07 Ry
(50,50,50) 0.009203 | 0.000709 | 1.019 E-06 6.757 E-09 | 2.239 E-07 Ren

850




Hameed et al.

Iraqi Journal of Science, 2020, Vol. 61, No. 4, pp: 845-853

(100,100,100) | 0.004376 | 0.000363 4.593 E-07 3.178 E-09 6.846 E-08 Ry
(50,100,100) 0.004911 | 0.000395 5.285 E-07 3.782 E-09 1.178 E-07 Ry
(20,50,100) 0.009126 | 0.000659 1.058 E-06 6.750 E-09 4.302 E-07 Ry
(20,100,50) 0.007476 | 0.000540 8.760 E-07 5.767 E-09 2.602 E-07 Ry

Table 5- Estimation value of R, whena =5, f; =2.2, f, =3.3and 3 = 4.

(n, my,m,) R Ruix Ryom Rsn1 Rrn R,
(20,20,20) 0.168421 | 0.170239 | 0.169262 | 0.16842691 0.16841795 | 0.16842309
(50,20,20) 0.168421 | 0.168540 | 0.168096 | 0.16838549 0.16841540 | 0.16840674
(50,100,20) | 0.168421 | 0.170535 | 0.168252 | 0.16846155 0.16841730 | 0.16844194
(20,100,20) | 0.168421 | 0.171319 | 0.168434 | 0.16848596 0.16841839 | 0.16845307
(100,50,50) | 0.168421 | 0.168980 | 0.168652 | 0.16841051 0.16841661 | 0.16840813
(50,50,50) 0.168421 | 0.168413 | 0.168608 | 0.16841016 0.16841624 | 0.16841465

(100,100,100) | 0.168421 | 0.167362 | 0.168286 | 0.16840465 0.16841580 | 0.16841446
(50,100,100) | 0.168421 | 0.169267 | 0.168533 | 0.16842939 0.16841762 | 0.16842186
(20,50,100) | 0.168421 | 0.168108 | 0.168991 | 0.16842396 0.16841689 | 0.16841798
(20,100,50) | 0.168421 | 0.169770 | 0.168497 | 0.16845727 0.16841785 | 0.16843252

Table 6- MSE value of R= 0.168421when=5, g, =2.2, B, =3.3 and ; = 4.

(n, my,my) Ryie Ruom Rsn1 Rrn Ry, best
(20,20,20) 0.001893 | 0.000148 | 2.321 E-07 1.505 E-09 9.107 E-08 Rrp
(50,20,20) 0.001907 | 0.000149 | 2.415E-07 1.620 E-09 9.028 E-08 Rrp
(50,100,20) | 0.008164 | 0.000618 | 9.385 E-07 6.381 E-09 4.548 E-07 Rrp
(20,100,20) | 0.001006 | 0.000066 | 1.214 E-07 | 7.914 E-010 7.148 E-08 Rrp
(100,50,50) | 0.007738 | 0.000611 | 8.496 E-07 6.292 E-09 3.536 E-07 Ry
(50,50,50) 0.008263 | 0.000664 | 9.253 E-07 6.664 E-09 1.927 E-07 Rrp

(100,100,100) | 0.003893 | 0.000326 | 4.149 E-07 3.195 E-09 7.241 E-08 Rrp

(50,100,100) | 0.004251 | 0.000334 | 4.507 E-07 3.288 E-09 1.950 E-07 Ry
(20,50,100) | 0.007750 | 0.000542 | 9.018 E-07 6.263 E-09 3.731 E-07 Rrp
(20,100,50) | 0.006328 | 0.000437 | 7.207 E-07 4.937 E-09 1.427 E-O07 Rrp

Table 7- Estimation value of R, whena =5, , = 1.5, B, = 2.5and 8; = 3.5.

(n, my,m,) R Rywe Ryom Rsn1 Ry Ry

(20,20,20) 0.175000 | 0.175100 | 0.175259 | 0.17497916 | 0.17498986 | 0.17498647
(50,20,20) 0.175000 | 0.173949 | 0.174784 | 0.17494903 | 0.17498881 | 0.17496093
(50,100,20) 0.175000 | 0.178194 | 0.175088 | 0.17504787 | 0.17499261 | 0.17501377
(20,100,20) 0.175000 | 0.177755 | 0.175309 | 0.17506322 | 0.17499251 | 0.17502183
(100,50,50) 0.175000 | 0.175829 | 0.175268 | 0.17498983 | 0.17499117 | 0.17499070
(50,50,50) 0.175000 | 0.175519 | 0.174951 | 0.17499062 | 0.17499093 | 0.17499178

(100,100,100) | 0.175000 | 0.174322 | 0.174813 | 0.17498140 | 0.17499008 | 0.17498951
(50,100,100) | 0.175000 | 0.174665 | 0.174830 | 0.17499255 | 0.17499059 | 0.17499440
(20,50,100) 0.175000 | 0.175034 | 0.175025 | 0.17500191 | 0.17499081 | 0.17499063
(20,100,50) 0.175000 | 0.176298 | 0.175154 | 0.17503136 | 0.17499173 | 0.17500884
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Table 8- MSE value of R= 0.175000 when=5, B; =15, B, = 2.5 and 53 = 3.5.

(n, my, my) Ruwe Ruom Rsn1 Ry Rgq best
(20,20,20) 0.002098 | 0.000149 | 2.682 E-07 1.762 E-09 1.654 E-07 Rrp
(50,20,20) 0.001842 | 0.000164 | 2.517 E-07 1.715 E-09 5.704 E-07 Rrp
(50,100,20) | 0.008734 | 0.000673 | 1.003 E-06 6.963 E-09 3.583 E-07 Rrp
(20,100,20) | 0.009556 | 0.000646 | 1.143 E-06 7.324 E-09 3.172 E-Q7 Rrp
(100,50,50) | 0.007490 | 0.000597 | 7.981 E-07 5.905 E-09 1.248 E-07 Rrp
(50,50,50) 0.008400 | 0.000624 | 9.187 E-07 6.700 E-09 1.671 E-07 Rrp
(100,100,100) | 0.004116 | 0.000336 | 4.354 E-07 3.802 E-09 6.628 E-08 Rrp
(50,100,100) | 0.004695 | 0.000324 | 4.944 E-07 4.004 E-09 8.798 E-08 Rrp
(20,50,100) | 0.008809 | 0.000572 | 1.043 E-06 7.230 E-09 4.098 E-07 Rrp
(20,100,50) | 0.006834 | 0.000420 | 7.887 E-07 5.438 E-09 1.914 E-07 Rrp

7. Conclusions

The estimation of S-S reliability for two parameters using the inverted Kumaraswamy distribution
was introduced in this paper using different estimation methods, namely MLE, MOM, and three types
of shrinkage methods. Monte Carlo simulation exhibited that the performance of the squared shrinkage
estimator (Rr,) had the appropriate behavior, being a more efficient estimator than the others in the
sense of MSE.
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