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Abstract 
     In this paper, we introduce and study the concepts of hollow – J–lifting modules 

and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting 

and J–lifting modules . We call  an R–module M as hollow – J – lifting if for every 

submodule N of M with 
      

 
 is hollow, there exists a submodule K of M such that   

M = K   Ḱ and K      N in M . Several characterizations and properties of hollow 

–J–lifting modules are obtained . Modules related to hollow – J–lifting modules are 

given . 
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 J–حول مقاسات الرفع المجوفة من النمط 
 

 علي كبان , وسن خالد
بغداد , العراققسم الرياضيات , كلية العلهم , جامعة بغداد ,   

 الخلاصة
ومقاسات الرفع المجهفة من  J-مقاسات الرفع المجهفة من النمطفي هذا البحث , نقدم وندرس مفاهيم      
مقاس  M. تدعى  J–كتعميم مناسب لكل من مقاسات الرفع المجهفة ومقاسات الرفع من النمط FI – Jالنمط

     بحيث ان  Mمن  Nاذا كان لكل مقاس جزئي  J-رفع مجهف من النمط

 
مقاس مجهف , يهجد مقاس  

. يتم الحصهل على العديد من خصائص             و         بحيث ان  Nمن  Kجزئي 
  J-. ويتم اعطاء المقاسات ذات الصلة بمقاسات الرفع المجهفة من النمط J-مقاسات الرفع المجهفة من النمط

 

1. Introduction 

     Orhan , Keskin and Tribak introduced the concept of hollow–lifting modules; An R–module is 

hollow – lifting if for every submodule N of M with 
      

 
 is hollow , there exists a direct summand K of 

M, such that K is a coessential submodule of N in M [1]. Following Kabban and Khalid [2] , an         

R–module M is J–lifting module if for every submodule N of M , there exists a submodule K of N, 

such that M = K   Ḱ, Ḱ   M and N   Ḱ    Ḱ .  

    Throughout this paper, R will denote arbitrary rings with identity and all R–modules are unitary left 

R–modules . Let M be an R–module and N is a submodule of M . N is called  J–small submodule of M 

(denoted by N    M), if whenever M = N + K, K   M , such that J( 
       

   
)  = 

     

 
, implies M = K  [3] . 

Let K and N be submodules of M , such that K   N   M , then K is called J–coessential submodule of 

N in M (denoted by K      N in M ) if  
  

  
    

  

  
  [2] . Recall that a submodule N of an R–module M 
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is J–supplement of K in M if  N + K = M  and  N   K    N [3] . A submodule N of M is fully 

invariant if g(N)   N for all g   End (M). An R–module M is called duo if every submodule of M is 

fully invariant [4]. In this paper, we introduce hollow–J–lifting . An R–module M is called hollow–J–

lifting module if for every submodule N of M with 
      

 
 is hollow, there exists a submodule K of M, 

such that M = K   Ḱ and K      N in M . Also, we introduce FI–hollow– J–lifting . Let M be an      

R–module . M is called FI–hollow–J–lifting module if for every fully invariant submodule N of M 

with 
      

 
 is hollow, there exists a submodule K of M, such that M = K   Ḱ and K      N in M . 

Several characterizations and properties of hollow –J– lifting modules and FI – hollow –J–lifting 

modules are obtained . 

2. Hollow – J–Lifting modules  
     In this section , we define hollow J–lifting modules and some of their basic properties . Also we 

prove some new results . 

Definition(2.1) : Let M be an R–module. M is called hollow–Jacobson–lifting module ( for short 

hollow–J–lifting ), if for every submodule N of M with 
      

 
 is hollow, there exists a submodule K of 

M, such that M = K   Ḱ and K      N in M . 

Examples and Remarks (2.2)  : 

1)    as  –module is hollow–J–lifting .  

2)   as  –module is not hollow–J–lifting, by following Proposition (2.3) . 

3) Consider the module M =        . Clearly,    and    as  –module are hollow modules . Since    

M =         is a J–lifting, then it is hollow–J–lifting, by following Proposition (2.3) . 

4) Every hollow–lifting is hollow–J–lifting . The converse is not true in general . For example,   as   

 –module . 

Proposition (2.3) : Let    and    be J–hollow modules . Then the following are equivalent for the 

module M =         .  

1) M is hollow–J–lifting module . 

2) M is J–lifting module . 

Proof : (1) (2) Let N be a submodule of M . Consider the two natural projection maps   : M      

and   : M     . If   (N)      and   (N)     , then by our assumption,   (N)       and        

  (N)       . So according to a previous work [3 , Proposition (2.6.(6))] , we get ,   (N)     (N)    

        . Now,  claim that N     (N)     (N). To recognize that , let n   N, then n   M =         

and hence n = (   ,   ) , where       ,       . Now ,   (n) =   ((   ,   )) =    and   (n) = 

  ((   ,   )) =   . This implies that n = (  (n) ,   (n)), and we get N     (N)     (N) and hence     

N    M. Thus, M is J–lifting module. Now, assume that   (N) =    , then   (N) =   (M) . So, it is 

easy to see that M = N +    . Now,  by the  second isomorphism theorem, 
           

 
   

        

       
 . Since    

is J–hollow , then 
        

       
 is J–hollow, and hence 

      

  
 is J–hollow . But M is hollow–J–lifting , therefore 

there exists  a J–coessential submodule of N in M which is a direct summand of M . Thus, M is J–

lifting .  

(2) (1) It is clear . 

Proposition (2.4) : Let M be an R–module . If M is a hollow–J–lifting module , then 
      

  
 is hollow–J–

lifting for every fully invariant submodule N of M .  

Proof : Let 
      

  
 be a submodule of 

      

  
 such that 

     

  
      

     

 is hollow . Then by the third isomorphism 

theorem  , 

     

  
      

     

   
      

  
 is hollow . Since M is hollow–J–lifting module , then there exists a submodule K 

of M such that K      A in M and M = K   H , for some H   M . Now, clearly, K + N   A and 

hence 
        

  
   

      

  
 . Let f : 

      

  
   

      

    
 be a mapping defined by  f (m + K) = m + (K + N) , for all m   

M . One can easily check that f is an epimorphism . Since K      A in M , then by a previous study [3, 

Proposition (2.6.(5))] ,  f (
      

  
)    

      

    
 and hence  f (

      

  
) = 

      

    
    

      

    
 . So K + N      A in M . By 
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the third isomorphism theorem , we get 
        

  
      

      

  
 in 

      

  
 . Now , since N is fully invariant 

submodule of M , then by an earlier study [5 , lemma (5.4)] , 
      

  
 = 

        

  
   

        

  
. Hence, 

        

  
 is    

a direct summand of  
      

  
 . Thus, 

      

  
 is hollow–J–lifting . 

Corollary (2.5) : Let M be a duo hollow–J–lifting module . Then every direct summand of   M is        

a hollow–J–lifting . 

Proof : It is clear by Proposition (2.4) .  

Theorem (2.6) : An R–module M is hollow–J–lifting , if and only if for every submodule N of M with 
      

  
 is hollow, there exists a submodule K of N, such that M = K   B ,where B   M and N   B    B .  

Proof :   Let N be a submodule of M with 
      

  
 is hollow . Since M is hollow–J–lifting, then there 

exists a direct summand K of M such that K      N in M and M = K   B , where B   M N = N   M 

= N   (K   B) = K    (N   B) , by the modular law . We want to show that        N   B    B. Where 

X   B, let (N   B) + X = B , with J(
      

  
) = 

      

  
, to prove that B = X. Then M = N + X. Now , 

      

  
 = 

        

  
 = 

      

  
 + 

        

  
 , to prove that J(

      

     
) = 

      

    
 , since 

      

    
 = 

        

    
 = 

  (   )     

    
   

      

    (   ) 
 = 

      

  (     ) 
 = 

      

  
 , by the second isomorphism and modular law . Since J(

      

  
) = 

      

  
 , then J(

      

     
) = 

      

    
 

and 
      

  
    

      

  
 , therefore 

      

   
 = 

        

   
 , so M = X + K . Since M = K   B  and X   B, then B = X . 

Thus, N   B    B . 

 ) Let N be a submodule of M with 
      

  
 is hollow , then by our assumption , there exists a submodule 

K of N such that M = K   B (where B   M ) and N   B    B . Let 
      

  
 + 

      

  
 = 

      

  
, with J(

      

  
) = 

      

  
 

and X is submodule of M containing K, to prove that 
      

  
 = 

      

  
. Thus M = N + X. By the modular law, 

we have N = N   M = N   (K   B) = K   (N   B), and hence M = N + X = K + (N   B) + X = (N   

B) + X . Now , since N   B    B , as shown in an earlier study [3 , Proposition (2.6.(4))] , N   B    

M and J(
      

  
) = 

      

  
. So M = X and 

      

  
 = 

      

  
 . Then 

      

  
    

      

  
 , therefore K      N in M . Thus, M is 

hollow–J–lifting . 

Remark (2.7) : An R–module M is hollow–J–lifting  , if and only if, for every submodule N of M 

with 
      

  
 is hollow, there exists a submodule K of N, such that M = K   B, where B   M and N   B 

   M .  

Proof :  As clearly shown by a previous article [3 , Proposition (2.6.(4))] . 

Theorem (2.8) : An R–module M is hollow–J–lifting , if and only if for every submodule N of M with 
      

  
 is hollow, N has J–supplement K in M such that K   N is a direct summand of N.  

Proof: ) Suppose that M is hollow–J–lifting and let N be a submodule of M with 
      

  
 is hollow. 

Then there is a submodule K of N such that K      N in M and M = K   B , for some B   M. By the 

modular law , N = N   M = N   (K   B) = K   (N   B) . Then (N   B) is a direct summand of N 

and M = N + B . By the same argument of Theorem (2.6), we have N   B    B . Therefore, B is        

J–supplement of N in M . 

 )Let N be a submodule of M with 
      

  
 is hollow, then by our assumption there is M = N +K, N   K 

   K, and N = (N   K)   L , where L   N . Now , M = N + K = (N   K) + L + K =   L + K . It is 

clear that L   K = 0, so M = L   K . Let 
      

  
 + 

      

  
 = 

      

  
, with J(

      

  
) = 

      

  
 , where X   M containing 

L . Then M = N + X . So M = (N   K)   L + X = (N   K) + X . Now , since N   K    K , and by     

a previous study [3 , Proposition (2.6.(4))], N   K    M , and J(
      

  
) = 

      

  
 . Then M = X  and  

      

  
 = 

      

  
 , thus 

      

  
    

      

  
 , therefore L      N in M . Then M is hollow–J–lifting . 

Theorem (2.9) : Let M be an R–module . Then the following statements are equivalent . 

1) M is hollow–J–lifting . 
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2) Every submodule N of M with 
      

  
 is hollow can be written as N = K   L , with K is a direct 

summand of  M and L    M . 

3) Every submodule N of M with 
      

  
 is hollow  can be written as N = K + L , with K is a direct 

summand of  M and L    M . 

Proof : (1) (2) Let N be a submodule of M, with 
      

  
 is hollow. Since M is hollow–J–lifting, then 

there exists a submodule K of M, such that K      N in M and M = K   B, where B   M. By the 

modular law, N = N   M = N   (K   B) = K   (N   B) . By the same argument of Theorem (2.6) , 

we have N   B    B. Let L = N   B , so N = K   L, where K is a direct summand of M and L    M. 

(2) (3) It is clear.  

(3) (1)Let N be a submodule of M with 
      

  
 is hollow. By (3), N can be written as N = K + L, with K 

is a direct summand of  M and L    M . We want to show that K      N in M . Let K   X and 
      

  
 + 

      

  
 = 

      

  
 , with J(

      

  
) = 

      

  
 , to prove that 

      

  
 = 

      

  
 . Then M = N + X = K + L + X = L + X. Since 

L    M  and J(
      

  
) = 

      

  
, then M = X  and 

      

  
 = 

      

  
 . Thus, 

      

  
    

      

  
, therefore, K      N in M 

and M is hollow–J–lifting . 

Proposition (2.10) : Let M be hollow–J–lifting . If  M = K + N , where N is a direct summand of M 

and 
      

       
 is hollow , then N contains a J–supplement of K in M . 

Proof : Since M is hollow–J–lifting  and 
      

       
 is a hollow module , then by Theorem (2.9) , K   N = 

B   L , where B is a direct summand of M and L    M . But N is a direct summand of M and L   N , 

therefore by the same study [3 , Proposition (2.7)] L    N . Let M = B   H, where H   M. By the 

modular law, N = N   M = N   (B   H) = B   (N   H) . Let C = N   H, so M = K + B + C = K + C. 

Also K   N = K   (B   C) = B   (K   C). Let    : B   C   C be the natural projection map. So 

we have K   C =   (B   (K   C)) =   (K   N) =   (B   L) =   (L). Since L    N = B   C, then 

by the same study [3, Proposition (2.6.(5))],   (L)    C, and hence K C    C. Thus C is                   a 

J–supplement of K in M and C is contained in N. 

Proposition (2.11): Let M =       be a duo module . Then M is hollow–J–lifting if and only if 

   and    are hollow–J–lifting.  

Proof :  ) It is clear by Corollary (2.5) . 

 ) Let N be a submodule of M with 
      

  
 is hollow. By a previous study [5 , Lemma (5.4)] ,  

     

 
 = 

          

 
   

           

 
 . Since 

      

  
 is hollow , we can assume that 

          

 
 = 

     

 
 , then      N . Since 

          

 
   

       

      
 , by the second isomorphism theorem, and     is hollow–J–lifting, then there exists    

a direct summand K of    such that 
           

 
    

       

 
 . Since N = N   M = N   (     ) , then N = 

( N     )   ( N     ) , we get 
      

     
    

      

     
 . Moreover, it is easily seen that K     is a direct 

summand of M . Thus M is hollow–J–lifting. 

Proposition (2.12) : Let M be an R–module . Then M is hollow–J–lifting module if and only if for 

every submodule N of M with 
      

  
 is hollow, there exists an idempotent f   End (M) with   f (M)   N 

and ( I – f )(N)    ( I – f )(M) . 

Proof :  ) Let N be a submodule of M with 
      

  
 is hollow . Since M is hollow–J–lifting, then by 

Theorem (2.8) , N has a J – supplement K in M such that N   K is a direct summand of K. Then M = 

N + K, N   K    K and N = (N   K)   X , X   N . Then M = N + K = (N   K) + X + K = X + K 

and N   K   X = K   X = {0} , and hence M = K   X . Now we define that the following map            

f : M   X is the natural projection map. One can easily show that f is idempotent and f (M)   X . 

Since X   N , then f (M)   N . Now , ( I – f )(M) = {( I – f )(m) , m   M } = {( I – f )(a + b) , where     

a   X, b   K} = {( I – f )(a + b) = a + b – a = b} = K. We want to show that ( I – f )(N) = N   (I – 

f)(M) . Let x   ( I – f )(N) , then there is n   N , such that  x = ( I – f )(n) = n – f (n) . Thus x   N and     

x   ( I – f )(M) .So x   N   ( I – f )(M) . Hence, ( I – f )(N)   N   ( I – f )(M). Let d   N   ( I – f )(M), 
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then d   N and d   (I – f )(M). There is y   M such that d = ( I – f )(y) = y – f (y) . Thus d + f (y) = y   

N, then d   (I – f )(N). So (I – f )(N) = N   ( I – f )(M) = N   K    K. Hence ( I – f )(N)    ( I – f 

)(M) . 

 ) Let N be a submodule of M with 
      

  
 is hollow. By our assumption, there exists an idempotent f   

End (M) with f (M)   N and (I – f )(N)    (I – f )(M) . Claim that M = f (M)   ( I – f )(M) . To show 

that , let m   M , then m = m + f (m) – f (m) = f (m) + m – f (m) = f (m) + (I – f )(m) . Thus, M = f (m) + 

(I – f )(m) . Now , let w   f (M)   (I – f )(M) , then w = f (  ) and w = (I – f )(   ) , for some    ,    

  M . So f (w) = f (  ) = f ((I – f )(   )) = f (  ) –    f (  ) = 0. Then f (f (  ) = f (  ) = 0 , hence    

w = 0 . Thus, M = f (M)   ( I – f )(M) . Clearly, N   ( I – f )(M) = ( I – f )(N) . Since ( I – f )(N)    (I 

– f )(M) , then N   ( I – f )(M)    (I – f )(M) . Thus M is hollow–J–lifting .  

3. FI–Hollow–J–Lifting modules   

     In this section , we introduce the concept of fully invariant hollow J–Lifting modules and we 

illustrate it by some examples . We also give some basic properties . 

     Recall that an R–module M is called FI–hollow–lifting if, for every fully invariant submodule N of 

M with 
      

 
 is hollow, there exists a direct summand K of M, such that K     N in M  [6] . 

Definition(3.1) : Let M be an R–module . M is called FI–hollow–Jacobson–lifting module ( for short 

FI–hollow–J–lifting ), if for every fully invariant submodule N of M with 
      

 
 is hollow, there exists     

a submodule K of M, such that M = K   Ḱ and K      N in M . 

Examples and Remarks (3.2)  : 

1) It is clear that    as  –module is FI–hollow–J–lifting.  

2)   as  –module is not FI–hollow–J–lifting .  

3) Every hollow–J–lifting is FI–hollow–J–lifting. 

4) Every FI–hollow–lifting is FI–hollow–J–lifting . But the converse is not true in general . For an 

example of   as  –module, assume that   as  –module is FI–hollow–lifting . Since 2  is fully 

invariant submodule of   , such that    
 

  
      is hollow , there is a direct summand K of   , such that 

K        in   . But   is indecomposable  –module, so K = 0 . Hence       , which is                       

a contradiction, since     +    =  , but        . 

Proposition (3.3) : An R–module M is FI–hollow–J–lifting , if and only if for every fully invariant 

submodule N of M with 
      

  
 is hollow, there exists a submodule K of N, such that M = K   B , where 

B   M and N   B    B . 

Proof :  ) Let N be a fully invariant submodule of M with 
      

  
 is hollow . Since M is FI–hollow–J–

lifting , then there is a submodule K of M such that K      N in M and M = K   B, where B   M. Let  

 : 
 

 
   B, be a mapping defined by  (m + K) = b with m = k + b, where k   K and b   B . One can 

easily observe that   is an isomorphism. Since  
 

 
     

 

 
 , then   ( 

 

 
 )    B , [3 , Proposition (2.6.(5))]. 

Also   ( 
 

 
 ) = {   (x + y + K) | x   K and  y   (N   B) } = { y | y   (N   B) } = N   B , so N   B    

B . 

 ) Let N be a fully invariant submodule of M with 
      

  
 hollow , then by our assumption , there exists 

a submodule K of N, such that M = K   B , and N   B    B . Now , we want to show that K      N 

in M . Let 
      

  
 + 

      

  
 = 

      

  
 , with J(

     

  
) = 

     

  
 , to prove that 

      

  
 = 

      

  
, where X is a submodule of M 

containing K. By the modular law, N = N   M = N   (K   B) = K   (N B). Then M = N + X = K + 

(N   B) + X = (N   B) + K + X , since J(
     

  
) = 

     

  
 , by  [3, Corollary(2.3)] , J(

     

    
) = 

     

    
 , and N   

B    B .Also, by the above cited study [3, Proposition (2.6.(4))] , N   B    M . So M = K + X . But 

K   X , therefore M = X , hence 
      

  
 = 

      

  
 , and 

      

  
    

      

  
 . Thus K      N in M , so M is               

FI–hollow–J–lifting .  
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Corollary (3.4) : An R–module M is FI–hollow–J–lifting, if and only if for every fully invariant  

submodule N of M with 
      

  
 is hollow , there exists a submodule K of N, such that M = K   B , where 

B   M and N   B    M .  

Proof : It is clear [3 , Proposition (2.6(4))] . 

Theorem (3.5) : An R–module M is FI–hollow–J–lifting, if and only if for every fully invariant 

submodule N of M with 
      

  
 is hollow, there exists a J–supplement K in M such that K   N is a direct 

summand of  N .  

Proof : By the same argument of the proof of the Theorem (2.8) . 

Theorem (3.6) : Let M be an R–module . Then the following statements are equivalent . 

1) M is FI–hollow–J–lifting . 

2) Every fully invariant submodule N of M with 
      

  
 is hollow can be written as N = K   L , with K is 

a direct summand of  M and L    M . 

3) Every fully invariant submodule N of M with 
      

  
 is hollow can be written as N = K + L , with K is 

a direct summand of  M and L    M . 

Proof : By the same argument of the proof of the Theorem (2.9) . 

Proposition (3.7) : Let M be an R–module . If M is FI–hollow–J–lifting module , then 
      

  
 is             

FI–hollow–J–lifting module, for every fully invariant submodule N of M .  

Proof : By the same argument of the proof of the Proposition (2.4) . 

Corollary (3.8) : Let M be a duo FI–hollow–J–lifting module . Then every direct summand of  M is 

FI–hollow–J–lifting . 

Proof : It is clear by Proposition (3.7) .  

Proposition (3.9) : Let    and    are FI–hollow–J–lifting modules if and only if M =         is 

FI–hollow–J–lifting . 

Proof :  ) Let N be a fully invariant submodule of M with 
      

  
 is hollow , then M =      N or M = 

     N . Suppose that M =      N (the case M =      N being analogous), where   N      , M = 

     N, then 
      

  
 = 

            

  
   

       

     
 is hollow . Then     N is fully invariant submodule of M . 

Since    is FI–hollow–J–lifting, we have     N =       , where    is a direct summand of    and 

        . In a similar method , we have     N =       , where    is a direct summand of    and 

         . Then N = L   S, where L =         is a direct summand of M and S =           M . 

Therefore , M =         is FI–hollow–J–lifting ( by Theorem (3.6)) . 

 ) It is clear by Corollary (3.8) . 

    Recall that an R–module P is called projective cover of M, if P is projective and there exists an 

epimorphism f : P   M with  Kerf   P  [7] . 

Proposition (3.10) : Let M be a projective module and J(M) = M. Then the following statements are 

equivalent . 

1) M is FI–hollow–J–lifting module . 

2) For every fully invariant submodule N of M with 
      

  
 is hollow, then 

      

  
 has projective cover . 

Proof : (1) (2) Let N be a fully invariant submodule of M with 
      

  
 is hollow. Since M is FI–hollow–

J–lifting module , then by Proposition (3.3) , there exists a submodule K of N, such that M = K   Ḱ , 

for some Ḱ   M and N   Ḱ    Ḱ . Now , consider the following two short exact sequences . 

0   N 
  
→  N + Ḱ  

  
→ 

           

  
   0 

0   N   Ḱ  
  
→  Ḱ  

  
→ 

        

        
   0 

     where    ,    are the inclusion maps and    ,    are the natural epimorphisms . By the second 

isomorphism theorem , 
      

  
 = 

           

  
    

      

      
  . Since M is a projective and Ḱ is a direct summand of 

M , then Ḱ is a projective . But Ker    = N   Ḱ    Ḱ and J(M) = M. By the above cited study [ 3 , 
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Proposition (2.5)] , N   Ḱ   Ḱ. Therefore, Ḱ is projective cover of 
        

        
 . Since 

      

  
   

      

      
 , thus 

      

  
 has a projective cover. 

(2) (1) Let N be a fully invariant submodule of M with 
      

  
 is hollow, and let   : M   

      

  
 be the 

natural epimorphism . By (2) , 
      

  
 has projective cover . Thus by an earlier article [ 8, Lemma 17.17] , 

there exists a decomposition M =        such that 
 
  
⁄ :      

      

  
 is projective cover and      

Ker   . This implies that      N and Ker (
 
  
⁄ ) = N           . But J(M) = M , and by the above 

cited study [3 , Proposition (2.5)] , N            . Thus M is FI–hollow–J–lifting, by Proposition 

(3.3). 
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