Mohammad and Yassin

Iraqi Journal of Science, 2020, Vol. 61, No. 4, pp: 838-844 DOI: 10.24996/ijs.2020.61.4.17

ISSN: 0067-2904

On ST-Essential (Complement) Submodules

Zainab Rzaij Mohammad^{*}, Sahira Mahmood Yassin

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 15/7/ 2019

Accepted: 21/9/2019

Abstract

Let R be an associative ring with identity and let D be a left R-module. As a generalization of T-essential **submodules**, we introduce the concept of the small T-essential **submodule**. Let T be a proper **submodule** of a module D. A **submodule** N such that $N \not\leq T$ is small T-essential (ST-essential) and denoted by $N \leq_{STe} D$, if for each **submodule** L of a module D, such that $N \cap L \leq T$, implies that $L \leq T$. We also define ST-complement submodules and show the relationships between ST-essential and S-closed, ST-essential and S-singular, and ST-complement and ST-essential submodules. Some properties and theories about these concepts are also provided.

Keywords: S-Essential T-Essential ST-Essential T-Complement ST-Complement.

المقاسات الجزئيه الصغيرة الكبيره (المكملة) من النمط

زينب رزيج محد ً , ساهره محمود ياسين قسم الرياضيات, كلية العلوم , جامعة بغداد، بغداد، العراق

الخلاصه

لتكن R حلقه تجميعيه ذات عنصر محايد ولتكن D مقاسا احاديا ايسر معرف عليها. كتعميم لمفهوم المقاسات الجزئيه الكبيره من النمط T . قدمنا تعريف المقاسات الجزئيه الصغيره الكبيره من النمط T . ليكن T مقاس جزئي فعلي من D . المقاس الجزئي N بحيث N¥T يدعى مقاسا صغير كبير من النمط T, اذا كان لكل مقاس جزئي لعلي من D , بحيث T فأن T≥L وسنوضح العلاقه بين المقاسات الجزئيه الصغيره الكبيره من النمط T والمقاسات الصغيره المغلقه. كذلك عرفنا المقاس الجزئي المكمل من النمط T , ودرسنا خواصه.

1.Introduction

Let R be an associative ring with unitary and let D be unitary left R-module. A **submodule** N of D is essential **submodule** of D ($N \leq_e D$), if for each **submodule** L of D, $N \cap L \neq 0$ [1]. A **submodule** N of D is called small **submodule** of D ($N \ll D$), if for each L **submodule** of a module D, such that N+L=D, implies that L=D [2]. A **submodule** N of a module D is said to be small essential **submodule** (s-essential) and denoted by $N \leq_{s,e} D$, if N+L=D, for each L small **submodule** of D, implies that L=D [3, 4]. Let R be a ring and T be a proper **submodule** of a right R-module D. A **submodule** N of a

module D is called T-essential **submodule** of D (and denoted by $N \leq_{T,e} D$), such that $N \not\leq T$ and, for each **submodule** L of D, $N \cap L \leq T$, implies that $L \leq T$. In this paper, as a generalization of Tessential **submodule**, we introduce the concept of small T-essential **submodule**. Let T be a proper **submodule** of a module D. A **submodule** N, such that $N \not\leq T$, is small T- essential (ST-essential) and denoted by $N \leq_{ST,e} D$, if for each small **submodule** L of a module D, such that $N \cap L \leq T$, implies that $L \leq T$. We also provide some basic properties of this concept. In section two, we introduce the definition of small T- complement **submodule**. Let N,T be **submodules** of D. A small **submodule** L is called ST- complement for N of D, if N is maximal with respect to the property that $N \cap L \leq T$. We give some basic properties and various characterizations of this concept.

2. ST-Essential Submodules

In this section, we introduce the definition of ST-essential **submodules**, as a generalization of T-essential submodule, and we study some basic properties of this type of **submodule**s.

Definition (2.1): Let T be a proper submodule of a module D. A submodule N, such that $N \leq T$, is called small T-essential of D (ST – essential) and denoted by $N \leq_{ST,e} D$, if for each small submodule L of D with $N \cap L \leq T$, then $L \leq T$.

Remarks and examples (2.2):

1- It is clear that every **T.essential is ST.essential**. But the converse is not true. For example: The module \mathbb{Z}_{24} as \mathbb{Z} -module. Let $T=6\mathbb{Z}_{24}$, $N=2\mathbb{Z}_{24}$. The small submodules of \mathbb{Z}_{24} are $\{\overline{0}\}$, $6\mathbb{Z}_{24}$, $12\mathbb{Z}_{24}$. If $L = \{\overline{0}\}$, then $N \cap L = \{\overline{0}\} \leq T$, and $L \leq T$. If $L=6\mathbb{Z}_{24}$, then $N \cap L = 12\mathbb{Z}_{24} \leq T$, and $L \leq T$. If $L=12\mathbb{Z}_{24}$, then $N \cap L = 6\mathbb{Z}_{24} \leq T$, and $L \leq T$. If $L=12\mathbb{Z}_{24}$, then $N \cap L = 6\mathbb{Z}_{24} \leq T$.

But if $L=3\mathbb{Z}_{24}$ is submodule of \mathbb{Z}_{24} of \mathbb{Z} , $N \cap L = \{\overline{0}, \overline{6}, \overline{12}, \overline{18}\} \leq T$, then N is not T-essential. 2- The module \mathbb{Z}_6 as \mathbb{Z} -module. Let $T=\{\overline{0},\overline{3}\}$, $N=\{\overline{0},\overline{2},\overline{4}\}$. The only small submodule of \mathbb{Z}_6 is $\{\overline{0}\}$. Clearly, $N \cap L = \{\overline{0}\} \leq T$, implies that $L \leq T$. Then $N \leq_{ST,e} \mathbb{Z}_6$.

3- The module \mathbb{Z}_{12} as Z-module. Let $T=6\mathbb{Z}_{12}$, $N=2\mathbb{Z}_{12}$. The small submodule of \mathbb{Z}_{12} are $\{\overline{0}\}$, $\{\overline{0}, \overline{6}\}$. If $L=\{\overline{0}\}$, then $N \cap L = \{\overline{0}\} \leq T$ and $L \leq T$. Also, if $L=\{\overline{0}, \overline{6}\}$, then $N \cap L = \{\overline{0}, \overline{6}\} \leq T$, $L \leq T$. Then $N \leq_{ST,e} \mathbb{Z}_{12}$.

4- The module $\mathbb{Z}_{p^{\infty}}$ as Z-module. By example (2,1,4-3) [5], $\mathbb{Z}_{p^{\infty}} \leq_{T,e} \mathbb{Z}$. Since every T. essential is ST.essential,then $\mathbb{Z}_{p^{\infty}} \leq_{ST,e} \mathbb{D}$.

5- It is clear that T and N are submodules of a module D, and T=0. Then $N \leq_{ST,e} D$ if and only if $N \leq_{S,e} D$.

Remark (2.3): Let **T** and **N** be submodules of a module **D**, such that $N \leq T$. Then $N \leq T$. D if and only if for every small submodule L of D, L $\leq T$, implies that $N \cap L \leq T$.

Proof: \Rightarrow) Let $N \leq_{ST,e} D$ and let L be small submodule of D, such that $L \nleq T$. Assume that $N \cap L \leq T$. As $N \leq_{ST,e} D$, then $L \leq, T$ which is a contradiction. Thus, $N \cap L \nleq T$.

(\Leftarrow Let L be a small submodule of a module D, such that $N \cap L \leq T$. We want to show that $L \leq T$. Assume that $L \leq T$, implies that $N \cap L \leq T$, which is a contradiction. Then $N \leq_{ST,e} D$.

Corollary (2.4): Let T, N be submodules of a module D, such that $N \leq T$. Then $N \leq_{ST,e} D$ if and only if for each $x \in D$, such that Rx small submodule of D. $Rx \leq T$, implies that $N \cap Rx \leq T$. **Proposition** (2.5): Let T, N be a submodules of a module D, such that $N \leq T$. Then $N \leq_{ST,e} D$ if and only if for each $x \in D - T$, such that R_x small submodule in D. Then there exists $r \in R$, such that $rx \in N - T$.

Proof: \Rightarrow) Let $N \leq_{ST,e} D$, let $x \in D - T$, and let R_x small submodule of D. Let $L = R_x$. Then $L \leq T$. Since $N \leq_{ST,e} D$, by (2.4), then $N \cap R_x \leq T$. Hence, there exist $n \in N \cap R_x$ and $n \notin T$. Let n = rx, for some $r \in R$. Thus, $rx \in N - T$. (\Leftarrow Let L be small submodule of D, such that $N \cap L \leq T$. We want to show that $L \leq T$. Assume that $L \leq T$. Then there exists $x \in L - T$. By our assumption, there exists $r \in R$, such that $rx \in N - T$. Clearly, $rx \in L$. Then $L \leq T$. **Proposition (2.6):** Let T, N be a submodules of a module D, such that $T \leq N$, but $N \leq T$, then $N \leq_{ST,e} D$ if and only if $\frac{N}{T} \leq_{s,e} \frac{D}{T}$. **Proof:** \Rightarrow) Assume that $N \leq_{ST,e} D$ and let $\frac{L}{T}$ be small submodule of $\frac{D}{T}$, such that $\frac{N}{T} \cap \frac{L}{T} = 0$. Then $\frac{N \cap L}{T} = 0$, which implies that $N \cap L = T$. Since $L \leq T$, but $T \leq L$, therefore T = L. Hence $\frac{L}{T} = 0$. So $\frac{N}{T} \leq_{S,e} \frac{D}{T}$. ($\Leftarrow \text{ Let } \frac{N}{T} \leq_{s,e} \frac{D}{T}$ and let V be small submodule of a module D, such that $N \cap V \leq T$. We want to show that $V \leq T$. As $\frac{N}{T} \cap \frac{V+T}{T} = \frac{N \cap (V+T)}{T} = \frac{(N \cap V)+T}{T} = \frac{T}{T} = 0$, by the modular law, then $\frac{V+T}{T} = 0$, and hence V + T = T, so $V \leq T$. Then $N \leq_{ST,e} .D$ Recall that a **submodule** L of an R-module D is called small closed (s-closed) and denoted by $L \leq_{se} C \leq D$, if L has no proper s-essential **extention submodule** in D, that is whenever $C \leq D$, such that $L \leq_{s,e} C \leq D$, then L=C[6].

Proposition (2.7): Let **T**, **N** be submodules of a module D, such that $N \not\leq T$. Then **T** is s-closed in D, and $N \oplus T \leq_{s,e} D$ if and only if $N \oplus T \leq_{sT,e} D$.

Proof: ⇒) Let T be s-closed of D and let N⊕T ≤_{s.e} D. Then by a previous study [5] (2.1.2-6), $\frac{^{N\oplus T}}{^{T}} \leq_{s.e} \frac{^{D}}{^{T}}$. Then by (2.6), N⊕T ≤_{ST.e} D.(\leftarrow Let N⊕T ≤_{ST.e} D, then N ∩ T = 0, by (2.6), then $\frac{^{N\oplus T}}{^{T}} \leq_{s.e} \frac{^{D}}{^{T}}$. Now, let $\frac{^{H}}{^{T}}$ be small submodule of $\frac{^{D}}{^{T}}$ and N ∩ T = 0. Now $\frac{^{N\oplus T}}{^{T}} \cap \frac{^{H}}{^{T}} = \frac{^{(N\oplus T)\cap H}}{^{T}} = \frac{^{(N\cap H)\oplus T}}{^{T}} = \frac{^{T}}{^{T}} = 0$, by the modular law. But $\frac{^{N\oplus T}}{^{T}} \leq_{s.e} \frac{^{D}}{^{T}}$, therefore $\frac{^{H}}{^{T}} = 0$ and hence H = T. Thus, T is s-closed of D.

Proposition (2.8): Let T, N be a submodules of a module D, such that $N \leq T$. If $N \leq_{s,e} D$ and T is sclosed for N of D, then $N + T \leq_{ST,e} D$.

Proof: Let $N \leq_{s,e} D$, $N \leq N + T$, then the same study above [5] (1.1.17) $N + T \leq_{s,e} D$. And since T is s-closed for N of D, by another study [6] (2,1,2-6), we have $\frac{N+T}{T} \leq_{s,e} \frac{D}{T}$, and by (2,6), $N + T \leq_{s,r,e} D$.

Proposition (2.9): Let **T**, **N** be submodules of a module **D**, such that $N \leq T$. And let **L** be a small submodule of **D** with $L \leq T$. If $N + T \leq_{ST,e} D$, then $\frac{N+T}{L} \leq_{s}(\frac{T}{T}) e^{\frac{D}{L}}$.

Proof: Let $\frac{C}{L}$ be a small submodule of a module $\frac{D}{L}$, such that $\frac{N+T}{L} \cap \frac{C}{L} \leq \frac{T}{L}$. Then $\frac{(N+T)\cap C}{L} \leq \frac{T}{L}$. Hence, $(N + T) \cap C \leq T$. Since $\frac{C}{L}$ is small submodule of D, and L is small submodule of D. then, by an earlier work [1], C is small submodule of D. As $N + T \leq_{ST,e} D$, therefore, $C \leq T$. Thus, $\frac{C}{L} \leq \frac{T}{L}$. **Proposition (2.10):** Let N, N₁ and L, L₁ be submodules of a module D, such that $N \leq_{ST,e} N_1$, $L \leq_{ST,e} L_1$. Then $N \cap L \leq_{ST,e} N_1 \cap L_1$.

Proof: Let K be a small submodule of $N_1 \cap L_1$, such that $K \cap (N \cap L) \leq T$. We want to show that $K \leq T$. Since K is small submodule of $N_1 \cap L_1$, then $K \cap N$ is small submodule of $N_1 \cap L_1 \leq L_1$. Then $K \cap N$ is small submodule of L_1 . Then $(K \cap N) \cap L \leq T$, since $L \leq_{ST,e} L_1$. Then $K \cap N \leq T$, since K is small submodule of $N_1 \cap L_1$. Then K is small submodule of $N_1 N \leq_{ST,e} N_1$. Then $K \leq T$. **Corollary(2.11):** Let T, N be submodules of a module D, such that $N \leq T$.

And let L be small submodule of a module D. If N and L are ST-essential submodules of D , then $N \cap L \leq_{ST,e} D$.

Proposition (2.12): Let g: $D_1 \to D_2$ be an epimorphism and let T,L be submodules of a module D_2 . If $L \leq_{ST,e} D_2$, such that $L \leq T$, then $g^{-1}(L) \leq_{g(g^{-1}(T)),e} D_1$. **Proof:** Let K be a small submodule of D_1 , such that $g^{-1}(L) \cap K \le g^{-1}(T)$. Since g is an epimorphism, then $L \cap g(K) \le T$. And since K be a small submodule of D_1 , then g(K) is a small submodule of D_2 , $L \le_{ST,e} D_2$. Then $g(K) \le T$ and g is an epimorphism, then $K \le g^{-1}(T)$.

Let $g: D_1 \to D_2$ be a homomorphism and let T,N be a submodules of D_1 . If $N \leq_{ST,e} D_1$, then it is not necessary that $g(N) \leq_{sg(T),e} D_2$. For example:

Let $g: \mathbb{Z}_6 \to \mathbb{Z}_6$ be a map defined by g(x) = 3x, $\forall x \in \mathbb{Z}$. Let $T = \{\overline{0}, \overline{3}\}$ and $N = \{\overline{0}, \overline{2}, \overline{4}\}$. Then $g(T) = \{\overline{0}, 3\}$ and $g(N) = \{\overline{0}\}$. By (1,2-1), $N \leq_{ST,e} \mathbb{Z}_6$. But $\{\overline{0}\} \cap \{\overline{0}, \overline{2}, \overline{4}\} = \{\overline{0}\} \leq g(T)$, and $\{\overline{0}, \overline{2}, \overline{4}\} \leq g(T)$. Hence, $g(N) \leq_{Sg(T),e} \mathbb{Z}_6$.

The small singular (s-singular) submodule of M is denoted by $Z^{s}(M)$.

 $Z^{\mathfrak{s}}(M) = \{m \in M | ml = 0 \text{ for some s-essential right ideal l of } R\}$, if $Z^{\mathfrak{s}}(M) = 0$, then M is called a s-non singular module, and if $Z^{\mathfrak{s}}(M) = M$, then M is called s-singular [6].

Proposition (2.13): Let T and N be **submodules** of a module D, such that $N \leq T$, and let D be finitely generated. Then $\frac{D}{N+T}$ is s-singular.

Proof: Let N+T≤_{ST.e} D. Then by (2.6), $\frac{N+T}{T} \leq_{s.e} \frac{D}{T}$. Hence by[6](2.2.6). Then $\frac{D_{T}}{N+T_{T}}$ is s-singular.

Then, by the third isomorphic theorem, $\frac{D_{T}}{N+T_{T}} \cong \frac{D}{N+T}$. Therefore, $\frac{D}{N+T}$ is s-singular.

Proposition (2.14): Let T, N be **submodules** of a module D, such that $N \not\leq T$. If $\frac{D}{T}$ is s-nonsingular, then $\frac{D}{N+T}$ is s-singular if and only if $N + T \leq_{ST,e} D$. **Proof:** \Rightarrow) Let $\frac{D}{T}$ be S- non singular module and $\frac{D}{N+T}$ is S-singular, by the third isomorphic theorem $\frac{D}{N+T} \cong \frac{D}{T}$. Therefore, $\frac{D_{/T}}{N+T_{/T}}$ is s-singular, by the previously mentioned study [6](2.2.6). Then $\frac{N+T}{T} \leq_{S,e} \frac{D}{T}$. By(2.6), $N + T \leq_{ST,e} D$. (\leftarrow Clear. By(2.15). **Proposition (2.15):** Let $\{D_{\alpha}: \alpha \in \Lambda\}$ be a family of modules and T_{α}, H_{α} be submodules of D_{α} $,\forall \alpha \in \Lambda$, such that $H_{\alpha} \leq T$. If $H_{\alpha} + T_{\alpha} \leq_{ST,\alpha,e} D_{\alpha}, \forall \alpha \in \Lambda$, then $\bigoplus_{\alpha \in \Lambda} \frac{H_{\alpha} + T_{\alpha}}{\Delta} \leq_{S(\bigoplus_{n=1}^{r}T_n),e} \bigoplus_{\alpha \in \Lambda} D_{\alpha}$.

 $\begin{array}{l} \forall \alpha \in \Lambda, \text{ such that } H_{\alpha} \not\leq T. \text{ If } H_{\alpha} + T_{\alpha} \leq_{ST_{\alpha}, e} D_{\alpha}, \forall \alpha \in \Lambda, \text{ then } \bigoplus_{\alpha \in \Lambda} \frac{H_{\alpha} + T_{\alpha}}{T_{\alpha}} \leq_{S(\bigoplus_{\alpha \in \Lambda} T_{\alpha}), e} \bigoplus_{\alpha \in \Lambda} D_{\alpha}. \end{array} \\ \begin{array}{l} \textbf{Proof: Assume that } H_{\alpha} + T_{\alpha} \leq_{S(T_{\alpha}) - e} D_{\alpha}, \forall \alpha \in \Lambda. \text{ By (2.6)}, \frac{H_{\alpha} + T_{\alpha}}{T_{\alpha}} \leq_{S, e} \frac{D_{\alpha}}{T_{\alpha}}, \forall \alpha \in \Lambda. \text{ By the above study [6] (1,1,17-3), } \bigoplus_{\alpha \in \Lambda} (\frac{H_{\alpha} + T_{\alpha}}{T_{\alpha}}) \leq_{S, e} \bigoplus_{\alpha \in \Lambda} (\frac{D_{\alpha}}{T_{\alpha}}). \end{array} \\ \begin{array}{l} \textbf{Then } \frac{\bigoplus_{\alpha \in \Lambda} (H_{\alpha} + T_{\alpha})}{\bigoplus_{\alpha \in \Lambda} T_{\alpha}} = \frac{\bigoplus_{\alpha \in \Lambda} H_{\alpha} + \bigoplus_{\alpha \in \Lambda} T_{\alpha}}{\bigoplus_{\alpha \in \Lambda} T_{\alpha}} \leq_{S, e} \frac{\bigoplus_{\alpha \in \Lambda} D_{\alpha}}{\bigoplus_{\alpha \in \Lambda} T_{\alpha}}. \end{array} \\ \begin{array}{l} \textbf{Then } \bigoplus_{\alpha \in \Lambda} H_{\alpha} + T_{\alpha} \leq_{S(\bigoplus_{\alpha \in \Lambda} T_{\alpha}} M_{\alpha} + T_{\alpha} \leq_{S(\bigoplus_{\alpha \in \Lambda} T_{\alpha}} M_{\alpha}, \text{ by } \end{array} \end{array}$

Let D be a module. D is called a faithful module if Ann(D)=0. Let D be a module. D is called a multiplication module if for each **submodule** N of D, there exists an ideal I of R such that N=ID. Let M be an R-module and N \leq M. The residual of M in N (denoted by N:M)={r \in R|rM \subseteq N} [7]. **Proposition (2.16):** Let T and N be **submodules** of a finitely generated and multiplication module D, such that N \leq T. If N \leq _{ST.e} D, then [N:D] \leq _{S[T:D].e} R.

Proof: Let V be small ideal in R, such that $[N:D] \cap V \leq [T:D]$. Then $[N:D]D \cap VD \leq [T:D]D$. Since D is multiplication, then $N \cap VD \leq T$, $N \leq_{ST,e} D$. Then $VD \leq T$, $V \leq [T:D]$. As $N \leq_{ST,e} D$, so $V \leq T$. Hence $[N:D] \leq_{S[T:D],e} R$.

Theorem (2.17): Let T,N be **submodules** of finitely generated, faithful and multiplication module D, such that $N \leq T$. Then $N \leq_{ST,e} D$ if and only if $[N:D] \leq_{S[T:D],e} R$.

Proof: \Rightarrow) It is clear by (2.16).

 $(\leq \text{Suppose that } [N:D] \leq_{S[T:D],e} R$. Let L be small a submodule of D, such that $N \cap L \leq T$. And let D be multiplication module, then $[N:D]D \cap [L:D]D \leq [T:D]D$. Since D is finitely generated, faithful and multiplication module, then D is cancellation module. Since L is small, then it is easy to show that [L:D] is small. So $[N:D] \cap [L:D] \leq [T:D]$. But $[N:D] \leq_{S[T:D],e} R$, therefore $[L:D] \leq [T:D]$ and hence $[L:D]D \leq [T:D]D$. Thus $L \leq T$.

3- ST. complement submodules

In this section, we introduce ST. complement **submodules** and study some of their properties and examples.

Definition (3.1): Let N,T be a **submodule** of a module D. A small **submodule** L is called small T-complement for N of D, if L is maximal with respect to the property that $N \cap L \leq T$.

Remarks and Examples (3.2):

1- The module \mathbb{Z}_{12} as \mathbb{Z} - module. Let $T = \{\overline{0}, \overline{6}\}, N = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$. The small submodules of \mathbb{Z}_{12} are $\{\overline{0}\}, \{\overline{0}, \overline{6}\}$. If $L = \{\overline{0}, \overline{6}\}$, then L is maximal with respect to the property $N \cap L \leq T$. Then L is ST-complement of A of \mathbb{Z}_{12} .

2- It is clear that ST-complement is not unique.

3- Let T and N be **submodule**s of a module D. And let L be small **submodule** of a module D. If L is ST- complement of N of D, then it is not necessary that N is ST- complement L of D, as in the following example: The module \mathbb{Z}_8 as \mathbb{Z} -module. Let $\mathbf{T} = \{\overline{0}, \overline{4}\}, N = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ and let $\mathbf{L} = \{\overline{0}, \overline{4}\}$ be small **submodule** of \mathbb{Z}_8 , $N \cap L \leq \mathbf{T}$. But N is not ST- complement for L of \mathbb{Z}_8 (since N is not small **submodule** of \mathbb{Z}_8).

Proposition (3.3): Let T and N be **submodules** of a module D. Then N has a ST- complement of D. **Proof:** Let T and N be **submodules** of a module D. Let $G = \{L \text{ small submodule of } D \setminus N \cap L \leq T\}$, $G \neq \emptyset$, where $0 \in G$. Let $\{C_{\alpha}\}_{\alpha \in \Lambda}$ be a chain in G. Clearly, $\bigcup_{\alpha \in \Lambda} C_{\alpha}$ is small **submodule** of D, since $N \cap (\bigcup_{\alpha \in \Lambda} C_{\alpha}) = \bigcup_{\alpha \in \Lambda} (N \cap C_{\alpha}) \leq T$. Then $\bigcup_{\alpha \in \Lambda} C_{\alpha} \in G$. By **Zoren's** lemma, G has a maximal element say H. Claim that, H is ST- complement for N in D. To show that, let V be small **submodule** of D with $H \leq V$ and $N \cap V \leq T$. Therefore $V \in G$, which is a contradiction. Thus, H = V.

Proposition (3.4): Let T and N be **submodules** of the module D and let C be small **submodule** of D, with N \leq C. If L is ST- complement for N of D and C is a ST-complement for L of D, then L is a ST- complement for C of D.

Proof: Let L be ST- complement for N of D and C be a ST- complement for L of D, such that $N \le C$. Then $L \cap C \le T$. We want to show that L is ST- complement for C of D. Let V be small **submodule** of D, such that $L \le V$ and $C \cap V \le T$. As $N \le C$, then $N \cap V \le C \cap V \le T$. But L is maximal with respect to the property that $N \cap L \le T$, therefore L=V. Hence, L is ST- complement for C of D.

Proposition (3.5): Let T,N,C be **submodules** of a module D, such that $T \le N \le C$. If L is a ST-complement for N of D and C is a ST- complement for L of D. Then C is maximal ST- essential of N of D.

Proof: Assume that L is an ST- complement for N of D and C is a ST- complement for L of D and T \leq N \leq C. First, we prove that N $\leq_{ST,e}$ C. Let K be small **submodule** of C, such that N \cap K \leq T. Claim that N \cap (L+K) \leq T. To show that, let n = b + k, where n \in N,

 $b \in L, k \in K$. Then $b = n - k \in L \cap C \le T \le N$. So $n - b = k \in N \cap K \le T$ and hence $n \in T$. But L is maximal with respect to the property that $N \cap L \le T$, therefore L + K = L. Then $K \le B$, which implies that $K = K \cap C \le B \cap C \le T$. Thus $N \le_{ST,e} C$. Now, to show that C is maximal ST-essential for N of D, let V be small **submodule** of D, such that $C \le V$ with $N \le_{ST,e} V$. Since $N \cap L \le T$, then

 $(N \cap L) \cap V \leq T \cap V \leq T$, implies that $N \cap (L \cap V) \leq T$. Since $N \leq_{ST-e} V$, then $L \cap V \leq T$. But C is maximal with respect to the property that $L \cap C \leq T$, therefore V=C. Thus, C is maximal ST-essential

for N of D.

Proposition (3.6): Let T, N, L be **submodules** of a module D, such that $T = N \cap L$. Then N is a ST-complement for L of D if and only if $\frac{N+L}{N} \leq_{s.e} \frac{D}{L}$.

Proof: ⇒) Suppose that N is a ST- complement for L of D. Let $\frac{B}{N}$ be small **submodule** of $\frac{D}{N}$, such that $\frac{N+L}{N} \cap \frac{B}{N} = 0$, then $\frac{(N+L)\cap B}{N} = 0$. Hence, by the modular law, $\frac{(L\cap B)+N}{N} = 0$, implies that $(L\cap B)+N=N$. Then L∩B≤N, and then L∩B≤N∩L=T. But L is maximal with respect to the property that N∩L≤T, therefore B=N. Thus, $\frac{N+L}{N} \leq_{s,e} \frac{D}{N}$.

(⇐ Let B be small submodule of D, such that L∩B≤T. Then $\frac{B}{N}$ be small submodule of $\frac{D}{N}$ and $\frac{N+L}{N} \cap \frac{B}{N} = \frac{(N+L)\cap B}{N} = \frac{(L\cap B)+N}{N}$, by the modular law. Since L∩B≤T and N∩L=T, then L∩B≤N∩L. But L≤B, therefore N∩L≤L∩B, so N∩L=L∩B. Thus, $\frac{(L\cap B)+N}{N} = \frac{(N\cap L)+N}{N} = \frac{N}{N} = 0$. Since $\frac{N+L}{N} \leq_{s.e} \frac{D}{N}$, then $\frac{B}{N} = 0$, hence B=N. Thus, N is ST-complement for L of D.

Theorem (3.7): Let T, N be submodules of a module D. If L is a ST- complement to N+T of D, then $(N+T)+L \leq_{ST,e} M$ and $\frac{(N+T)+L}{T} = \frac{N+T}{T} \bigoplus \frac{L+T}{T}$.

Proof: Assume that L is ST- complement for N+T of D. Then L is maximal small submodule of D, $(N+T)\cap L \leq T$. Let C be small submodule of D, such that $((N+T)+L)\cap C \leq T$. Claim that $(N+T)\cap(L+C)\leq T$. To show that , let n+t=b+c, where $n \in N, t \in T, b \in L, c \in C$. Since $(n+t)-b=c \in ((N+T)+L)$, then $(n+t)-c=b \in (N+T)\cap L \leq T$. Thus, $n+t \in T$ and hence $(N+T)\cap(L+C)\leq T$. As L is maximal with respect to the property that $(N+T)\cap L \leq T$, therefore L=L+C and hence $C \leq L$, implies that $C \leq L \cap C \leq ((N+T)+L)\cap C \leq T$. Hence, $(N+T)+L \leq_{ST,e} D$. For the second part, it is enough to show that $\frac{N+T}{T} \cap \frac{L+T}{T} = 0$. Let $n+t=b+t_1$, where $n \in N, b \in B, t, t_1 \in T$. Then $n+t-t_1 = b$, and hence $b \in (N+T)\cap L \leq T$, then $n+t \in T$, implies that $\frac{N+T}{T} \cap \frac{L+T}{T} = \frac{(N+T)\cap(L+T)}{T} \leq \frac{T}{T} = 0$.

Proposition (3.8): Let T,N,L and C be submodules of a module D, such that $T \le N$. If $A \le_{S(T+C),e} D$ and C is ST-complement of L of D, then $\frac{N+C}{C} \le_{S(\frac{T+C}{C}),e} \frac{D}{C}$. **Proof:** Let $A \le_{S(T+C),e} D$ and C be ST-complement to L of D. Let $\frac{L}{c}$ be a small submodule of $\frac{D}{c}$, such that $\frac{N+C}{C} \cap \frac{L}{c} \le \frac{(T+C)}{C}$. Since $\frac{(N+C)}{C} \cap \frac{L}{c} = \frac{(A+C)\cap L}{C} = \frac{(A\cap L)+C}{C} \le \frac{T+C}{C}$, then $(N \cap L) + C \le T + C$, and hence $N \cap L \le T + C$. But $N \le_{S(T+C),e} D$, therefore $L \le T + C$. So $\frac{L}{c} \le \frac{(T+C)}{C}$. Thus, $\frac{N+C}{C} \le \frac{(T+C)}{C}, e \frac{D}{C}$.

1. **Proposition (3.9):** Let T,N be submodules of a module D. If $N \cap (T + L) \le T$ and $\frac{N+L}{L} \le \frac{D}{L}$, then (T+L) is a S(T+L)- complement for N of D.

Proof: Let C be small submodule of a module D, such that T+L≤C and N∩C≤T+L. Then $\frac{N+L}{L} \cap \frac{C}{L} = \frac{(N+L)\cap C}{L} = \frac{(N\cap C)+L}{L}$, by modular law. Then $\frac{(N\cap C)+L}{L} \le \frac{(T+L)+L}{L} = \frac{T+L}{L}$, since $\frac{N+L}{L} \le s(\frac{T+L}{L}) = \frac{D}{L}$. Then $\frac{C}{L} \le \frac{T+L}{L}$ and hence $C \le T + L$. Thus, T+L=C.

Proposition (3.10): Let T,N be a **submodule** of a finitely generated, faithful and multiplication module D. Then L is a ST- complement for N in D if and only if [L:D] is a S[T:D]- complement for [N:D] in R.

Proof: \Rightarrow) Let L is ST- complement for N of D, then L is maximal small **submodule** of D, such that $N \cap L \leq T$. Since D is multiplication module, then $[N:D]D \cap [L:D]D \leq [T:D]D$. Since D is finitely generated, faithful and multiplication module, then it is a cancellation module, as previously. So

$[N:D] \cap [L:D] \leq [T:D]$

. Let L is small submodule of D, [L: D] ≤ [C: D], such that $[N: D] \cap [C: D] ≤ [T: D]$, then $[N: D]D \cap [C: D]D ≤ [T: D]D$. Since D is finitely generated, then $N \cap C ≤ T$. But L is maximal with respect to the property that $N \cap L ≤ T$, then L=C, and hence [N:D]=[C:D]. Thus [L:D] is S[T:D]complement for [N:D] in R.(\Leftarrow Suppose that [L:D] is S[T:D]- complement for [N:D] in R. Then $[N: D] \cap [L: D] ≤ [T: D]$, implies that $[N: D]D \cap [L: D]D ≤ [T: D]D$. Since D is finitely generated, then $N \cap L ≤ T$. Let L ≤ C, where C is small **submodule** of D, such that $N \cap C ≤ T$. Now, as D is a multiplication module, then $[N: D]D \cap [C: D]D ≤ [T: D]D$. Since D is finitely generated, faithful and multiplication module, then D is a cancellation module, as shown previously[8]. So $[N: D] \cap [C: D] ≤ [T: D]$. But [L:D] is a maximal with respect to the property that $[N: D] \cap [L: D] ≤$ [T: D], therefore [L:D]=[C:D], implies that [L:D]D=[C:D]D, thus L=C.

References

- 1. Wisbouer R. 1991. Foundations of module and Ring Theory, Gordon and Banach
- 2. Kasch, F. 1982. Modules and Rings, Academic Press. Inc- London.
- **3.** Zhou, D.X. and Zhang, X.R. **2011**. Small- Essential **submodules** and Morita Duality, *Southeast Asian Bulletin of. Mathmatics*, **35**: 1051-1062.
- 4. Safaeeyan, S. and Shirazi, N.S. and Essential, N. 2013. submodules with respect to an arbitrary submodule. *Journal of Mathmatical Extention*, 7(3): pp.15-27.
- Entisar Ahmed Mohammed AL Dhahari, T-essential (complement, closed) submodule and Textending (Goldie extending) Modules, M.Sc. Thesis, college of science, university of Baghdad. (2019).
- 6. Faten, H. Mohammed. 2016. Generalization of Extending Modules and Related Topics, M.Sc. Thesis, college of science, the university of AL-Mustansiriya.
- 7. Larsen M.D. and McCarthy, P.J. **1971**. *Multiplicative Theory of Ideals*, Academic Press, New York.
- 8. Naoum, A.G. 1996. 1/2 Cancellation Modules, *Kyungpook Mathmatical Journal*, 36(1): 97-106.