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Abstract
Let R be an associative ring with identity and let D be a left R-module. As a

generalization of T-essential submodules, we introduce the concept of the small T-
essential submodule, Let T be a proper submodule of a module D. A
submodule N such that N£T is small T-essential (ST-essential) and denoted by
N =g7e D, if for each submodule L of a module D, such that N M L =T, implies

that L = T. We also define ST-complement submodules and show the relationships

between ST-essential and S-closed, ST-essential and S-singular, and ST-
complement and ST-essential submodules. Some properties and theories about these
concepts are also provided.

Keywords: S-Essential T-Essential ST-Essential T-Complement ST-
Complement.
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1.Introduction
Let R be an associative ring with unitary and let D be unitary left R-module. A submodule N of D

is essential submodule of D ( N =, D), if for each submodule L of D, NNL = 0 [1]. A submodule
N of D is called small submodule of D ( N << D), if for each L submodule of a module D, such that
N+L=D,implies that L=D [2]. A submodule N of a module D is said to be small essential submodule
(s-essential) and denoted by N =_. D, if N+L=D, for each L small submodule of D, implies that L=D
[3, 4]. Let R be a ring and T be a proper submodule of a right R-module D. A submodule N of a
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module D is called T-essential submodule of D (and denoted by N <. D), such that N£T and, for
each submodule L of D, NNL =T, implies that L = T. In this paper , as a generalization of T-
essential submodule, we introduce the concept of small T-essential submodule. Let T be a proper
submodule of a module D. A submodule N, such that N<T, is small T- essential (ST-essential) and
denoted by N =g, D, if for each small submodule L of a module D, such that N L = T, implies
that L = T. We also provide some basic properties of this concept. In section two, we introduce the
definition of small T- complement submodule .Let N,T be submodules of D. A small submodule L
is called ST- complement for N of D, if N is maximal with respect to the property that N L = T.

We give some basic properties and various characterizations of this concept.
2. ST-Essential Submodules

In this section, we introduce the definition of ST-essential submodules, as a generalization of T-
essential submodule, and we study some basic properties of this type of submodules.
Definition (2.1): Let T be a proper submuodule of a module D. A submodule N, such that N<«T, is
called small T-essential of D (ST — essential ) and denoted by N =s1.D, if for each small submodule
LofDwith NN L=T, thenL=T.

Remarks and examples (2.2):
1- It is clear that every T.essential is ST. essential. But the converse is not true. For example: The

module Z,4 as Z-module. Let T=6Z,4 , N=2Z,. . The small submodules of Z,., are {0}, 6Z2s,12Z,..
If L={0},then NNL={0}=T, and L=T.If L=6Zs4 then NNL=12Z,, =T, and L= T.
IfL=12Z,4,thenNNL = 62,5 = T,andL = T.ThenN =zr. T.

But if L=3L,4 is submodule of Z,; of Z, NN L = {0, 6,12,18} = T, then N is not T-essential.

2- The module Zg as Z-module. Let T={0,3} , N={0, Z,4}. The only small submodule of Z is {0}.
Clearly, NnL = {0} =T, impliesthat L = T.Then N =¢r. Z¢ .

3- The module Z;> as Z-module. Let T=6Z;, , N=2Z,,. The small submodule of Z,, are {0}, {0, &}.
If L={0}, then NNL={0} =TandL =T . Also, if L={0,6}, then NnL ={0,68} =T,L =T. Then
N =gt 42.

4- The module Zge= as Z-module. By example (2,1,4-3) [5], Zp= =1 Z. Since every T. essential is
ST.essential,thenZpe =g1,. D.

5- Itis clear that T and N are submodules of a module D, and T=0. Then N =z, D if and only if

N =¢. D.

Remark (2.3): Let T and N be submodules of a module D, such that N£T. Then N =zt D if and
only if for every small submodule Lof D, L £ T, implies that NN L £ T,

Proof: =) Let N =<r. Dand let L be small submodule of D, such that L £ T . Assume that
NNL=T. AsN =cr. D, then L =, T which is a contradiction. Thus, NnL £ T,

(= Let L be a small submodule of amodule D, suchthat NN L =T . We want to show that L = T.
Assume that L £ T, implies that N N L £ T , which is a contradiction. Then N =g D.

Corollary (2.4): Let T,N be submodules of amodule D, such that N«<T. Then N =1 Dif and
only if for each x € D, such that Rx small submodule of ', Rx< T, implies that N M Rx £ T,
Proposition (2.5): Let T,N be a submodules of a module D, such that N«<T. Then N =gt Dif and
only if foreachx € D — T, such that R, small submodule in D . Then there exists r € R, such that
rxEN-T,

Proof:=) LetN =cr. D, letx €D —T  and let R, small submodule of D . LetL=R, . ThenL £ T,
Since N =z, D by (2.4),then N B, £ T . Hence, thereexistn ENME andn € T. Letn = x|
forsomer € R, Thus, rx € N — T.{«= Let Lbe small submodule of D, suchthat NN L =T. We
want to show that L = T . Assume that L. = T .Then there exists x € L — T. By our assumption , there
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existsr ER ,suchthatrx EN —T . Clearly, rx L. ThenL = T,
Proposition (2.6): Let T,N be a submodules of amodule D, such that T = N, but N<T, then

N g7, Dif and only if = <.~

=se -

Proof: =) Assume that N =gt Dand Iet% be small submodule ofg , such that _1_—“ N % = 0. Then

NTLL = 0, which impliesthat NN L =T, Since L = T, but T = L, therefore T = L. Hence %z 0.So

g = g. (e Letg Emg and let V be small submodule of amodule D, such that N NV = T. We

want to show that V.= T. As % n vTJrT = NHI;HT"' = "Nn:HT = % = 0, bythemodular law, then vTJrT =0,

andhence V+T=T,soV=T. Then N =¢1..D

Recall that a submodule L of an R-module D is called small closed (s-closed) and denoted by

L =.. D, if L has no proper s-essential extention submodule in D, that is whenever C = D, such that
L =.. C=D, then L=C[6].

Proposition (2.7): Let T,Nbe submodules of amodule D | such that N«T. Then T is s-closed in
D, and Ne&BT =, D if and only if N&BT =57, D.

Proof: =) Let T be s-closed of D and let N&6T =_. D .Then by a previous study [5] (2.1.2-6),

N@T

= =,. 2. Then by (2.6), N&®T =g D.(&= Let N®T =cr. D, then NN T = 0, by (2.6), then

E‘is.e g. Now, Ietg be small submodule afg and Nn'T = 0. Now

T
N®&T _H  (NETINH (NnH)&T T N@T o -
I - = = = - = = et H_
T N3 - - == 0, by the modular law. But — =, . ., therefore = = 0 and

hence H=T. Thus, T is s-closed of D.

Proposition (2.8): Let T,N be asubmodules of amodule D, such that N<T. If N =_.. Dand T is s-
closed for Nof D then N+ T =1, D.

Proof: LetN=_.D, 6K N=N+T,then the same study above [5] (1.1.17) N+ T =_. D. Andsince T
is s-closed for N of D, by another study [6] (2,1,2-6), we have % e g, and by (2,6),
N+T <¢r. D.

Proposition (2.9): Let T,N be submodules of a module D, such that N<T. And let

L be asmall submoduleof DwithL =T, IF N+ T =51, D, then % ESE}.E %

Proof: Let = bea small submodule of a module 2, such that N < = . Then
(N+T)InC=T. Since% is small submodule of D, and L is small submodule of D. then, by an

T
= T Hence,

earlier work [1], C is small submodule of D. AsN + T =z, D, therefore, C = T. Thus, E = %
Proposition (2.10): Let N,N; and L,L; be submodules of a module D, such that
N<=gre Ny, L=gre Ly . ThenNNL =g Ny NL.
Proof: Let Kbe asmall submodule of N; n Ly, such that Kn (Nn L) = T. We want to show that
K =T. Since K is small submodule of N; N L, then KN N is small submodule of Ny NL; =L, .
Then K N N is small submodule of Ly, Then (KN N)NL =T, sincel =sr. L;. ThenKNN =T,
since K is small submodule of N; N L, .Then Kis small submodule of Ny N =cr. Ny. ThenK =T,
Corollary(2.11): Let T,N be submodules of amodule D,suchthat N £ T.

And let L be small submodule of a module D. If N and L are ST-essential submodules of D | then
NNL=g,.D.
Proposition (2.12):_Let g: D; — D be an epimorphism and let T,L be submeodules of a module D-.
If L =sr.. Dy, such that LT, then g7 (L) =, -+(7),. D1
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Proof: Let K be a small submodule of Dy, such that g=(L) N K = g~*(T). Since g is an
epimorphism, then L N g{K) = T. And since K be a small submodule of Dy, then

g(K) isa small submodule of D,, L =g, D».Then g{K) = Tand g is an epimorphism, then
K= g~ (T). .

Let g: D, — D5 be a homomorphism and let T,N be a submodules of Dy. If N s, Dy thenitis
not necessary that g{N) =, (). D2.For example:

Let g: T, — T, be a map defined by g(x) = 3x,¥x € Z. Let T={0, 3} and N={0, 2, 2}. Then
g(T) = {0,3} and g(N) = {0}. By (1,2-1), N =c1. L. But {0} n {0, 2,3 }= {0} = g(T), and
{0,2,4} £ g(T). Hence, g(N) £5.(1). Le.

The small singular (s-singular) submodule of M is denoted by Z=(M).

Z5(M) = {m € M|ml = 0 for some s-essential right ideal | of R}, if Z=(M) = 0, then M is called a s-
non singular module, and if Z*(M) = M, then M is called s-singular [6].
Proposition (2.13): Let T and N be submodules of a module D, such that N<T, and let D be finitely

o . .
generated. Then pemped & s-singular.

Proof: Let N+T=g5r. D. Then by (2. 6) < Ssel 2 Hence by[6](2.2.6). Then sz==— \HT, is s-singular.

i ., D Do, .
Then, by the third isomorphic theorem, sz — n N Therefore, ———is s-singular.

Proposition (2.14):_Let T, N be submodules of a module D, such that N<T. If% is s-nonsingular,
then % is s-singular if and only if N + T =¢7,. D.

Proof: =) Let% be S- non singular module and % is S-singular, by the third isomorphic theorem

o Dy
% = oL Therefore, \HT, is s-singular, by the previously mentioned study [6](2.2.6). Then
: T
" =c. 2. By(26), N+ T =gr, D.

(< Clear. By(2.15).
Proposition (2.15): Let {Dx:2<EA} be a family of modules and T, H,; be submodules of D,

Vo € A, suchthat HeT. If Hy + T = =5Tg.e Dg, Va €A, then Dae/ AT HII+TII

Proof: Assume that Hy + Ty =s(1,)—= D, V& € A. By (2.6), H“+T“ -=_:5.E T—,‘n’u £ A. By the above
e

- 5': By E\."'.TII:I .- @ oEN D o

study [6] (1,1,17-3), @aEJ\{HﬁT“ <se c:E;".{.E]-

P HotTo) _ @ﬂE'Hﬂ+@ﬂE'Tu = By
Poe/To Poe/To

Then

(2.6).
Let D be a module. D is called a faithful module if Ann(D)=0. Let D be a module. D is called a
multiplication module if for each submodule N of D, there exists an ideal | of R such that N=ID.

Let M be an R-module and N<M. The residual of M in N (denoted by N:M)={rER[rMEN} [7].
Proposition (2.16): Let T and N be submodules of a finitely generated and multiplication module D,
such that N«T. If N =g7. D, then [N:D]=s[T:pj.e R.

Proof: LetV be small ideal in R, such that [N: D] NV = [T: D]. Then [N: D]D n VD = [T: D]D. Since
D is multiplication , then NN VD =T N =57, D.Then VD = T,V=[T:D] . AsN =7 D, soV=T.
Hence [N: D] =gr.pje R.

Theorem (2.17): Let T,N be submodules of finitely generated, faithful and multiplication module D,
such that N«T. Then N <51 Dif and only if [N: D] =gi,p.e R.

WD
E Z. Then Bge Hy + Ty E (Do Tax )2 B e De DY

—5.e DT
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Proof: =) It is clear by (2.16).
(£Suppose that [N: D] =sir.p. R. Let L be small a submodule of D, such that NN L = T. And let D
be multiplication module, then [N: D]D n [L: DID = [T: DID. Since D is finitely generated, faithful and
multiplication module, then D is cancellation module. Since L is small, then it is easy to show that
[L:D] is small. So [N: D] n [L: D] = [T:D]. But [N: D] =g[.p).« R, therefore [L: D] = [T: D] and hence
[L:D]D = [T:DID. Thus L= T.
3- ST. complement submodules

In this section, we introduce ST. complement submodules and study some of their properties and

examples.
Definition (3.1): Let N, T be a submodule of a module D. A small submodule L is called small T-

complement for N of D, if L is maximal with respect to the property that NN L = T.
Remarks and Examples (3.2):

are {0},{0,8}. If L = {0,6}, then L is maximal with respect to the property NN L = T. Then L is ST-

complement of A of Z-.
2- It is clear that ST-complement is not unique.
3- Let T and N be submuodules of a module D. And let L be small submodule of a module D. If L is

ST- complement of N of D, then it is not necessary that N is ST- complement L of D, asinthe
following example: The module Zz as Z-module. Let T = {0,4},N = {0, 2,4, 6} and let L. = {0,4} be
small submodule of Zz, NN L =T, But N is not ST- complement for L of Zz (since N is not small
submodule of Zg).

Proposition (3.3): Let T and N be submodules of a module D. Then N has a ST- complement of D.
Proof: LetT and N be submodules of a module D. Let G = {L small submodule of D\NN L = T},
G* @, where 0 £G. Let {Ci }«ep, be a chain in G. Clearly, U, Cx is small submodule of D, since
NN (Usep Coc) =Useep (N N Cx) = T. Then Uep Cx € G. By Zoren's lemma, G has a maximal
element say H. Claim that, H is ST- complement for N in D. To show that, let VV be small submodule
of D with H £ V.and N NV = T. Therefore VEG, which is a contradiction. Thus, H=V.

Proposition (3.4):  Let T and N be submodules of the module D and let C be small submodule of
D, with N=C. If L is ST- complement for N of D and C is a ST-complement for L of D, then L is a

ST- complement for C of D.
Proof: Let L be ST- complement for N of D and C be a ST- complement for L of D, such that N=C.

Then LN C = T. We want to show that L is ST- complement for C of D. Let V be small submodule
of D,suchthat L=Vand CnV =T AsN=C,then NNV =CnV =T. But L is maximal with
respect to the property that N L = T, therefore L=V. Hence, L is ST- complement for C of D.
Proposition (3.5): Let T,N,C be submodules of a module D, such that T=N=C. If L isa ST-

complement for N of D and C is a ST- complement for L of D. Then C is maximal ST- essential of N
of D.

Proof: Assume that L is an ST- complement for N of D and C is a ST- complement for L of D and
T=N=C. First, we prove that N =z, C. Let K be small submodule of C, such that NNK=T. Claim

that NN {(L+K)=T. To show that, letn = b + k, where n € N,

bel,ke K Thenb=n—-kelnNnC=T=N Son—b=keNnK=Tandhencen€T.ButLis
maximal with respect to the property that N ML = T, therefore L + K = L. Then K = B, which implies
that K=KNC=BNC=T. Thus N =c7. C. Now, to show that C is maximal ST-essential for N of
D, let V be small submodule of D, such that C = V with N =zr. V. Since NN L =T, then
(NNLINV=TNV=T,impliesthat NN {LNV) =T.Since N =¢r—. V, thenLNV =T. But C is
maximal with respect to the property that L N C = T, therefore V=C. Thus, C is maximal ST-essential
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for N of D.
Proposition (3.6): LetT, N, L be submodules of amodule D, such that T =N L. Then NisaST-
complement for L of D if and only if Sea f.

Proof: =) Suppose that N is a ST- complement for L of D. Let% be small submodule of %, such that

&ﬂ — =10, then (NFLIE = 0. Hence, by the modular law, (LB _ = 0, implies that (LNB)+N=N.
Then LﬂBcﬁN and then LNB=NNL=T. But L is maximal with respect to the property that NNL=T,
therefore B=N. Thus, — ahis ES,E %.

(< Let B be small sul:rmndule of D, such that LMB=T. Then E be small submodule Df%_. and
N+L B _ (N+LInB _ ILnBH\t

~ 5= x , by the modular law. Since LNB=T and NML=T, then LNB=NL. But
L=B, therefore NNL=LNB, so NNL=LNB. Thus, =0 = ¥ = X = 0, since == =, 2, then

= 0, hence B=N. Thus, N is ST-complement for L of D.

Theorem (3.7): LetT, N be submodules of a module D. If L is a ST- complement to N+T of D, then
(N4TMHL N4T . L4T

(N+T)+L=gp. M and — = TQT
Proof: Assume that L is ST- complement for N+T of D. Then L is maximal small submodule of D,
(N+T)NL=T. Let C be small submodule of D, such that ((N+T)+L)NC=T. Claim that
(N+T)N(L+C)=T. To show that , let n+t=b+c,whereneNteT,beLceC Since
m+t)—b=ce((N+T)+L), then (n+t)—c=be(N+T)NL=T. Thus, n+t€T and
hence (N+T)N(L+C)=T. As L is maximal with respect to the property that (N+T)NL=T, therefore

L=L+C and hence C=L , implies that C=LNC=((N+T)+L)NC=T. Hence, (N+T)+L=s7.D. For the
second part, it is enough to show that Eﬂﬂ_ 0. Let n+t=Db+t;, where

neN,beBtt; €T. Thenn+t—t; =b, and hence bE(N+T)r“|L£T, then n+ t €T, implies that

N4T _ L4T (N+TIniL+T) _ T
— == =-=0.
T T T T

Proposition (3.8): Let T,N,L and C be submodules of a module D, such that T =N, If
A=sit+c)e D and C is  ST-complement of L of D, then %_5@%%
L c s

Proof: Let A=git+c). D and C be ST-complement to L of D. Let % be a small submodule of E, such

(O L _ afoint_ [Anbie e then (NN L} +C=T+C, and

C C C C C !
hence NNL =T+ C. ButN =gitsc). D, therefore L= T + C. So = o= = - . Thus, — —sz" }E -

MN+C L (T+C) .
that — n-=-—— Since
C C C

(T+C]

1. Proposition (3.9): Let T,N be submodules of a module D. If
Nn(T+L)=Tand % 55@}9 % then (T+L) is a S(T+L)- complement for N of D.
LS

Proof: Let C be small submodule of a module D, such that T+L=C and NNC=T+L. Then

N+L _ € (N+#LJNC _ (NNC}4L (NNC)4L _ (T+LI+L _ T+L
—nN-= )nc _ (Nnc) ]J}’ modular law. Then — } = e _TH , since
L L 1. 1. L L
N+L
- - L. =
L _S[TEL}EB - Then “and hence C= T+ L. Thus, T+L=C.

Proposition (3.10): Let T,N be a submuodule of a finitely generated, faithful and multiplication
module D. Then L is a ST- complement for N in D if and only if [L:D] is a S[T:D]- complement for
[N:D] inR.

Proof: =) Let L is ST- complement for N of D, then L is maximal small submodule of D, such that
NNL=T. Since D is multiplication module , then[N:D]D n [L: D]D < [T:D]D. Since D is finitely
generated, faithful and multiplication module, then it is a cancellation module, as previously. So
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[N:D] n[L:D] = [T:D]

.Let L is small submodule of D, [L: D] = [C: D], such that [N: D] n [C: D] = [T: D] then

[N: DID n [C: D]D = [T: DID. Since D is finitely generated, then NN C = T, But L is maximal with
respect to the property that Nn L = T, then L=C, and hence [N:D]=[C:D]. Thus [L:D] is S[T:D]-
complement for [N:D] in R.(< Suppose that [L:D] is S[T:D]- complement for [N:D] in R. Then
[N:D] n [L: D] = [T: D], implies that [N: D]D n [L: D]D = [T: D]D.. Since D is finitely generated, then
NNL=T. LetL = C, where C is small submodule of D, suchthat NN C = T. Now, as D is a
multiplication module, then [N: D]D n [C: DID = [T: D]D. Since D is finitely generated, faithful and
multiplication module, then D is a cancellation module, as shown previously[8]. So

[N:D] n[C:D] = [T: D]. But [L:D] is a maximal with respect to the property that [N: D] n [L: D] =
[T: D], therefore [L:D]=[C:D], implies that [L:D]D=[C:D]D, thus L=C.
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