On Hollow – J–Lifting Modules

Ali Kabban, Wasan Khalid

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 10/7/ 2019 Accepted: 21/9/2019

Abstract

In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules. We call an R–module M as hollow – J– lifting if for every submodule N of M with \(\frac{M}{N} \) is hollow, there exists a submodule K of M such that M = K \(\oplus \) K and K \(\subseteq_{\text{coessential}} \) N in M. Several characterizations and properties of hollow – J–lifting modules are obtained. Modules related to hollow – J–lifting modules are given.

1. Introduction

Orhan , Keskin and Tribak introduced the concept of hollow–lifting modules; An R–module is hollow – lifting if for every submodule N of M with \(\frac{M}{N} \) is hollow, there exists a direct summand K of M, such that K is a coessential submodule of N in M [1]. Following Kabban and Khalid [2], an R–module M is J–lifting module if for every submodule N of M, there exists a submodule K of N, such that M = K \(\oplus \) K, K \(\subseteq \) N and N \(\cap \) K \(\ll \) J K.

Throughout this paper, R will denote arbitrary rings with identity and all R–modules are unitary left R–modules. Let M be an R–module and N is a submodule of M. N is called J–small submodule of M (denoted by N \(\ll \) J M), if whenever M = N + K, K \(\subseteq \) M , such that J(\(\frac{M}{K} \)) = \(\frac{M}{K} \), implies M = K [3]. Let K and N be submodules of M, such that K \(\subseteq \) N \(\subseteq \) M , then K is called J–coessential submodule of N in M (denoted by K \(\subseteq_{\text{coessential}} \) N in M) if \(\frac{N}{K} \) \(\ll \) J \(\frac{M}{K} \) [2]. Recall that a submodule N of an R–module M

*Email: alikuban5@gmail.com
is J–supplement of K in M if N + K = M and N ∩ K ⪯ J N [3]. A submodule N of M is fully invariant if g(N) ⊆ N for all g ∈ End(M). An R–module M is called duo if every submodule of M is fully invariant [4]. In this paper, we introduce hollow–J–lifting . An R–module M is called hollow–J–lifting module if for every fully invariant submodule N of M with \(\frac{M}{N} \) is hollow, there exists a submodule K of M, such that M = K ⊕ \(\hat{K} \) and \(K \subseteq_{jce} N \) in M . Also, we introduce FI–hollow– J–lifting . Let M be an R–module . M is called FI–hollow– J–lifting module if for every fully invariant submodule N of M with \(\frac{M}{N} \) is hollow, there exists a submodule K of M, such that M = K ⊕ \(\hat{K} \) and \(K \subseteq_{jce} N \) in M . Several characterizations and properties of hollow –J– lifting modules and FI – hollow –J–lifting modules are obtained .

2. Hollow – J–Lifting modules

In this section, we define hollow J–lifting modules and some of their basic properties. Also we prove some new results.

Definition (2.1): Let M be an R–module. M is called hollow–Jacobson–lifting module (for short hollow–J–lifting), if for every submodule N of M with \(\frac{M}{N} \) is hollow, there exists a submodule K of M, such that M = K ⊕ \(\hat{K} \) and \(K \subseteq_{jce} N \) in M.

Examples and Remarks (2.2):

1) \(\mathbb{Z}_4 \) as \(Z \)–module is hollow–J–lifting.
2) \(\mathbb{Q} \) as \(Z \)–module is not hollow–J–lifting, by following Proposition (2.3).
3) Consider the module M = \(\mathbb{Z}_2 \oplus \mathbb{Z}_4 \). Clearly, \(\mathbb{Z}_2 \) and \(\mathbb{Z}_4 \) as \(Z \)–module are hollow modules. Since M = \(\mathbb{Z}_2 \oplus \mathbb{Z}_4 \) is a J–lifting module, then it is hollow–J–lifting, by following Proposition (2.3).
4) Every hollow–lifting is hollow–J–lifting. The converse is not true in general. For example, \(\mathbb{Z} \) as \(Z \)–module.

Proposition (2.3): Let \(H_1 \) and \(H_2 \) be J–hollow modules. Then the following are equivalent for the module M = \(H_1 \oplus H_2 \).

1) M is hollow–J–lifting module.
2) M is J–lifting module.

Proof: (1)⇒(2) Let N be a submodule of M. Consider the two natural projection maps \(\pi_1: M \rightarrow H_1 \) and \(\pi_2: M \rightarrow H_2 \). If \(\pi_1(N) \neq H_1 \) and \(\pi_2(N) \neq H_2 \), then by our assumption, \(\pi_1(N) \ll_{J} H_1 \) and \(\pi_2(N) \ll_{J} H_2 \). So according to a previous work [3, Proposition (2.6.(6))], we get \(\pi_1(N) \oplus \pi_2(N) \ll_{J} H_1 \oplus H_2 \). Now, claim that N \(\subseteq \pi_1(N) \oplus \pi_2(N) \). To recognize that, let n ∈ N, then n ∈ M = \(H_1 \oplus H_2 \) and hence \(n = (h_1, h_2) \), where \(h_1 \in H_1 \), \(h_2 \in H_2 \). Now, \(\pi_1(n) = \pi_1((h_1, h_2)) = h_1 \) and \(\pi_2(n) = \pi_2((h_1, h_2)) = h_2 \). This implies that n = \(\pi_1(n) \oplus \pi_2(n) \), and we get N \(\subseteq \pi_1(N) \oplus \pi_2(N) \) and hence N \(\ll_{J} M \). Thus, M is J–lifting module. Now, assume that \(\pi_1(N) = H_1 \), then \(\pi_1(N) = \pi_1(M) \). So, it is easy to see that M = N + H_2. Now, by the second isomorphism theorem, \(\frac{N + H_2}{N} \cong \frac{H_2}{N \cap H_2} \). Since H_2 is J–hollow, then \(\frac{H_2}{N \cap H_2} \) is J–hollow, and hence \(\frac{M}{N} \) is J–hollow. But M is hollow–J–lifting, therefore there exists a J–coessential submodule of N in M which is a direct summand of M. Thus, M is J–lifting.

(2)⇒(1) It is clear.

Proposition (2.4): Let M be an R–module. If M is a hollow–J–lifting module, then \(\frac{M}{N} \) is hollow–J–lifting for every fully invariant submodule N of M.

Proof: Let \(\frac{A}{N} \) be a submodule of \(\frac{M}{N} \) such that \(\frac{M}{A\cap N} \) is hollow. Then by the third isomorphism theorem, \(\frac{M}{A\cap N} \equiv \frac{M}{A} \). Since M is hollow–J–lifting module, then there exists a submodule K of M such that K \(\subseteq_{jce} A \) in M and M = K \(\oplus H \), for some H \(\subseteq M \). Now, clearly, K + N \(\subseteq A \) and hence \(\frac{K + N}{N} \subseteq \frac{A}{N} \). Let \(f: \frac{M}{K} \rightarrow \frac{M}{K + N} \) be a mapping defined by \(f(m + K) = m + (K + N) \), for all m ∈ M. One can easily check that f is an epimorphism. Since K \(\subseteq_{jce} A \) in M, then by a previous study [3, Proposition (2.6.(5))], \(f(\frac{A}{K}) \ll_{J} \frac{M}{K + N} \) and hence \(f(\frac{A}{K}) = \frac{A}{K + N} \ll_{J} \frac{M}{K + N} \). So K + N \(\subseteq_{jce} A \) in M. By
the third isomorphism theorem, we get \(\frac{K + N}{N} \subseteq_{\text{jce}} \frac{A}{N} \). Now, since \(N \) is fully invariant submodule of \(M \), then by an earlier study [5, lemma (5.4)].

Thus, there exists a submodule \(K \) of \(N \) such that \(K = \frac{K + N}{N} \). Hence, \(\frac{K + N}{N} \) is a direct summand of \(\frac{M}{N} \).

Corollary (2.5): Let \(M \) be a duo hollow–l–lifting module. Then every direct summand of \(M \) is hollow–l–lifting.

Proof: It is clear by Proposition (2.4).

Theorem (2.6): An \(R \)–module \(M \) is hollow–l–lifting, if and only if for every submodule \(N \) of \(M \) with \(\frac{M}{N} \) is hollow, there exists a submodule \(K \) of \(N \) such that \(M = K \oplus B \), where \(B \subseteq M \) and \(N \cap B \ll_j B \).

Proof: \(\implies \) Let \(N \) be a submodule of \(M \) with \(\frac{M}{N} \) is hollow. Since \(M \) is hollow–l–lifting, then there exists a direct summand \(K \) of \(M \) such that \(K \subseteq_{\text{jce}} N \) in \(M \) and \(M = K \oplus B \), where \(B \subseteq M \) and \(N \cap M = N \cap (K \oplus B) = K \oplus (N \cap B) \), by the modular law. We want to show that \(N \cap B \ll_j B \). Where \(K \subseteq B \), let \((N \cap B) + X = B \), with \(J(\frac{B}{X}) = \frac{B}{N} \).

\(\therefore \) \(\exists \) \(\frac{M}{K} = \frac{N + X}{B} + \frac{X + K}{B} \), to prove that \(\frac{B}{X} = X \). Now, \(\frac{M}{K} = \frac{N + X}{K} + \frac{X + K}{K} \), such that \(\frac{M}{X + K} = \frac{X + K}{X + K} \), since \(\frac{M}{X + K} = \frac{X + K}{X + K} \).

\(\therefore \) \(\frac{M}{K} = \frac{X + K}{K} \), therefore \(\frac{M}{K} = \frac{X + K}{K} \), so \(M = X + K \). Since \(M = K \oplus B \) and \(X \subseteq B \), then \(B = X \). Thus, \(N \cap B \ll_j B \).

\(\Leftarrow \) Let \(N \) be a submodule of \(M \) with \(\frac{M}{N} \) is hollow, then by our assumption, there exists a submodule \(K \) of \(N \) such that \(M = K \oplus B \) (where \(B \subseteq M \)) and \(N \cap B \ll_j B \). Let \(\frac{N}{K} + \frac{X}{K} = \frac{M}{K} \), with \(J(\frac{M}{X}) = \frac{M}{X} \) and \(X \) is submodule of \(M \) containing \(K \), to prove that \(\frac{X}{K} = \frac{M}{K} \). Thus \(M = N + X \). By the modular law, we have \(N = N \cap M = N \cap (K \oplus B) = K \oplus (N \cap B) \), and hence \(M = N + X = K + (N \cap B) + X = (N \cap B) + X \). Now, since \(N \cap B \ll_j B \), as shown in an earlier study [3, Proposition (2.6(4))] \(N \cap B \ll_j N \cap K \) and \(J(\frac{M}{X}) = \frac{M}{K} \).

\(\therefore \) \(\frac{M}{K} \subseteq_{\text{jce}} N \) in \(M \). Thus, \(M \) is hollow–l–lifting.

Remark (2.7): An \(R \)–module \(M \) is hollow–l–lifting, if and only if, for every submodule \(N \) of \(M \) with \(\frac{M}{N} \) is hollow, there exists a submodule \(K \) of \(N \) such that \(M = K \oplus B \), where \(B \subseteq M \) and \(N \cap B \ll_j M \).

Proof: As clearly shown by a previous article [3, Proposition (2.6(4))].

Theorem (2.8): An \(R \)–module \(M \) is hollow–l–lifting, if and only if for every submodule \(N \) of \(M \) with \(\frac{M}{N} \) is hollow, \(N \) has \(J \)–supplement \(K \) in \(M \) such that \(K \cap N \) is a direct summand of \(N \).

Proof: \(\Leftarrow \) Suppose that \(M \) is hollow–l–lifting and let \(N \) be a submodule of \(M \) with \(\frac{M}{N} \) is hollow. Then there is a submodule \(K \) of \(N \) such that \(K \subseteq_{\text{jce}} N \) in \(M \) and \(M = K \oplus B \), for some \(B \subseteq M \). By the modular law, \(N = N \cap M = N \cap (K \oplus B) = K \oplus (N \cap B) \). Then \(N \cap B \ll_j B \) is a direct summand of \(N \) and \(M = N + B \). By the same argument of Theorem (2.6), we have \(N \cap B \ll_j B \). Therefore, \(B \) is \(J \)–supplement of \(N \) in \(M \).

\(\Leftarrow \) Let \(N \) be a submodule of \(M \) with \(\frac{M}{N} \) is hollow, then by our assumption there is \(M = N + K, N \cap K \ll_j K, \) and \(N = (N \cap K) \oplus L \), where \(L \subseteq N \). Now, \(M = N + K = (N \cap K) + L + K = L + K \). It is clear that \(L \cap K = 0 \), so \(M = L \oplus K \). Let \(\frac{N}{L} + \frac{X}{L} = \frac{M}{L} \), with \(J(\frac{M}{L}) = \frac{M}{L} \), where \(X \subseteq M \) containing \(L \). Then \(M = N + X \). So \(M = (N \cap K) \oplus L + X = (N \cap K) + X \). Now, since \(N \cap K \ll_j K \), and by a previous study [3, Proposition (2.6(4))], \(N \cap K \ll_j K \) and \(J(\frac{M}{L}) = \frac{M}{L} \). Then \(M = X \) and \(\frac{X}{L} = \frac{M}{L} \), thus \(L \subseteq_{\text{jce}} \frac{M}{L} \), therefore \(L \subseteq_{\text{jce}} N \) in \(M \). Then \(M \) is hollow–l–lifting.

Theorem (2.9): Let \(M \) be an \(R \)–module. Then the following statements are equivalent.

1) \(M \) is hollow–l–lifting.
2) Every submodule \(N \) of \(M \) with \(\frac{M}{N} \) is hollow can be written as \(N = K \oplus L \), with \(K \) is a direct summand of \(M \) and \(L \) \(\ll \) \(M \).

3) Every submodule \(N \) of \(M \) with \(\frac{M}{N} \) is hollow can be written as \(N = K + L \), with \(K \) is a direct summand of \(M \) and \(L \) \(\ll \) \(M \).

Proof: (1)\(\Rightarrow \) (2) Let \(N \) be a submodule of \(M \), with \(\frac{M}{N} \) is hollow. Since \(M \) is hollow–J-lifting, then there exists a submodule \(K \) of \(M \), such that \(K \subseteq \text{Hom}_R(N, M) \) and \(M = K \oplus B \), where \(B \subseteq M \). By the modular law, \(N = N \cap M = N \cap (K \oplus B) = K \oplus (N \cap B) \). By the same argument of Theorem (2.6), we have \(N \cap B \ll B \). Let \(L = N \cap B \), so \(N = K \oplus L \), where \(K \) is a direct summand of \(M \) and \(L \) \(\ll \) \(M \).

(2)\(\Rightarrow \) (3) It is clear.

(3)\(\Rightarrow \) (1) Let \(N \) be a submodule of \(M \) with \(\frac{M}{N} \) is hollow. By (3), \(N \) can be written as \(N = K + L \), with \(K \) is a direct summand of \(M \) and \(L \) \(\ll \) \(M \). We want to show that \(K \subseteq \text{Hom}_R(N, M) \) in \(M \). Let \(K \subseteq X \) and \(\frac{N}{K} + \frac{X}{K} = \frac{M}{K} \), with \(J(\frac{M}{X}) = \frac{M}{K} \), to prove that \(\frac{X}{K} = \frac{M}{K} \). Then \(M = N + X = K + L + X = L + X \). Since \(L \ll M \) and \(J(\frac{M}{X}) = \frac{M}{X} \), then \(M = X \) and \(\frac{X}{K} = \frac{M}{K} \). Thus, \(\frac{N}{K} \ll \frac{M}{K} \), therefore, \(K \subseteq \text{Hom}_R(N, M) \) in \(M \) and \(M \) is hollow–J-lifting.

Proposition (2.10): Let \(M \) be hollow–J-lifting. If \(M = K + N \), where \(N \) is a direct summand of \(M \) and \(\frac{M}{K} \) is hollow, then \(N \) contains a \(J \)-supplement of \(K \) in \(M \).

Proof: Since \(M \) is hollow–J-lifting and \(\frac{M}{K} \) is a hollow module, then by Theorem (2.9), \(K \cap N = B \oplus L \), where \(B \) is a direct summand of \(M \) and \(L \ll M \). But \(N \) is a direct summand of \(M \) and \(L \subseteq N \), therefore by the same study [3, Proposition (2.7)] \(L \ll N \). Let \(M = B \oplus H \), where \(H \subseteq M \). By the modular law, \(N = N \cap M = N \cap (B \oplus H) = B \oplus (N \cap H) \). Let \(C = N \cap H \), so \(M = K + B + C = K + C \).

Also \(K \cap N = K \cap (B \oplus C) = B \oplus (K \cap C) \). Let \(\pi_1 : B \oplus C \\rightarrow C \) be the natural projection map. So we have \(K \cap C = \pi_1(0 \oplus (K \cap C)) = \pi_1(K \cap N) = \pi_1(B \oplus L) = \pi_1(L) \). Then \(L \ll N \) and \(B \oplus C \), then by the same study [3, Proposition (2.6,5)], \(\pi_1(L) \ll C \), and hence \(K \cap N \ll C \). Thus \(C \) is a \(J \)-supplement of \(K \) in \(M \) and \(M \) is contained in \(N \).

Proposition (2.11): Let \(M = M_1 \oplus M_2 \) be a duo module. Then \(M \) is hollow–J-lifting if and only if \(M_1 \) and \(M_2 \) are hollow–J-lifting.

Proof: (\(\Rightarrow \)) It is clear by Corollary (2.5).

(\(\Leftarrow \)) Let \(N \) be a submodule of \(M \) with \(\frac{M}{N} \) is hollow. By a previous study [5, Lemma (5.4)], \(\frac{M}{N} = \frac{N + M_1}{N} \oplus \frac{N + M_2}{N} \). Since \(\frac{M}{N} \) is hollow, we can assume that \(\frac{N + M_1}{N} = \frac{M_1}{N} \), then \(M_2 \subseteq N \). Since \(\frac{M}{N} \) is hollow, by the second isomorphism theorem, and \(M_2 \) is hollow–J-lifting, then there exists a direct summand \(K \) of \(M_1 \) such that \(\frac{N + M_2}{N} \ll \frac{M_1}{K} \). Since \(N = N \cap M = N \cap (M_1 \oplus M_2) \), then \(N = (N \cap M_1) \oplus (N \cap M_2) \), we get \(\frac{N}{K \oplus M_2} \ll \frac{M_1}{K} \). Moreover, it is easily seen that \(K \oplus M_2 \) is a direct summand of \(M \). Thus \(M \) is hollow–J-lifting.

Proposition (2.12): Let \(M \) be an \(R \)-module. Then \(M \) is hollow–J-lifting module if and only if for every submodule \(N \) of \(M \) with \(\frac{M}{N} \) is hollow, there exists an idempotent \(f \in \text{End}(M) \) with \(f(M) \subseteq N \) and \((I - f)(N) \ll (I - f)(M) \).

Proof: (\(\Rightarrow \)) Let \(N \) be a submodule of \(M \) with \(\frac{M}{N} \) is hollow. Since \(M \) is hollow–J-lifting, then by Theorem (2.8), \(N \) has a \(J \)– supplement \(K \) in \(M \) such that \(N \cap K \) is a direct summand of \(K \). Then \(M = N + K \), \(N \cap K \ll K \) and \(N = (N \cap K) \oplus X \), \(X \subseteq \subseteq N \). Then \(M = N + K = (N \cap K) \oplus X \subseteq \subseteq X + K \) and \(N \cap K \cap X = K \cap X = \{0\} \), and hence \(M = K \oplus X \). Now we define that the following map \(f : M \rightarrow X \) is the natural projection map. One can easily show that \(f \) is idempotent and \(f(M) \subseteq X \).

Since \(X \subseteq \subseteq N \), then \(f(M) \subseteq \subseteq N \). Now, \((I - f)(M) = \{(I - f)(m), m \in M\} = \{(I - f)(a + b), a \in X, b \in K\} \). Let \(x \in (I - f)(N) \), then there is \(n \in N \), such that \(x = (I - f)(n) = n - f(n) \). Thus \(x \in N \) and \(x \in (I - f)(M) \). So \(x \in N \cap (I - f)(M) \). Hence, \((I - f)(N) \subseteq N \cap (I - f)(M) \). Let \(d \in N \cap (I - f)(M) \),
then \(d \in N \) and \(d \in (I - f)(M) \). There is \(y \in M \) such that \(d = (I - f)(y) = y - f(y) \). Thus \(d + f(y) = y \in N \), then \(d \in (I - f)(N) \). So \((I - f)(N) = N \cap (I - f)(M) = N \cap K \ll j K \). Hence \((I - f)(N) \ll j (I - f)(M) \).

\[\iff \] Let \(N \) be a submodule of \(M \) with \(\frac{M}{N} \) is hollow. By our assumption, there exists an idempotent \(f \in \text{End}(M) \) with \(f(M) \subseteq N \) and \((I - f)(N) \ll j (I - f)(M) \). Claim that \(M = f(M) \oplus (I - f)(M) \). To show that, let \(m \in M \), then \(m = m + f(m) - f(m) = f(m) + m - f(m) = f(m) + (I - f)(m) \). Thus, \(M = f(M) + (I - f)(m) \). Now, let \(w \in f(M) \cap (I - f)(M) \), then \(w = f(m_1) \) and \(w = (I - f)(m_2) \), for some \(m_1, m_2 \in M \). So \(f(w) = f(m_1) = f((I - f)(m_2)) = f(m_2) - f(m_2) = 0 \). Then \(f(m_1) = f(m_2) = 0 \), hence \(w = 0 \). Thus, \(M = f(M) \oplus (I - f)(M) \). Clearly, \(N \cap (I - f)(M) = (I - f)(N) \). Since \((I - f)(N) \ll j (I - f)(M) \), then \(N \cap (I - f)(M) \ll j (I - f)(M) \). Thus \(M \) is hollow–J–lifting.

3. \(\text{FI–Hollow–J–Lifting modules} \)

In this section, we introduce the concept of fully invariant hollow J–lifting modules and we illustrate it by some examples. We also give some basic properties.

Recall that an \(R \)--module \(M \) is called \textbf{FI–hollow–lifting} if, for every fully invariant submodule \(N \) of \(M \) with \(\frac{M}{N} \) is hollow, there exists a direct summand \(K \) of \(M \), such that \(K \subseteq N \) in \(M \) [6].

\textbf{Definition (3.1)}: Let \(M \) be an \(R \)--module . \(M \) is called \(\text{FI–hollow–Jacobson–lifting module} \) (for short \(\text{FI–hollow–J–lifting} \)), if for every fully invariant submodule \(N \) of \(M \) with \(\frac{M}{N} \) is hollow, there exists a submodule \(K \) of \(M \), such that \(M = K \oplus K \) and \(K \subseteq \text{Jce} N \) in \(M \).

\textbf{Examples and Remarks (3.2)}:
1) It is clear that \(Z \) as \(Z \)--module is \(\text{FI–hollow–J–lifting} \).
2) \(Q \) as \(Z \)--module is not \(\text{FI–hollow–J–lifting} \).
3) Every \(\text{FI–hollow–J–lifting} \) is \(\text{FI–hollow–J–lifting} \).
4) Every \(\text{FI–hollow–lifting} \) is \(\text{FI–hollow–J–lifting} \). But the converse is not true in general. For an example of \(Z \)--module, assume that \(Z \) as \(Z \)--module is \(\text{FI–hollow–lifting} \). Since \(2Z \) is fully invariant submodule of \(Z \), such that \(\frac{Z}{2Z} \) is hollow, there is a direct summand \(K \) of \(Z \), such that \(K \subseteq 2Z \) in \(Z \). But \(Z \) is indecomposable \(Z \)--module, so \(K = 0 \). Hence \(2Z \ll Z \), which is a contradiction, since \(2Z + 3Z = Z \), but \(3Z \neq Z \).

\textbf{Proposition (3.3)}: An \(R \)--module \(M \) is \(\text{FI–hollow–J–lifting} \), if and only if every fully invariant submodule \(N \) of \(M \) with \(\frac{M}{N} \) is hollow, there exists a submodule \(K \) of \(N \), such that \(M = K \oplus B \), where \(B \subseteq M \) and \(N \cap B \ll j B \).

\textbf{Proof}: \(\Rightarrow \) Let \(N \) be a fully invariant submodule of \(M \) with \(\frac{M}{N} \) is hollow. Since \(M \) is \(\text{FI–hollow–J–lifting} \), then there is a submodule \(K \) of \(M \) such that \(K \subseteq \text{Jce} N \) in \(M \) and \(M = K \oplus B \), where \(B \subseteq M \). Let \(\varphi : \frac{M}{K} \rightarrow B \), be a mapping defined by \(\varphi(m + K) = b \) with \(m = k + b \), where \(k \in K \) and \(b \in B \). One can easily observe that \(\varphi \) is an isomorphism. Since \(\frac{N}{K} \ll j \frac{M}{K} \), then \(\varphi \left(\frac{N}{K} \right) \ll j \frac{B}{K} \) [3, Proposition (2.6.5)].

Also \(\varphi \left(\frac{N}{K} \right) = \{ \varphi(x + y + K) \mid x \in K \text{ and } y \in (N \cap B) \} = \{ y \mid y \in (N \cap B) \} = N \cap B \), so \(N \cap B \ll j B \).

\(\Leftarrow \) Let \(N \) be a fully invariant submodule of \(M \) with \(\frac{M}{N} \) hollow, then by our assumption, there exists a submodule \(K \) of \(N \), such that \(M = K \oplus B \), and \(N \cap B \ll j B \). Now, we want to show that \(K \subseteq \text{Jce} N \) in \(M \). Let \(\frac{N}{K} = \frac{X}{K} = \frac{M}{K} \), with \(J\left(\frac{M}{X} \right) = \frac{M}{X} \), to prove that \(\frac{X}{K} = \frac{M}{K} \), where \(X \) is a submodule of \(M \) containing \(K \). By the modular law, \(N = N \cap M = N \cap (K \oplus B) = K \oplus (N \cap B) \). Then \(M = N + X = K + (N \cap B) + X = (N \cap B) + K + X \), since \(J\left(\frac{M}{X} \right) = \frac{M}{X} \), by [3, Corollary(2.3)] \(J\left(\frac{M}{X+K} \right) = \frac{M}{X+K} \), and \(N \cap B \ll j B \). Also, by the above cited study [3, Proposition (2.6.4)] \(N \cap B \ll j M \). So \(M = K + X \). But \(K \subseteq X \), therefore \(M = X \), hence \(\frac{X}{K} = \frac{M}{K} \) and \(N \cap B \ll j \frac{M}{K} \). Thus \(K \subseteq \text{Jce} N \) in \(M \). So \(M \) is \(\text{FI–hollow–J–lifting} \).
Corollary (3.4) : An R–module M is FI–hollow–J–lifting, if and only if for every fully invariant submodule N of M with $\frac{M}{N}$ is hollow, there exists a submodule K of N, such that $M = K \oplus B$, where $B \subseteq M$ and $N \cap B \ll J M$.

Proof : It is clear [3, Proposition (2.6(4))].

Theorem (3.5) : An R–module M is FI–hollow–J–lifting, if and only if for every fully invariant submodule N of M with $\frac{M}{N}$ is hollow, there exists a J–supplement K in M such that $K \cap N$ is a direct summand of N.

Proof : By the same argument of the proof of the Theorem (2.8).

Theorem (3.6) : Let M be an R–module. Then the following statements are equivalent.
1) M is FI–hollow–J–lifting.
2) Every fully invariant submodule N of M with $\frac{M}{N}$ is hollow can be written as N = K \oplus L, with K is a direct summand of M and L \ll J M.
3) Every fully invariant submodule N of M with $\frac{M}{N}$ is hollow can be written as N = K + L, with K is a direct summand of M and L \ll J M.

Proof : By the same argument of the proof of the Theorem (2.9).

Proposition (3.7) : Let M be an R–module. If M is FI–hollow–J–lifting module, then $\frac{M}{N}$ is FI–hollow–J–lifting module, for every fully invariant submodule N of M.

Proof : By the same argument of the proof of the Proposition (2.4).

Corollary (3.8) : Let M be a duo FI–hollow–J–lifting module. Then every direct summand of M is FI–hollow–J–lifting.

Proof : It is clear by Proposition (3.7).

Proposition (3.9) : Let M_1 and M_2 are FI–hollow–J–lifting modules if and only if M = M_1 \oplus M_2 is FI–hollow–J–lifting.

Proof : \(\Rightarrow\) Let N be a fully invariant submodule of M with $\frac{M_{1}}{N}$ is hollow, then $M = M_{1} \oplus N$ or $M = M_{2} \oplus N$. Suppose that $M = M_{1} \oplus N$ (the case $M = M_{2} \oplus N$ being analogous), where $N \subseteq M_{1}$, $M = M_{1} \oplus N$, then $\frac{M}{N} = \frac{M_{1} \oplus N}{M_{1} \cap N}$ is hollow. Then $M_{1} \cap N$ is a fully invariant submodule of M.

Since M_{1} is FI–hollow–J–lifting, we have $M_{1} \cap N = L_{1} \oplus S_{1}$, where L_{1} is a direct summand of M_{1} and $S_{1} \ll J M_{1}$. In a similar method, we have $M_{2} \cap N = L_{2} \oplus S_{2}$, where L_{2} is a direct summand of M_{2} and $S_{2} \ll J M_{2}$.

Then $N = L \oplus S$, where $L = L_{2} \oplus T_{2}$ is a direct summand of M and $S = S_{1} \oplus S_{2} \ll J M$.

Therefore, $M = M_{1} \oplus M_{2}$ is FI–hollow–J–lifting (by Theorem (3.6)).

\(\Leftarrow\) It is clear by Corollary (3.8).

Recall that an R–module P is called projective cover of M, if P is projective and there exists an epimorphism $f : P \rightarrow M$ with Ker $f \ll P$ [7].

Proposition (3.10) : Let M be a projective module and J(M) = M. Then the following statements are equivalent.
1) M is FI–hollow–J–lifting module.
2) For every fully invariant submodule N of M with $\frac{M}{N}$ is hollow, then $\frac{M}{N}$ has projective cover.

Proof : (1)\(\Rightarrow\)(2) Let N be a fully invariant submodule of M with $\frac{M}{N}$ is hollow. Since M is FI–hollow–J–lifting module, then by Proposition (3.3), there exists a submodule K of N, such that $M = K \oplus \tilde{K}$, for some $\tilde{K} \subseteq M$ and $N \cap K \ll J \tilde{K}$. Now, consider the following two short exact sequences.

\[0 \rightarrow N \overset{\iota_{1}}{\rightarrow} N + \tilde{K} \overset{T_{1}}{\rightarrow} \frac{N + \tilde{K}}{N} \rightarrow 0\]

\[0 \rightarrow N \cap \tilde{K} \overset{\iota_{2}}{\rightarrow} \tilde{K} \overset{T_{2}}{\rightarrow} \frac{N \cap \tilde{K}}{N \cap \tilde{K}} \rightarrow 0\]

where ι_{1}, ι_{2} are the inclusion maps and T_{1}, T_{2} are the natural epimorphisms. By the second isomorphism theorem, $\frac{M}{N} = \frac{N + \tilde{K}}{N} \cong \frac{K}{N \cap \tilde{K}}$. Since M is a projective and \tilde{K} is a direct summand of M, then \tilde{K} is a projective. But Ker $T_{2} = N \cap \tilde{K} \ll J \tilde{K}$ and J(M) = M. By the above cited study [3,
Proposition (2.5)] , \(N \cap \hat{K} \ll \hat{K} \). Therefore, \(\hat{K} \) is projective cover of \(\frac{K}{N \cap \hat{K}} \). Since \(\frac{M}{N} \cong \frac{K}{N \cap \hat{K}} \), thus \(\frac{M}{N} \) has a projective cover.

(2)\(\Rightarrow \) (1) Let \(N \) be a fully invariant submodule of \(M \) with \(\frac{M}{N} \) is hollow, and let \(\varphi : M \rightarrow \frac{M}{N} \) be the natural epimorphism. By (2), \(\frac{M}{N} \) has projective cover. Thus by an earlier article [8, Lemma 17.17], there exists a decomposition \(M = M_1 \oplus M_2 \), such that \(\frac{\varphi}{M_2} : M_2 \rightarrow \frac{M}{N} \) is projective cover and \(M_1 \subseteq \text{Ker} \varphi \). This implies that \(M_1 \subseteq N \) and \(\text{Ker} \left(\frac{\varphi}{M_2} \right) = N \cap M_2 \ll M_2 \). But \(J(M) = M \), and by the above cited study [3, Proposition (2.5)] , \(N \cap M_2 \ll M_2 \). Thus \(M \) is Fl–hollow–J–lifting, by Proposition (3.3).

References