Coquasi – Invertible Submodule

Adil G. Naoum, Basil A. Al-Hashimi, Sahera M. Yaseen

Department of Mathematics, College of Science, University of Baghdad, Baghdad-Iraq. Received: 27/4/2004 Accepted: 2/11/2004

Abstract

Let R be a commutative ring with identity. We call the proper submodule N of M a coquasi - invertible submodule if $Hom(M, N) = 0$ the main purpose of this work is the study of the properties of coquasi - invertible submodules. and give definithon of corational submodule. Then show that if M is self projective, then N is coquasi - invertible submodule of M if and only if N is corational in M.

الخلاصه

أن الهدف الرئيسي من هذا العمل هو دراسة خواص المقاسات الجزئية شبه عكوسه. $Hom(M,N)\!=\!0$ لتكن R حلقة ابدالية أحادية. نعرف المقـاس الجزئـي الفعلـي N مـن M بأنـه شـبه عكـوس مـضاد إذا كـان المضادة . سـن نتائجنــــا الأوليــــة قمنــــا بالبرهنـــة علــــى انــــه إذا كـــان N مقياســــاً جزئيــــا شــــبه عكـــوس مـــضاد فـــأن

$$
T(M) \subseteq ann(N) \quad \text{and} \
$$

Introduction:

Let R be a commutative ring with identity. The concept of an invertible submodule of an R module was introduced in [1]. It was shown in [1] that if N is an invertible submodule of M, then $Hom(\frac{M}{N}, M) = 0$. In [5] this result was adopted as a definition of quasi - invertible submodule, i.e. a submodule N of an R - module M is quasi - invertible if $Hom(\frac{M}{N}, M) = 0$.In this paper we introduce a dual of this concept . Thus we call the proper submodule N of M coquasi - invertible submodule if $Hom(M, N) = 0$ The main purpose of this work is the study of the properties of coquasi invertible submodules Let N be a submodule of an R - module M, we say that N is corational in

M if $Hom(M, \frac{N}{K}) = 0$ for all submodules K of M such that $K \subseteq N \subseteq M$. We show that if M is self projective, then N is coquasi - invertible submodule of M if and only if N is corational in M.

§1.Basic properties: we start this section by the following definition.

submodule of M if $Hom(M, N) = 0$. Definition 1-1:A proper submodule N of an R module M is called coquasi - invertible

 Not that the zero submodule is a coquasi invertible submodule of any nonzero R - module M.

It is clear that if N is a nonzero coquasi invertible submodule of an R - module M, then N can not be a direct summand of M. In the following we give two examples, the first one is of a coquasi - invertible submodule and the other is not.

- 1- Consider Q, the set of rational number as a Z module. The submodule Z of Q is a coquasi invertible submodules, since $Hom(Q, Z) = 0$.
- 2- Consider Z_4 as Z module. The submodule $\{\overline{0},\overline{2}\}\$ of Z_4 is not a coquasi - invertible submodule of Z_4 since the homomorphism $f: Z_4 \to \{0, \overline{2}\}\$ defined by $f(\overline{1}) = \overline{2}$ is a nonzero homomorphism

Proposition 1-2: Let N be a coquasi - invertible submodule of an R - module M, then $ann(M) = ann(\frac{M}{N})$.

Proof: Let $r \in ann(\frac{M}{N})$, then $rM \subseteq N$. Define $f: M \to N$ by $f(m) = rm$, for every of M, therefore $\mathbf{f} = \mathbf{0}$ Thus $rM = 0$, this $m \in M$. N is a coquasi - invertible submodule implies that $r \in annM$ The other inclusion is clear.

The converse of proposition 1-2 is not true as is shown by the following example.

Consider $M = Z \oplus Z$ as a Z - module and let It is clear that $N = Z \oplus \{0\}$. $(Z \oplus Z) = ann(\frac{Z \oplus Z}{Z \oplus \{0\}})$ *Z* $ann(Z \oplus Z) = ann(\frac{Z \oplus Z}{Z \odot (o)})$, while

 $Hom(Z \oplus Z, Z \oplus \{0\}) \neq 0$ i.e. $Z \oplus \{0\}$ is not coquasi - invertible submodule of $Z \oplus Z$.

Next we study the traces of coquasi - invertible submodule. But first we need the following.

Remark 1-3: Let N be a coquasi - invertible submodule of the R - module M. If $\alpha \in Hom(M, R)$, then $\alpha(M) \subseteq \bigcap \ker \phi$, ϕ

 $\phi \in Hom(R, N)$.

Proof: Suppose that
$$
\alpha(M) \subset \bigcap_{\phi} \ker \phi
$$
,

 $\phi \in Hom(R, N)$, then there exists $\phi_0 : R \to N$ such that $\phi_0 \circ \alpha \neq 0$ This is a contradiction therefore $\alpha(M) \subseteq \bigcap_{\phi} \ker \phi$.

Recall that the trace of an R - module M, denoted by T(M) is $T(M) = \sum_{\phi} \phi(M)$ where $T(M) = \sum \phi(M)$

 $\phi \in Hom(M, R)$ Proposition 1-4: N is a coquasi - invertible submodule of the R - module M, then $T(M) \subseteq ann(N)$.

Proof: If $T(M) = 0$, the result is clear. Suppose that $T(M) \neq 0$, then there exists $\phi \neq 0, \phi \in Hom(M, R)$. By Remark 1-3 $\phi(M) \subseteq \bigcap_{\psi} \text{ker } \psi, \psi \in Hom(R, N)$ For every $x \in N$ define $h_x : R \to N$ by $h_x(r) = rx$, then $h_x \circ \phi = 0$, i. e $(h_x \circ \phi)(M) = \phi(M)x = 0$, thus $\phi(M)N = 0$ and therefore $\phi(M) \subset ann(N)$, this implies that $T(M) \subseteq ann(N)$.

The converse of proposition 1.-4 is not true. Consider the following example.

Example1-5: Consider Z_4 as Z - module ,then $\{\overline{0},\overline{2}\}\$ is a submodule of Z_4 But $Hom(Z_4, Z) = 0$, thus $T(Z_4) = 0$ while $\sqrt{0, 2}$ is not a coquasi - invertible submodule of Z_4 . Recall that an R - module M is called torsionless module if $\bigcap \text{ker } \phi = 0$ where $\phi \in Hom(M, R)$ ϕ

In the following proposition we give a condition under which a torsionless submodule becomes a coquasi - invertible submodule.

Proposition1-6: Let N be a torsionless submodule of the R - module M If $T(M) = 0$, then N is a coquasi - invertible submodule of M.

 $f: M \to N$ Therefore there exists $m \in M$ Proof: Suppose that $Hom(M, N) \neq 0$ Then there exists a nonzero homomorphism such that $f(m) \neq 0$. N is torsionless submodule, then $f(m) \notin \bigcap \ker \phi$ where ϕ

 $\phi \in Hom(N, R)$ Thus, there exists $\phi_o: N \to R$ such that $f(m) \notin \text{ker } \phi_0$. Hence $\phi_0 \circ f \neq 0$. This implies that $T(M) \neq 0$ a contradiction.

Corollary1-7: Let N be a torsionless submodule of the R - module M If $ann(N) = 0$, then N is a coquasi - invertible submodule of M if and only if $T(M) = 0$.

The proof is clear from Proposition 1-4 and Proposition 1-6 Recall that an R - module M is called a multiplication module, if every submodule N of M is of the form *IM* for some ideal *I* of *R* [7]. It is known that every faithful multiplication module is torsionless [8], thus we have.

Corollary 1-8: If N is a faithful multiplication submodule of an R - module M, then N is a coquasi - invertible submodule of M if and only if $T(M) = 0$

Corollary1-9: Let M be an R - module. If M contains a faithful cyclic submodule which is a coquasi - invertible submodule, then every faithful cyclic submodule has this property.

Proof: Let N be a faithful cyclic submodule which is a coquasi - invertible. And let K be a faithful cyclic submodule then K is multiplication [2]. By Prop. 1-4 $T(M) \subseteq ann(N)$, then $T(M) = 0$. By corollary 1-8 K is coquasi - invertible submodule.

Recall that, for an integral domain R, an R module M is called torsion - free if every $m \in M$, $m \neq 0$ and for every $r \in R$, $r \neq 0$ then $rm \neq 0$

Corollary1-10: Let M be a torsion - free R module with $T(M) = 0$. Then every cyclic submodule of M is coquasi - invertible submodule.

Let J be a proper ideal in the ring R. we say that J *is* coquasi *-* invertible ideal of R, if J is a coquasi - invertible R - submodule of R as R - module. The following Proposition shows that the ideal J is coquasi - invertible if and only if $J = 0$.

Proposition 1-11: Let J be a Proper ideal of R. then J is coquasi - invertible ideal if and only if *R*

$$
ann(\frac{\Lambda}{J})=0.
$$

Proof: Suppose that J is coquasi - invertible ideal

of R. By proposition1-2, $ann(\frac{R}{J}) = ann(R)$, But $ann(R) = 0$, therefore $ann(\frac{R}{J}) = 0$. The converse, let $f \in Hom(R, J)$ and let $r \in R$, $f(1)(r + J) = f(1)r + J \subset J$, thus $(1) \in ann(\frac{\Lambda}{\tau})$ *J* $f(1) \in ann(\frac{R}{J})$ *ann* $(\frac{R}{J}) = 0$ therefore $f(1) = 0$ and hence $f = 0$.

§2 Characterization for coquasi - invertible submodule.

The following theorems gives some characterizations for coquasi - invertible submodule .

Theorem2-1: Let N be a nonzero proper submodule of the R - module M. Then N is a coquasi - invertible submodule if and only if for every $\phi \in End(M)$ such that $\pi \circ \phi = \pi$, we have ϕ is the identity homomorphism, where *M*

$$
\pi: M \to \frac{M}{N}
$$
 is the natural epimorphism.

Proof: Let $\phi \in End(M)$ and let $m \in M$, then $(\pi \circ \phi)(m) = \pi(m)$ $\phi(m) - m \in N$ i.e. $(\phi - I)m \in N$ so $\phi - I$ is and hence a homomorphism from M into N, and N is coquasi - invertible submodule of M, therefore $\phi = I$.

For the converse, let $f \in Hom(M, N)$ and let $i: N \rightarrow M$ be the inclusion homomorphism. For each $m \in M$, We have

$$
[\pi \circ (I - i \circ f)](m) = \pi(m - f(m)) =
$$

\n
$$
m - f(m) + N = m + N = \pi(m)
$$

\nThis implies that $\pi \circ (I - i \circ f) = \pi$ and thus
\n $I - i \circ f = I$, i.e. $f = 0$.

Theorem 2-2-: Let N be a submodule of the R module M. then N is a coquasi - invertible submodule of M if and only if for every *N* $\phi: M \to \frac{M}{N}$ if there exists $\psi: M \to M$ such that $\pi \circ \psi = \phi$, then ψ is unique.

Proof: Let *N* $\phi: M \to \frac{M}{N}$ and let *N* $\pi: M \to \frac{M}{N}$ be the natural homomorphism. If $\psi : M \to M$ and W' : $M \to M$ are such that $\pi \circ \psi = \phi$ and $\pi \circ \psi' = \phi$, then for every $m \in M$, we have $\psi(m) - \psi'(m) \in N$. But $\psi - \psi'$ is a submodule of M, therefore $\psi - \psi' = 0$ and homomorphism, and N is coquasi - invertible hence $\psi = \psi'$.

For the converse, let $f : M \to N$ and let $i: N \rightarrow M$ be the inclusion homomorphism, then $i \circ f \in End(M)$ and

$$
\pi \circ (i \circ f)(m) = \pi \circ f(m) = f(m) + N = 0.
$$

Since $\pi \circ (i \circ f) = \pi \circ 0$. this $f = 0$. implies that

§3. Coquasi - invertible submodule and corational submodule.

It is well - known that every R - module can be embedded in an injective R - module \hat{M} with M essential in $\hat{M} \cdot \hat{M}$ is called the injective hull of M [4, P.128].A submodule U of an R - module M is called rational in M if $Hom(\frac{M}{U}, \hat{M}) = 0$ where \hat{M} is the injective hull of M. [3, P.33].The following is a useful characterization of these kind of submodules.

Proposition 3-1: Let U be a submodule of an R module M, the following are equivalent; 1-U is rational in M.

2-For any
$$
U \subseteq V \subseteq M
$$
, $Hom(\frac{V}{U}, M) = 0$.

Proof: Let U be a rational submodule in M and let $V \subseteq M$ such that $U \subseteq V \subseteq M$. Suppose there exists a nonzero homomorphism $g \in Hom(\frac{V}{U}, M)$., Where *U M U* $i: \frac{V}{I} \to \frac{M}{I}$ is the inclusion homomorphism and $J : M \to \hat{M}$ is the inclusion homomorphism from M to \hat{M} the injective hull of M. Since \hat{M} is injective module, there exists a homomorphism *M U* $h: \frac{M}{U} \to \hat{M}$ such that $h \circ i = j \circ g$. But $g \neq 0$ hence $h \neq 0$ a contradiction. Suppose there exists a nonzero homomorphism \in *Hom*($\frac{M}{\sigma}$, \hat{M}) $f \in Hom(\frac{M}{U}, \hat{M})$ let $f^{-1}(M) = \frac{V}{U}$ for some $U \subset V \subset M$. Define $g: \frac{1}{x} \rightarrow M$ *U* $g: \frac{V}{U} \to M$ by $g(x+U) = f(x+U)$ for every $x \in V$. Since $f \neq 0$, then there exists *U* $m + U \neq U \in \frac{M}{I}$ such that

 $0 \neq f(m+U) \in \hat{M}$. But M is essential in \hat{M} ,So there exists $r \in R$ such that $0 \neq rf(m+U) = f(rm+U) \in M$. This implies that $rm + U \in \frac{V}{U}$ $rm + U \in \frac{V}{V}$ and hence

 $rf(m+U) = g(rm+U) \neq 0$ a contradiction. Now, we introduce the dual of the concept of rational submodule as follows.

Definition 3-2: A submodule N of an R - module M is called corational in M if $Hom(M, \frac{N}{K}) = 0$ for all submodule K of M such that $K\subset N\subset M$. It is clear that if N is corational in M, then N is

proper submodule of M.

Example 3-3: Consider $Z_{p^{\infty}}$ as Z - module. It is known that every proper submodule of $Z_{p^{\infty}}$

is isomorphic to Z_{p^n} for some integer *n*. It is

clear that
$$
Hom(Z_{p^{\infty}}, \frac{Z_{p^n}}{Z_{p^k}}) = 0
$$
. Then every

proper submodule of $Z_{p^{\infty}}$ is corational in *M*.

It was shown [5, P.14] that every rational submodule is quasi - invertible. Similarly we have the following with clear proof.

Proposition 3-4Let N be a submodule of M. If N is corational in M then N is coquasi - invertible submodule of M.

In the following theorem we show that if M is a multiplication module, the converse of Prop.3-4 is true.

Theorem 3-5: Let M be a multiplication R module, if N is a coquasi invertible submodule of M, then N is corational submodule in M.

Proof: Let M be a submodule of M, such that $K \subseteq N$ and suppose that $Hom(M, \frac{N}{K}) \neq 0$. There exists a nonzero homomorphism *K* $f: M \to \frac{N}{K}$. Now let $m \in M$, then $f(m) = x + K \neq K$, for some $x \in N$. But $N = [N : M]M$, hence $x = \sum_{i=1}^{n} r_i m_i$, where $=$ *i* $x = \sum r_i m_i$ 1 $r_i \in [N : M]$, and $m_i \in M$, thus there exists $1 \leq i \leq n$ such $h: M \to N$ by $h(m) = r_i m$ for all $m \in M$. such that $r_i m_i \notin K$. Define

In particular $h(m_i) = r_i m_i \notin K$, i. e $r_i m_i \neq 0$. This is a contradiction thus $f = 0$.

of M with $N + U = M$ we have U=M The Recall that a submodule N of an R - module M is said to be small in M if for every submodule U following proposition shows that every corational submodule is small.

Proposition 3-6: Let N be a submodule of M. If N is corational in M then N is small in M.

Proof:Let K be a submodule of M such that

$$
N + K = M \text{ , then } \frac{M}{K} = \frac{N + K}{K} \text{ . But}
$$

 $N \bigcap K$ *N K* $N+K$ \lceil $\frac{+K}{-K} \cong \frac{N}{-K}$ and N is corational in M,

thus $0 = Hom(M, \frac{N}{N \cap K}) \cong Hom(M, \frac{M}{K})$ *N* H *M* $(M, \frac{N}{N \cap K}) \cong Hom(M, \frac{M}{K})$.

In particular the natural epimorphism *K* $\pi: M \to \frac{M}{K}$ must be zero. This implies that

$$
k=M.
$$

The converse of proposition 3-6 is not true consider the following example.

Example 3-7: Consider Z_4 as a Z - module. It is easily seen that the submodule $\{0,2\}$ is a small submodule of Z_4 . On other hand $\{\overline{0},\overline{2}\}$ is not corational in Z_4 since $Hom(Z_4, \frac{\overline{\{0,2\}}}{\overline{\{0\}}}) \neq 0$

Definition3-9: An R - module M is said to be self - projective if for every submodule N of M, any homomorphism $\phi: M \to \frac{M}{N}$ $\phi: M \to \frac{M}{\sqrt{M}}$ can be lifted to a homomorphism $\psi : M \to M$ i. e the following diagram is commutative.

Where π is the natural epimorphism the following is a characterization of self - projective modules.

Proposition 3-10:An R - module M is self projective if and only if for every epimorphism

 $g : M \to M'$ where M' is any R - module any homomorphism $f : M \to M'$ can be lifted to a homomorphism $h: M \to M$, *i.* e the following diagram is commutative.

$$
M
$$
\nh\n
$$
M
$$
\n
$$
0
$$

Proof: Let M be a self - projective R - module and let $g : M \to M'$ be an epimorphism. Thus by first isomorphism theorem, there exists an isomorphism *g* $\psi: M' \to \frac{M}{\ker g}$ make the diagram commutative.

Where π is the natural epimorphism and for any $m' \in M'$, $\psi(m') = x + \text{ker } g$ where $g(x) = m'$. Since M is self - projective, then there exists a homomorphism $h: M \to M$ such that $\pi \circ h = \psi \circ f$. Let $m \in M$ then

 $h(m)$ + ker $g = x$ + ker g where $g(x) = f(m)$. Now $h(m) - x \in \text{ker } g$ i.e $g(h(m) - x) = 0$, then $g \circ h(m) - g(x) = 0$ thus $g \circ h(m) = f(m)$,

therefore $g \circ h = f$. The other direction is clear. The following theorem gives a condition under which the converse of Proposition 3-4 is true. Theorem 3-11: Let M be a self - projective R module and let N be a submodule of M, then N is coquasi - invertible submodule of M if and only if N is corational in M.

Proof: Suppose N is a is coquasi - invertible submodule of the self - projective R - module M. Let K be a submodule of M, such that $K \subseteq N$

and let
$$
h \in Hom(M, \frac{N}{K})
$$
. Consider the following diagram.

Where *K M K* $i: \frac{N}{N} \to \frac{M}{N}$ is the inclusion homomorphism. Since M is a self - projective module, there exists a homomorphism $W : M \to M$ such that $\pi \circ W = i \circ h$. Let $m \in M$, then $h(m) = x + K$ for some $x \in N$ and hence $\pi \circ \psi(m) = i \circ h(m)$. That is $\psi(m) + K = x + K$, hence $\psi(m) - x \in K$. But $x \in N$ and $K \subset N$, therefore $\psi(m) \in N$. This implies that $\psi \in Hom(M, N)$. Now, N is a coquasi - invertible submodule, thus $\psi = 0$ and hence $h = 0$.

The converse follows from Prop. 3-4.

Recall that for any ring R, the Jacobson radical of R denoted by $J(R)$, is defined to be the intersection of all maximal right ideals of R. It is known that $J(R)$ is the sum of all small right ideal of R. Before we give the next proposition we need the following lemma. [3-4, P.187[

Lemma 3-12: Let M be a self - projective R module and, then $J(S) = \{ f \in End(M) / \text{ of } S \}$ small submodule of M}

In the next theorem we give a condition under which each small submodule of self - projective module is coquasi - invertible submodule.

Theorem 3-13: Let M be a self - projective R module With $J(End(M))=0$ and let N be a submodule of M. then N is a small submodule in M if and only if N is coquasi - invertible submodule of M

M. let $f \in Hom(M, N)$. Set $i \circ f = \phi$ where Proof: Suppose that N is a small submodule in

 $i: N \rightarrow M$ is the inclusion homomorphism. Now, $\text{Im}\,\phi = \text{Im}\,f \subseteq N$, but N is a small submodule in M, thus $\text{Im}\phi$ is small in M and therefore $\phi \in J(End(M))$ Lemma 3-12. This implies that $\phi = 0$ and hence $f = 0$ The converse, since N is a coquasi - invertible submodule of M, then by theorem 3-11, N is corational submodule of M. thus by proposition 3-6 N is small in M. Remark3-14: The condition $J(End(M))=0$ is

essential in the previous theorem. For $End(Z_4) \cong Z_4$ and $J(End(Z_4)) = Z_2$ and thus the Z - module Z_4 . Note that the submodule the condition of theorem 1.2.14 is not satisfied in $\{\overline{0},\overline{2}\}\$ is small submodule, which is not coquasi invertible submodule.

References:

- 1. Alwan F. H *Dedekind modules and the problem of embeddablity,* Ph.D. Thesis, College of Since, University of Baghdad, **1993**.
- 2. Barnard A., *Multiplication module*, J. of Algebra, 71, 174 - 178., (**1981**).
- 3. . Dung , N. V,D. V, . Huynh P. F. Smith, R. Wisbuer, *Extending modules*, New York, **1994**.
- 4. Kasch F., *modules and rings*, Academic press, London New York, **1982**.
- 5. Mijbass A. S, *quasi Dedekind modules*, Ph. D thesis, College of Since, university of Baghdad, **1997**.
- 6. Mohamed S. H., Muller B. J., *continuous and Descrate modules*, Cambridge University press, **1990**.
- 7. Naoum A. G., Kider J. R., *on the modules of homomurphism into projective modules and multiplication modules*, Periodica Math. Hungarica33, 55–63, (**1996**).
- 8. Naom A. G. and Sharaf K. R., *A not on the dual of a finitely generated multiplication modules*, Betrage Zur Algebra and geometric 27, 5 – 11, (**1988**).
- 9. Wisbauer R, *Foundation of modules and rings theory* university of Dresseldorf, **1991**.
- 10. Zelmanowitz J., *Commutative endomarphism rings*, can. J. Math XXIII, 69 – 76 (**1971**).