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Abstract

In this paper, the time-fractional Fisher’s equation (TFFE) is considered to exam
the analytical solution using the Laplace g-Homotopy analysis method (Lg-HAM)”.
The Lg-HAM is a combined form of g-homotopy analysis method (g-HAM) and
Laplace transform. The aim of utilizing the Laplace transform is to outdo the
shortage that is mainly caused by unfulfilled conditions in the other analytical
methods. The results show that the analytical solution converges very rapidly to the
exact solution.
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1. Introduction

Fractional differential equations (FDES) represent an important area of study because of their
applications in various fields of science and engineering. Several phenomena can be modeled by non-
linear fractional differential equations. For example, electrochemistry [1], electrical circuits [2], signal
processing [3], probability [4], and so on. In recent years, analytical and numerical techniques were
created to obtain approximate solutions to the FDEs, such as the Adomian decomposition technique
(ADM) [5, 6], variational iteration technique (VIM) [7], homotopy perturbation technique (HPM) [8]
and the homotopy analysis technique (HAM) [9-12]. Recently, a new analytic method named g-
homotopy analysis method (q-HAM) was introduced [13, 14]. The “q-HAM” has numerous
applications in a wide range of problems [15-20].

*Email: shn_n2002@yahoo.com
1419


mailto:shn_n2002@yahoo.com

Huseen Iragi Journal of Science, 2020, Vol. 61, No. 6, pp: 1419-1425

In this paper, we consider the TFFE

Dfu(x,t) = Dyyu(x,t) + Au(x, t)(l —u(x, t)), (x,t) €0,1] x [0,1] (1)
subject to the initial condition:
u(x,0) = up(x,t), 2

where 0 < a <1, Ais a real parameter, D represents the Caputo fractional derivative in time
[21], uq(x,t) is the given function and D, = u,, is the linear differential operator. This problem is
considered a mathematical model for a wide scope of significant physical phenomena. It has become
one of the most important classes of nonlinear equations due to its occurrence in many chemical and
biological processes. The time-fractional Fisher’s equation was solved by homotopy perturbation
technique (HPM) [8] and homotopy analysis technique (HAM) [9].
The purpose of this paper is to apply the Lg-HAM, which is a combination of g-HAM and Laplace
transform to provide an approximate solution for the TFFE. In section two, we state some necessary
concepts of fractional calculus. In section three, we introduce the basic idea of Lg-HAM for TFFE.
Finally, in section four, we solve two numerical examples.
2. Preliminaries

In this section, we state some necessary concepts of fractional calculus that will help us to achieve
the aim of this paper [21, 22].
Definition 2.1 A real function v(t),t > 0 is said to be in space Cy (9 € R) if there exists a real
number > 9 , such that v(t) = tPv,(t), where v (t) € C(0,), and it is said to be in the space Cg* if
and only if v(™ € Cy,m € N.
Definition 2.2 The Riemann—Liouville fractional integral operator /* of order a = 0, of a function
v(t) € Cy,9 = —1, is defined as

J%u(t) = % J,(t =D w(D)dr (a > 0),

J%v(t) = v(t).

Some of the basic properties of the operator /%, which are required here, are introduced.
Forve Cy,9=-1,a=20y=-1

i) JYUPv() =] o),

(i)  JYPv(@) = JF]v(D),

(i) Jetr = F(Fx—;ﬂ)t“w

Definition 2.3. The fractional derivative v(t) in the Caputo’s sense is defined as

Dv(t) = JMD"0(8) = s [y (¢ = D ™My,

form—1<a<m meN, t>0, veC".

Moreover, some of the most important properties are needed here.
0) D “J%v(t) = v(0),

(i) JUD () = v(®) — Tt v (0N, £ >0,

r(y+1 —
(iii)y D%t = —F(yfw)l) y-a
form—1<a<m meNJI=-1 veCly.

Lemma 2.1 [23]: If m—1 < a <m,m € N, then the Laplace transform of the fractional derivative
Dfv(t) is LIDFv(t)] = sV (s) — X v® (0%)s* %1, t > 0
where V (s) is the Laplace transform of v(t).
3. The Lg-HAM for TFFE
Consider the time-fractional Fisher’s equation (1) subject to the initial condition (2).
Taking the Laplace transform of both sides of equation (1) and utilizing equation (2), gives

LIDFu(x,t)] = L[Dy,ulx, t)] + AL[u(x, t)] — AL[u?(x, t)].
By using lemma (2.1), we obtain

£lu(x, 0] = 25D 4 LD ulx, )] + AL[u(x, D] - AL (%, )] 3)
Let the zero-order deformation equation
(1 —ng)L[B(x, t; q) — up(x, t,5)] = ghN[D(x, t; @)1, (4)
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wheren >1,0<¢q s% denotes the embedded parameter, h = 0 is an auxiliary parameter. It is

obvious that whenq = 0 and q = % equation (4) becomes:

B(x, t;0) = uy(x, t), o (x, t; %) = u(x, t). (5)

Thus, as g increases from 0 to % , the solution @(x, t; q) varies from the initial uy(x, t) to the solution
u(x, t).
By expanding @(x, t; q) in Taylor series with respect to g, we get

D(x, t;q) = up(x, £) + LiZs um (x, )q™ (6)
where

1 0™@(x,t;
um(x, t) = ﬁ% |q=0 . (7)

Assume that h,uy(x,t) are chosen such that the series (6) converges at :% , then under these
conditions the series solutions give

m
(e t) = up( £) + Ty w6, 0) (3) (8)
Defining the vector w,~(x,t) = {uy(x, t), u (x, t), uy(x, t), ..., u,-(x, t)}.
Differentiating equation (4) m times with respect to g then setting g = 0 and finally dividing them
by m! yields the so-called mt" order deformation equation
Un (6, 1) = Zyttm 1 (%, ) + AL Ry (1 G, )], )
where

Rm(ur_r)l—l(x' t)) =
Llum-1(x,0)] -

1
S_a[L[Dxxum—l(x: t)] + AL[um—l(xv t)] - AL[ZL 0 Uilm-1- l]] -

1 ug(x,t)
(1-5zm) =52, (10
and

_ (0 m<1
fm = {n m>1 (11)

4. Numerical Results
In this section, we apply the Lg-HAM for two examples.
Example 1 consider the following time-fractional problem

Dfu(x,t) = Dyu(x, t) + u(x, t)(l —u(x, t)), (x,t) € [0,1] x [0,1] ; (12)
subject to the initial condition:

u(x,0) = B. (13)
When a = 1, the problem (12)-(13) gives the exact solution

N L
u(x, t) = Tpiget (14)

By using the analysis in the previous section equation (9), we obtain

U (2, 8) = ZiUm_1 (6, t) + RLTH Ry (U1 (x, )],
where

R, (u;’l_l (x, t)) =
1
L[um—l(x' t)] T sa [L[Dxxum—l(x; t)] + L[um—l(xi t) L[Zl 0o UiUm-1- l]] (1 - _Zm)
and z,, is defined as in equation (11).
By using Mathematica software, the following results are obtained

ht*(—1+ BB
uy(x, t) = W'

At (8 — DB(h“2P ~ DN(o+ 1) + (h+ W 20+ 1)
u,(x,t) =

I'o+1DIr'a+1)

Then the m®" order series solution of Lg- HAM is as follows
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N
Ou () = Ziou(x,0) (7) (15)
We notice that when h = —1,n = 1, we obtain the same solution given by HPM [8].
Figure-1 shows the 4™ -order approximate solution for different values of a with g = % n=1h=

—1.05 with the exact solution of problem (12)-(13).

Figure-2 shows the absolute error obtained by the 4™ -order approximation of problem (12-13) for o =
1.

/*
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Figure 1-The 4" -order approximate solution for different values of a with 8 = %,n =1,h=-1.05
with the exact solution of problem (12)-(13)
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Figure 2- The absolute error obtained by 4th-order approximation of problem (12-13) for o = 1.
Example 2 Considers the following time-fractional problem

Dfu(x,t) = Dyyu(x, t) + 6u(x, t)(l —u(x, t)), (x,t) €[0,1] x [0,1] ; (16)
subject to the initial condition:
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1

u(x,0) =——.
(1+e%)?
When a = 1, the problem (16-17) gives the exact solution
1
u(x, t) = ooz °

Using the analysis in the previous section, we obtain

U (%, £) = Zintm—1 (%, 8) + LT[Ry (U1 (x, 1)),
where

R, (u;’l_l(x, t)) =

L[um—l(x: t)] - Sia [L[Dxxum—l(xv t)] + 6L[um—1(x: t)] - 6L[Zﬁ61 U; um—l—i]] - (1 -
1 1

sz) s(1+ex)2’

and z,, as defined in equation (11).

Using Mathematica software, the following result are obtained
10e*ht“

(1+e*)r(a+1)
10e*ht*(5(=1+ 2e*)htT(a+ 1) — (1 +e*)(h + I'2a+ 1))

(1+eX)*T(a+ DI(2a+ 1)

u(x, t) =

u,(x,t) =

Then the m*" order series solution of Lg- HAM is as follows
Bu(x,t) = ZMow(x,0) (3)

i

(17)

(18)

(19)

Figure-3 shows the 5" -order approximate solution for different values of o with n =5h =

—4.934 when x = 1 with the exact solution of problem (16-17).

Figure-4 shows the absolute error obtained by the 5™ -order approximation of problem (16-17) for o =

1, whenx = 1.

Table-1 shows the 5™ order Lg-HAM approximate solutions for (16)-(17) when a = 0.7,0.8,0.9
and 1 with h = —4.934 and n = 5. We notice that when = 1 , then the approximate solution of Lg-

HAM is consistent with the exact solution.

ApproximateSolution:
o
w

— Exact
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Figure 3-The 5" -order approximate solution for different values of a with n = 5,h = —4.934 when

x = 1 with the exact solution of problem (16-17)
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Figure 4-The absolute error obtained by 5th-order approximation of problem (16)-(17) for a = 1
when x = 1.

Table 1-The 5" order Lg-HAM approximate solutions for (16)-(17) for different values of @ with
h =—-4.934 andn = 5.

¢ x UsLg-HAM, UsLg-HAM; UsLg-HAM; UsLg-HAM, Exact
a=0.7 a=0.8 a=0.9 a=1
00'.255 0.495340 0.423134 0.362072 0.316020 0.316042
0.75 0.430680 0.353807 0.293206 0.249987 0.25000
01 1.0 0.369801 0.288288 0.230424 0.191689 0.191689
0.312428 0.228539 0.175669 0.142546 0.142536
0.25 0.560856 0.575416 0.523580 0.459829 0.461283
0.5 0.495736 0.514935 0.454498 0.386355 0.387455
0.2 0.75 0.486248 0.464094 0.387002 0.315635 0.316042
' 1.0 0.509370 0.417091 0.321916 0.250249 0.25000
0.25 0.263329 0.552923 0.616961 0.588893 0.604195
0.5 0.073206 0.483338 0.558501 0.520884 0.534446
03 0.75 0.153317 0.490309 0.515845 0.454033 0.461283
’ 1.0 0.427485 0.539829 0.478075 0.387452 0.387455

5. Conclusions

The major concern of this paper is the demonstration of the successful use of Lg-HAM to obtain
analytical solutions of TFFE. The Lg-HAM was used in a direct way that is the restrictive assumptions
are avoided in Lg-HAM. These considerations give Lg-HAM a significant advantage in many
problems. Our results confirm that the appropriate choices of the convergence control parameters h

and n lead to the accuracy of Lg-HAM in the sense that , unlike other methods, just few terms are
needed in our approximations to get close to the exact solution for o = 1.
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