DOI: 10.24996/ijs.2020.61.4.16

ISSN: 0067-2904

On Hollow – J-Lifting Modules

Ali Kabban, Wasan Khalid

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 10/7/2019 Accepted: 21/9/2019

Abstract

In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with $\frac{M}{N}$ is hollow, there exists a submodule K of M such that $M=K \oplus \acute{K}$ and $K \subseteq_{Jce} N$ in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are given .

Keywords: Hollow–Lifting Modules, J–Lifting Modules, Hollow–J–Lifting Modules, FI – Hollow –J–Lifting Modules.

حول مقاسات الرفع المجوفة من النمط -ل

على كبان , وسن خالد

قسم الرباضيات , كلية العلوم , جامعة بغداد , بغداد , العراق

لخلاصة

1. Introduction

Orhan , Keskin and Tribak introduced the concept of hollow–lifting modules; An R–module is hollow – lifting if for every submodule N of M with $\frac{M}{N}$ is hollow , there exists a direct summand K of M, such that K is a coessential submodule of N in M [1]. Following Kabban and Khalid [2] , an R–module M is J–lifting module if for every submodule N of M , there exists a submodule K of N, such that $M = K \oplus \acute{K}, \acute{K} \subseteq M$ and $N \cap \acute{K} \ll_{I} \acute{K}$.

Throughout this paper, R will denote arbitrary rings with identity and all R-modules are unitary left R-modules . Let M be an R-module and N is a submodule of M . N is called J-small submodule of M (denoted by N \ll_J M), if whenever M = N + K, K \subseteq M , such that J($\frac{M}{K}$) = $\frac{M}{K}$, implies M = K [3] . Let K and N be submodules of M , such that K \subseteq N \subseteq M , then K is called J-coessential submodule of N in M (denoted by K \subseteq_{Jce} N in M) if $\frac{N}{K} \ll_J \frac{M}{K}$ [2] . Recall that a submodule N of an R-module M

*Email: alikuban5@gmail.com

is J–supplement of K in M if N + K = M and N ∩ K \ll_J N [3] . A submodule N of M is fully invariant if $g(N) \subseteq N$ for all $g \in End(M)$. An R–module M is called duo if every submodule of M is fully invariant [4]. In this paper, we introduce hollow–J–lifting . An R–module M is called hollow–J–lifting module if for every submodule N of M with $\frac{M}{N}$ is hollow, there exists a submodule K of M, such that $M = K \oplus K$ and $K \subseteq_{Jce} N$ in M . Also, we introduce FI–hollow– J–lifting . Let M be an R–module . M is called FI–hollow–J–lifting module if for every fully invariant submodule N of M with $\frac{M}{N}$ is hollow, there exists a submodule K of M, such that $M = K \oplus K$ and $K \subseteq_{Jce} N$ in M . Several characterizations and properties of hollow –J– lifting modules and FI – hollow –J–lifting modules are obtained .

2. Hollow – J–Lifting modules

In this section , we define hollow J-lifting modules and some of their basic properties . Also we prove some new results .

Definition(2.1) : Let M be an R-module. M is called hollow-Jacobson-lifting module (for short hollow-J-lifting), if for every submodule N of M with $\frac{M}{N}$ is hollow, there exists a submodule K of M, such that $M = K \oplus K$ and $K \subseteq_{Ice} N$ in M.

Examples and Remarks (2.2):

- 1) \mathbb{Z}_4 as \mathbb{Z} -module is hollow-J-lifting.
- 2) $\mathbb Q$ as $\mathbb Z\text{--module}$ is not hollow–J–lifting, by following Proposition (2.3) .
- 3) Consider the module $M = \mathbb{Z}_2 \oplus \mathbb{Z}_4$. Clearly, \mathbb{Z}_2 and \mathbb{Z}_4 as \mathbb{Z} -module are hollow modules . Since $M = \mathbb{Z}_2 \oplus \mathbb{Z}_4$ is a J-lifting, then it is hollow-J-lifting, by following Proposition (2.3) .
- 4) Every hollow–lifting is hollow–J–lifting . The converse is not true in general . For example, $\mathbb Z$ as $\mathbb Z$ -module .

Proposition (2.3): Let H_1 and H_2 be J-hollow modules . Then the following are equivalent for the module $M=H_1\oplus H_2$.

- 1) M is hollow-J-lifting module.
- 2) M is J-lifting module.

Proof : (1)⇒(2) Let N be a submodule of M . Consider the two natural projection maps π_1 : M → H₁ and π_2 : M → H₂. If $\pi_1(N) \neq H_1$ and $\pi_2(N) \neq H_2$, then by our assumption, $\pi_1(N) \ll_J H_1$ and $\pi_2(N) \ll_J H_2$. So according to a previous work [3 , Proposition (2.6.(6))] , we get , $\pi_1(N) \oplus \pi_2(N) \ll_J H_1 \oplus H_2$. Now, claim that N ⊆ $\pi_1(N) \oplus \pi_2(N)$. To recognize that , let $n \in N$, then $n \in M = H_1 \oplus H_2$ and hence $n = (h_1, h_2)$, where $h_1 \in H_1$, $h_2 \in H_2$. Now , $\pi_1(n) = \pi_1((h_1, h_2)) = h_1$ and $\pi_2(n) = \pi_2((h_1, h_2)) = h_2$. This implies that $n = (\pi_1(n), \pi_2(n))$, and we get N ⊆ $\pi_1(N) \oplus \pi_2(N)$ and hence N ≪_J M. Thus, M is J-lifting module. Now, assume that $\pi_1(N) = H_1$, then $\pi_1(N) = \pi_1(M)$. So, it is easy to see that M = N + H₂. Now, by the second isomorphism theorem, $\frac{N+H_2}{N} \cong \frac{H_2}{N \cap H_2}$. Since H₂ is J-hollow , then $\frac{H_2}{N \cap H_2}$ is J-hollow, and hence $\frac{M}{N}$ is J-hollow . But M is hollow-J-lifting , therefore there exists a J-coessential submodule of N in M which is a direct summand of M . Thus, M is J-lifting .

 $(2)\Rightarrow(1)$ It is clear.

Proposition (2.4) : Let M be an R-module . If M is a hollow-J-lifting module , then $\frac{M}{N}$ is hollow-J-lifting for every fully invariant submodule N of M .

Proof : Let $\frac{A}{N}$ be a submodule of $\frac{M}{N}$ such that $\frac{\frac{M}{N}}{\frac{A}{N}}$ is hollow. Then by the third isomorphism theorem , $\frac{\frac{M}{N}}{\frac{A}{N}} \cong \frac{M}{N}$ is hollow. Since M is hollow–J–lifting module, then there exists a submodule K of M such that $K \subseteq_{Jce} A$ in M and $M = K \oplus H$, for some $H \subseteq M$. Now, clearly, $K + N \subseteq A$ and hence $\frac{K+N}{N} \subseteq \frac{A}{N}$. Let $f : \frac{M}{K} \longrightarrow \frac{M}{K+N}$ be a mapping defined by f(m+K) = m + (K+N), for all $m \in M$. One can easily check that f is an epimorphism. Since $K \subseteq_{Jce} A$ in M, then by a previous study [3, Proposition (2.6.(5))], $f(\frac{A}{K}) \ll_J \frac{M}{K+N}$ and hence $f(\frac{A}{K}) = \frac{A}{K+N} \ll_J \frac{M}{K+N}$. So $K + N \subseteq_{Jce} A$ in M. By

the third isomorphism theorem , we get $\frac{K+N}{N} \subseteq_{Jce} \frac{A}{N}$ in $\frac{M}{N}$. Now , since N is fully invariant submodule of M , then by an earlier study [5 , lemma (5.4)] , $\frac{M}{N} = \frac{K+N}{N} \oplus \frac{H+N}{N}$. Hence, $\frac{K+N}{N}$ is a direct summand of $\frac{M}{N}$. Thus, $\frac{M}{N}$ is hollow–J–lifting .

Corollary (2.5): Let M be a duo hollow-J-lifting module. Then every direct summand of M is a hollow-J-lifting.

Proof: It is clear by Proposition (2.4).

Theorem (2.6): An R-module M is hollow-J-lifting, if and only if for every submodule N of M with $\frac{M}{N}$ is hollow, there exists a submodule K of N, such that $M = K \oplus B$,where $B \subseteq M$ and $N \cap B \ll_J B$.

Proof: \Rightarrow Let N be a submodule of M with $\frac{M}{N}$ is hollow. Since M is hollow-J-lifting, then there exists a direct summand K of M such that $K\subseteq_{Jce}N$ in M and $M=K\oplus B$, where $B\subseteq M$ $N=N\cap M$ $= N \cap (K \oplus B) = K \oplus (N \cap B)$, by the modular law. We want to show that $X \subseteq B, \text{ let } (N \cap B) + X = B \text{ , with } J(\frac{B}{X}) = \frac{B}{X}, \text{ to prove that } B = X. \text{ Then } M = N + X. \text{ Now }, \frac{M}{K} = \frac{N+X}{K} = \frac{N}{K} + \frac{X+K}{K}, \text{ to prove that } J(\frac{M}{X+K}) = \frac{M}{X+K}, \text{ since } \frac{M}{X+K} = \frac{K+B}{X+K} = \frac{(X+K)+B}{X+K} \cong \frac{B}{B \cap (X+K)} = \frac{B}{M}$ $\frac{B}{X+(K\cap B)} = \frac{B}{X} \text{, by the second isomorphism and modular law . Since } J(\frac{B}{X}) = \frac{B}{X} \text{, then } J(\frac{M}{X+K}) = \frac{M}{X+K}$ and $\frac{N}{K} \ll_J \frac{M}{K}$, therefore $\frac{M}{K} = \frac{X+K}{K}$, so M = X + K. Since $M = K \oplus B$ and $X \subseteq B$, then B = X.

 \Leftarrow) Let N be a submodule of M with $\frac{M}{N}$ is hollow, then by our assumption, there exists a submodule K of N such that $M = K \oplus B$ (where $B \subseteq M$) and $N \cap B \ll_J B$. Let $\frac{N}{K} + \frac{X}{K} = \frac{M}{K}$, with $J(\frac{M}{X}) = \frac{M}{X}$ and X is submodule of M containing K, to prove that $\frac{X}{K} = \frac{M}{K}$. Thus M = N + X. By the modular law, we have $N = N \cap M = N \cap (K \oplus B) = K \oplus (N \cap B)$, and hence $M = N + X = K + (N \cap B) + X = (N \cap B)$ B) + X . Now , since N \cap B \ll_J B , as shown in an earlier study [3 , Proposition (2.6.(4))] , N \cap B \ll_J M and J($\frac{M}{X}$) = $\frac{M}{X}$. So M = X and $\frac{M}{K}$ = $\frac{X}{K}$. Then $\frac{N}{K}$ \ll_J $\frac{M}{K}$, therefore K \subseteq_{Jce} N in M . Thus, M is hollow-J-lifting.

Remark (2.7): An R-module M is hollow-J-lifting, if and only if, for every submodule N of M with $\frac{M}{N}$ is hollow, there exists a submodule K of N, such that $M = K \oplus B$, where $B \subseteq M$ and $N \cap B$ $\ll_{\mathsf{I}} \mathsf{M}$.

Proof: As clearly shown by a previous article [3, Proposition (2.6.(4))].

Theorem (2.8): An R-module M is hollow-J-lifting, if and only if for every submodule N of M with $\frac{M}{N}$ is hollow, N has J-supplement K in M such that $K \cap N$ is a direct summand of N.

Proof: Suppose that M is hollow-J-lifting and let N be a submodule of M with $\frac{M}{N}$ is hollow. Then there is a submodule K of N such that $K \subseteq_{Jce} N$ in M and $M = K \oplus B$, for some $B \subseteq M$. By the modular law, $N = N \cap M = N \cap (K \oplus B) = K \oplus (N \cap B)$. Then $(N \cap B)$ is a direct summand of N and M = N + B. By the same argument of Theorem (2.6), we have $N \cap B \ll_I B$. Therefore, B is J-supplement of N in M.

 \Leftarrow)Let N be a submodule of M with $\frac{M}{N}$ is hollow, then by our assumption there is M = N + K, $N \cap K$ $\ll_J K$, and $N = (N \cap K) \oplus L$, where $L \subseteq N$. Now, $M = N + K = (N \cap K) + L + K = L + K$. It is clear that $L \cap K = 0$, so $M = L \oplus K$. Let $\frac{N}{L} + \frac{X}{L} = \frac{M}{L}$, with $J(\frac{M}{X}) = \frac{M}{X}$, where $X \subseteq M$ containing L. Then M = N + X. So $M = (N \cap K) \oplus L + X = (N \cap K) + X$. Now, since $N \cap K \ll_J K$, and by a previous study [3, Proposition (2.6.(4))], $N \cap K \ll_J M$, and $J(\frac{M}{X}) = \frac{M}{X}$. Then M = X and $\frac{X}{L} = \frac{M}{M}$. $\frac{M}{L}$, thus $\frac{N}{L} \ll_J \frac{M}{L}$, therefore $L \subseteq_{Jce} N$ in M. Then M is hollow–J–lifting. Theorem (2.9): Let M be an R-module. Then the following statements are equivalent.

1) M is hollow–J–lifting.

- 2) Every submodule N of M with $\frac{M}{N}$ is hollow can be written as $N=K\oplus L$, with K is a direct summand of M and L $\ll_I M$.
- 3) Every submodule N of M with $\frac{M}{N}$ is hollow can be written as N=K+L, with K is a direct summand of M and L $\ll_I M$.

Proof : (1) \Rightarrow (2) Let N be a submodule of M, with $\frac{M}{N}$ is hollow. Since M is hollow–J–lifting, then there exists a submodule K of M, such that $K \subseteq_{Jce} N$ in M and $M = K \oplus B$, where $B \subseteq M$. By the modular law, $N = N \cap M = N \cap (K \oplus B) = K \oplus (N \cap B)$. By the same argument of Theorem (2.6), we have $N \cap B \ll_J B$. Let $L = N \cap B$, so $N = K \oplus L$, where K is a direct summand of M and $L \ll_J M$. (2) \Rightarrow (3) It is clear.

 $(3) \Rightarrow (1) \text{Let N be a submodule of M with } \frac{M}{N} \text{ is hollow. By (3), N can be written as } N = K + L, \text{ with } K \text{ is a direct summand of } M \text{ and } L \ll_J M \text{ . We want to show that } K \subseteq_{Jce} N \text{ in } M \text{ . Let } K \subseteq X \text{ and } \frac{N}{K} + \frac{X}{K} = \frac{M}{K} \text{ , with } J(\frac{M}{X}) = \frac{M}{X} \text{ , to prove that } \frac{X}{K} = \frac{M}{K} \text{ . Then } M = N + X = K + L + X = L + X. \text{ Since } L \ll_J M \text{ and } J(\frac{M}{X}) = \frac{M}{X} \text{ , then } M = X \text{ and } \frac{X}{K} = \frac{M}{K} \text{ . Thus, } \frac{N}{K} \ll_J \frac{M}{K} \text{ , therefore, } K \subseteq_{Jce} N \text{ in } M \text{ and } M \text{ is hollow-J-lifting .}$

Proposition (2.10) : Let M be hollow–J–lifting . If M = K + N , where N is a direct summand of M and $\frac{M}{K \cap N}$ is hollow , then N contains a J–supplement of K in M .

Proof : Since M is hollow–J–lifting and $\frac{M}{K\cap N}$ is a hollow module , then by Theorem (2.9) , $K\cap N=B\oplus L$, where B is a direct summand of M and L $\ll_J M$. But N is a direct summand of M and L $\subseteq N$, therefore by the same study [3 , Proposition (2.7)] L $\ll_J N$. Let $M=B\oplus H$, where $H\subseteq M$. By the modular law, $N=N\cap M=N\cap (B\oplus H)=B\oplus (N\cap H)$. Let $C=N\cap H$, so M=K+B+C=K+C. Also $K\cap N=K\cap (B\oplus C)=B\oplus (K\cap C)$. Let $\pi_1\colon B\oplus C\to C$ be the natural projection map. So we have $K\cap C=\pi_1(B\oplus (K\cap C))=\pi_1(K\cap N)=\pi_1(B\oplus L)=\pi_1(L)$. Since $L\ll_J N=B\oplus C$, then by the same study [3, Proposition (2.6.(5))], $\pi_1(L)\ll_J C$, and hence $K\cap C\ll_J C$. Thus C is

Proposition (2.11): Let $M = M_1 \oplus M_2$ be a duo module . Then M is hollow–J–lifting if and only if M_1 and M_2 are hollow–J–lifting.

Proof: \Longrightarrow) It is clear by Corollary (2.5).

Proposition (2.12) : Let M be an R-module . Then M is hollow-J-lifting module if and only if for every submodule N of M with $\frac{M}{N}$ is hollow, there exists an idempotent $f \in \text{End }(M)$ with $f(M) \subseteq N$ and $(I-f)(N) \ll_J (I-f)(M)$.

Proof : \Longrightarrow) Let N be a submodule of M with $\frac{M}{N}$ is hollow . Since M is hollow–J–lifting, then by Theorem (2.8) , N has a J – supplement K in M such that N ∩ K is a direct summand of K. Then M = N + K, N ∩ K \ll_J K and N = (N ∩ K) \oplus X , X \subseteq N . Then M = N + K = (N ∩ K) + X + K = X + K and N ∩ K ∩ X = K ∩ X = {0} , and hence M = K \oplus X . Now we define that the following map $f: M \longrightarrow X$ is the natural projection map. One can easily show that f is idempotent and $f(M) \subseteq X$. Since X \subseteq N , then $f(M) \subseteq$ N . Now , (I – f)(M) = {(I – f)(m), $m \in$ M } = {(I – f)(a + b), where $a \in X$, $b \in$ K} = {(I – f)(a + b) = a + b - a = b} = K. We want to show that (I – f)(N) = N ∩ (I – f)(M) . Let $x \in$ (I – f)(N), then there is $n \in$ N, such that x = (I – f)(m). Thus $x \in$ N and $x \in$ (I – f)(M). So $x \in$ N ∩ (I – f)(M). Hence, (I – f)(N) \subseteq N ∩ (I – f)(M). Let $d \in$ N ∩ (I – f)(M),

then $d \in N$ and $d \in (I - f)(M)$. There is $y \in M$ such that d = (I - f)(y) = y - f(y). Thus $d + f(y) = y \in N$, then $d \in (I - f)(N)$. So $(I - f)(N) = N \cap (I - f)(M) = N \cap K \ll_J K$. Hence $(I - f)(N) \ll_J (I - f)(M)$.

3. FI-Hollow-J-Lifting modules

In this section , we introduce the concept of fully invariant hollow J–Lifting modules and we illustrate it by some examples . We also give some basic properties .

Recall that an R-module M is called **FI-hollow-lifting** if, for every fully invariant submodule N of M with $\frac{M}{N}$ is hollow, there exists a direct summand K of M, such that $K \subseteq_{ce} N$ in M [6]. **Definition(3.1):** Let M be an R-module . M is called FI-hollow-Jacobson-lifting module (for short

 $\begin{array}{l} \textbf{Definition(3.1):} \ Let \ M \ be \ an \ R-module \ . \ M \ is \ called \ FI-hollow-Jacobson-lifting \ module \ (\ for \ short \ FI-hollow-J-lifting \), \ if \ for \ every \ fully \ invariant \ submodule \ N \ of \ M \ with \ \frac{M}{N} \ is \ hollow, \ there \ exists \ a \ submodule \ K \ of \ M, \ such \ that \ M = K \oplus \acute{K} \ and \ K \subseteq_{Jce} N \ in \ M \ . \end{array}$

Examples and Remarks (3.2):

- 1) It is clear that \mathbb{Z} as \mathbb{Z} -module is FI-hollow-J-lifting.
- 2) \mathbb{Q} as \mathbb{Z} -module is not FI-hollow-J-lifting.
- 3) Every hollow–J–lifting is FI–hollow–J–lifting.
- 4) Every FI-hollow-lifting is FI-hollow-J-lifting . But the converse is not true in general . For an example of $\mathbb Z$ as $\mathbb Z$ -module, assume that $\mathbb Z$ as $\mathbb Z$ -module is FI-hollow-lifting . Since $2\mathbb Z$ is fully invariant submodule of $\mathbb Z_z$, such that $\frac{\mathbb Z}{2\mathbb Z}\cong\mathbb Z_2$ is hollow , there is a direct summand K of $\mathbb Z_z$, such that $K\subseteq_{ce}2\mathbb Z$ in $\mathbb Z$. But $\mathbb Z$ is indecomposable $\mathbb Z$ -module, so K=0. Hence $2\mathbb Z\ll\mathbb Z$, which is a contradiction, since $2\mathbb Z+3\mathbb Z=\mathbb Z$, but $3\mathbb Z\neq\mathbb Z$.

Proposition (3.3): An R-module M is FI-hollow-J-lifting , if and only if for every fully invariant submodule N of M with $\frac{M}{N}$ is hollow, there exists a submodule K of N, such that $M = K \oplus B$, where $B \subseteq M$ and $N \cap B \ll_I B$.

Proof : \Longrightarrow) Let N be a fully invariant submodule of M with $\frac{M}{N}$ is hollow. Since M is FI-hollow-J-lifting, then there is a submodule K of M such that $K \subseteq_{Jce} N$ in M and $M = K \oplus B$, where $B \subseteq M$. Let $\varphi \colon \frac{M}{K} \longrightarrow B$, be a mapping defined by $\varphi(m+K) = b$ with m = k+b, where $k \in K$ and $b \in B$. One can easily observe that φ is an isomorphism. Since $\frac{N}{K} \ll_J \frac{M}{K}$, then $\varphi(\frac{N}{K}) \ll_J B$, [3, Proposition (2.6.(5))]. Also $\varphi(\frac{N}{K}) = \{ \varphi(x+y+K) \mid x \in K \text{ and } y \in (N \cap B) \} = \{ y \mid y \in (N \cap B) \} = N \cap B$, so $N \cap B \ll_J B$.

Corollary (3.4): An R-module M is FI-hollow-J-lifting, if and only if for every fully invariant submodule N of M with $\frac{M}{N}$ is hollow , there exists a submodule K of N, such that $M=K\oplus B$, where $B \subseteq M$ and $N \cap B \ll_I M$.

Proof: It is clear [3, Proposition (2.6(4))].

Theorem (3.5): An R-module M is FI-hollow-J-lifting, if and only if for every fully invariant submodule N of M with $\frac{M}{N}$ is hollow, there exists a J-supplement K in M such that $K \cap N$ is a direct summand of N.

Proof: By the same argument of the proof of the Theorem (2.8).

Theorem (3.6): Let M be an R-module. Then the following statements are equivalent.

- 1) M is FI-hollow-J-lifting.
- 2) Every fully invariant submodule N of M with $\frac{M}{N}$ is hollow can be written as $N = K \oplus L$, with K is a direct summand of M and $L \ll_I M$.
- 3) Every fully invariant submodule N of M with $\frac{M}{N}$ is hollow can be written as N = K + L, with K is a direct summand of M and L $\ll_I M$.

Proof: By the same argument of the proof of the Theorem (2.9).

Proposition (3.7): Let M be an R-module. If M is FI-hollow-J-lifting module, then $\frac{M}{N}$ is FI-hollow-J-lifting module, for every fully invariant submodule N of M.

Proof: By the same argument of the proof of the Proposition (2.4).

Corollary (3.8): Let M be a duo FI-hollow-J-lifting module. Then every direct summand of M is FI-hollow-J-lifting.

Proof: It is clear by Proposition (3.7).

Proposition (3.9): Let M_1 and M_2 are FI-hollow-J-lifting modules if and only if $M = M_1 \oplus M_2$ is FI-hollow-J-lifting.

Proof: \Longrightarrow) Let N be a fully invariant submodule of M with $\frac{M}{N}$ is hollow, then $M = M_1 \oplus N$ or $M = M_1 \oplus N$ $M_2 \oplus N$. Suppose that $M = M_1 \oplus N$ (the case $M = M_2 \oplus N$ being analogous), where $N \subseteq M_1$, $M = M_1 \oplus N$, then $\frac{M}{N} = \frac{M_1 \oplus N}{N} \cong \frac{M_1}{M_1 \cap N}$ is hollow. Then $M_1 \cap N$ is fully invariant submodule of M. Since M_1 is FI-hollow-J-lifting, we have $M_1 \cap N = L_1 \oplus S_1$, where L_1 is a direct summand of M_1 and $S_1 \ll_J M_1$. In a similar method, we have $M_2 \cap N = L_2 \oplus S_2$, where L_2 is a direct summand of M_2 and $S_2 \ll_I M_2$. Then $N = L \oplus S$, where $L = L_1 \oplus L_2$ is a direct summand of M and $S = S_1 \oplus S_2 \ll_I M$. Therefore, $M = M_1 \oplus M_2$ is FI-hollow-J-lifting (by Theorem (3.6)). \Leftarrow) It is clear by Corollary (3.8).

Recall that an R-module P is called projective cover of M, if P is projective and there exists an epimorphism $f: P \to M$ with $Kerf \ll P$ [7].

Proposition (3.10): Let M be a projective module and J(M) = M. Then the following statements are equivalent.

- 1) M is FI-hollow-J-lifting module.
- 2) For every fully invariant submodule N of M with $\frac{M}{N}$ is hollow, then $\frac{M}{N}$ has projective cover .

Proof: (1) \Rightarrow (2) Let N be a fully invariant submodule of M with $\frac{M}{N}$ is hollow. Since M is FI-hollow-J-lifting module, then by Proposition (3.3), there exists a submodule K of N, such that $M = K \oplus K$, for some $\acute{K}\subseteq M$ and $N\cap \acute{K}\ll_J \acute{K}$. Now , consider the following two short exact sequences .

$$0 \longrightarrow N \xrightarrow{i_1} N + \acute{K} \xrightarrow{T_1} \frac{N + \acute{K}}{N} \longrightarrow 0$$
$$0 \longrightarrow N \cap \acute{K} \xrightarrow{i_2} \acute{K} \xrightarrow{T_2} \frac{\acute{K}}{N \cap \acute{K}} \longrightarrow 0$$

 $0 \to N \overset{i_1}{\to} N + \acute{K} \overset{T_1}{\to} \frac{N + \acute{K}}{N} \to 0$ $0 \to N \cap \acute{K} \overset{i_2}{\to} \acute{K} \overset{T_2}{\to} \frac{\acute{K}}{N \cap \acute{K}} \to 0$ where i_1 , i_2 are the inclusion maps and T_1 , T_2 are the natural epimorphisms . By the second isomorphism theorem , $\frac{M}{N} = \frac{N + \hat{K}}{N} \cong \frac{\hat{K}}{N \cap \hat{K}}$. Since M is a projective and \hat{K} is a direct summand of M, then \acute{K} is a projective. But $Ker\ T_2 = N \cap \acute{K} \ll_I \acute{K}$ and J(M) = M. By the above cited study [3,

Proposition (2.5)], $N \cap \acute{K} \ll \acute{K}$. Therefore, \acute{K} is projective cover of $\frac{\acute{K}}{N \cap \acute{K}}$. Since $\frac{M}{N} \cong \frac{\acute{K}}{N \cap \acute{K}}$, thus $\frac{M}{N}$ has a projective cover.

(2) \Rightarrow (1) Let N be a fully invariant submodule of M with $\frac{M}{N}$ is hollow, and let $\varphi: M \to \frac{M}{N}$ be the natural epimorphism . By (2), $\frac{M}{N}$ has projective cover . Thus by an earlier article [8, Lemma 17.17], there exists a decomposition $M = M_1 \oplus M_2$, such that $\frac{\varphi}{M_2}$: $M_2 \to \frac{M}{N}$ is projective cover and $M_1 \subseteq Ker \varphi$. This implies that $M_1 \subseteq N$ and $Ker (\frac{\varphi}{M_2}) = N \cap M_2 \ll M_2$. But J(M) = M, and by the above cited study [3, Proposition (2.5)], $N \cap M_2 \ll_J M_2$. Thus M is FI-hollow-J-lifting, by Proposition (3.3).

References

- **1.** Orhan, N., Tutuncu, D. K. and Tribak, R. **2007**. On Hollow–lifting Modules, *Taiwanese J. Math*,: 545-568.
- **2.** Kabban, A. and Khalid, W. **2019**. On J-lifting modules, to appear in *Journal of Physics Conference Series*, will be published on end (October).
- **3.** Kabban, A. and Khalid, W. **2019**. On Jacobson–small submodules, *Iraqi Journal of science* in vol. **60**(7): 1584 1591.
- **4.** Ozcan A. C. **2006**. Duo module, *Glasgow Math. J. Trust*, **48**: 533 545.
- **5.** Orhan N., Tutuncu D. K. and Tribak, R. **2007**. On hollow–lifting modules, *Taiwanese J. Math.*, **11** (2): 545-568.
- **6.** Alsaadi, S. A. and Saaduon, N. Q. **2013**. FI–hollow–lifting modules, Al Mustansiriyah J. Sci.,**24**(5): 293-306.
- 7. Kasch, F. 1982. Modules and Rings, Academic press, London.
- **8.** Anderson F. W and Fuller K. R. **1974**. *Rings and categories of modules*, Springer Verlag, New York.