Pseudo – Normal Operators

Adil G. Naoum and Sadiq N. Nassir

Department of Mathematics, College of Science, University of Baghdad. Baghdad-Iraq.

Abstract

 In this paper we introduce a class of operators on a Hilbert space that contains properly the classes of normal operator, hyponormal operators, M – hyponormal operators, *- paranormal operators and dominat operators. We also give some properties of these operators. We call these operators Pseudonormal.

الخلاصة

في هذا البحث ندرس صنفا من المؤثرات على فضاء هلبرت يضم كــلا من صـنف المـؤثرات الـسوية المؤثرات فوق السوية ، المؤثرات فوق السوية مـن النمــط M ، المـؤثرات الموازيـة للـسوية مـن الـنمط * والمـؤثرات المهيمنــة ويطلــق علــى هــذا الــصنف اســم صــنف المــؤثرات الــسوية الكاذبــة. كمــا نــدرس بعــض خــواص هــذه المؤثرات.

Introduction

 Let H be a separable a complex Hilbert space and B(H) be the Banach algebra of all bounded linear operators on H as is customary, we refer toT*T as the self commutator of T, and is denoted by [T*,T] the operator is normal operator if $[T^*,T]=0$ and T is hyponormal if $T^*T - TT^* \geq 0$. Or equivalently $||T^*x|| \le ||Tx|| \quad \forall x \in H$. The operator is called a dominant operator if for each $\lambda \in \mathcal{C}$ there exists a number $M_{\lambda} > 0$ such that

 $\|(T^* - \lambda) x\| \le M_\lambda \| (T - \lambda) x\|$ for all $x \in H$. Furthermore if the constants M_{λ} are bounded by a positive number M, then T is called Mhyponormal

Operator $[4]$, finally the operator Tis called a^* paranormal operator if $||T^* \times ||^2 \le ||T^2 \times ||$ for every unit vector x in H,[5].

In this paper we introduce a class of operators that contains the class of* - paranormal operators, dominant operators properly. In particular, it contains the class of normal operators, hyponormal operators and M- hyponormal operators. We call the elements of this class pseudo normal operators We study the basic properties of these operators of these operator and we give some sufficient conditions for a pseudo normal operator to be normal.

1 : Difinition 1.1

Let $T \in B(H)$. We call T a pseudo normal operator if $Tx = \lambda x$ for some $x \in H$, $\lambda \in \mathfrak{C}$, then $T^*x = \overline{\lambda}x$, i.e., if x is an eigen vector for T with eigen value λ then x is an eigenvector for T* with eigen- value λ .

Examples 1.2

- 1. It is clear that if $\sigma_p(T) = \Phi$ then T is psendonormal operator where $\sigma_p(T)$ is the point spectrum of T.
- 2. Let H= $\ell_2(\phi) = \{x:x=(x_1, x_2, x_3, \ldots, xn, \ldots)\}$: 2 $\left| \begin{array}{c} 0 \\ \end{array} \right|$ $\langle \infty \rangle$ $i = l$ *x* ∞ $\sum_{i=l} |x_i| < \infty$ the unilateral shift is the operator on H defined by $U(x_1, x_2, x_3,...)$ $=(0,x_1, x_2, ...)$. It is known that U has no eigenvalues hence is pseudo normal operator.
- 3. Let $H=L^2[0,1]=\{f; f:[0,1] \rightarrow R \text{ such that }$ $\int_{0}^{1} |f(x)|^{2} < \infty$ } the Volterra integration $\mathbf{0}$

operator v is defined on H, as folloews:

$$
(vf)_x = \int_0^x f(y) \, dy \quad [3.p.98],
$$

It is known that every Volterra operator isquasinilpotent operator i.e $\sigma(T) = \{0\}$ and

 $\sigma_p(v) = \Phi$. hence v is pseudo normal operator. Now we give an example of an operator that is not pseudo normal operator.

4. Let $H = \ell_2(\phi)$, define T: $H \rightarrow H$ as follows: $T(X_1, X_2, X_3, \ldots) = (0, X_1, 0, 0, 0, \ldots)$. It is easy to check that

 $T^*(X_1, X_2, X_3, ...) = (X_2, 0,0,0,...)$ and T is nilpotenet operator, $σ(T) = {0}.$

If we take $X=(0, X_2, X_3, ...)$ such that $X_2 \neq 0$ then TX = 0 but T*X = T*(0,X₂, X₃...) \neq 0 Therefore, T is not pseudo normal operator .

Remark 1.3

- 1. It is easy to see that every dominant, in particular, every M- hyponormal normal operator is pseudo normal operator.
- 2. Every * paranormal operator is pseudo normal, to see this let $Tx = \lambda x$, we my assume $\|x\| = 1$, then $\|T^*x\|^2 \le \|T^2x\| = |\lambda|^2$. Now $\|(T^* - \overline{\lambda}I)x\|^2 \leq \|T^*x\|^2 - \overline{\lambda} < Tx, x$ $> -\lambda < x$, $Tx > + |\lambda|^2 \leq 0$. Therefore $||T^* \bar{\lambda}$ Ix \parallel ² = 0 which implies $T^*x = \overline{\lambda} x$.
- 3. Note that if λ is an eigen value for T and $\bar{\lambda}$ is eigenvalue for T* then it is not necessary that T is pseudo normal operator, see example $(1.2)(4)$.

For any operator $T \in B(H)$, we set $Re(T) =$ $\frac{1}{2}(T+T^*)$ and Im(T) = $\frac{1}{2}i(T-T^*)$

Propositin 1.4

 Let T be a pseudo normal operator, then 1- if $\Phi \neq \sigma_p(T) \subset R$ then

 $0 \in \sigma_{p}(\text{Im}(\text{T})\text{ and }\sigma_{p}(\text{T})\subseteq \sigma_{p}(\text{Re}(\text{T})).$

$$
2\text{-}\operatorname{Re}\,\sigma_p(T)\,\subseteq\sigma_p(\text{Re}T)\ \ \text{and}\ \ \, \text{Im}\sigma_p(T)\subseteq\sigma_p(\text{Im}T)
$$

3- If
$$
\sigma_p(T) \neq \varphi
$$
, then $0 \in \sigma_p([T^*,T])$

Proof

1- Since $\sigma_p(T) \neq \Phi$, then there exists $\lambda \in \mathfrak{e}$ such that Tx= λ x for $x \neq 0$

Now

$$
(\text{Im}T)x = \frac{1}{2i}(T - T^*)x = \frac{1}{2i}(Tx - T^*x)
$$

$$
= \frac{1}{2i}(\lambda x - \lambda x) = 0 \text{ hence}
$$

 $0 \in \sigma_p(\text{Im} T)$, let $\lambda \in \sigma_p(T)$, then TX= λx for $x \neq$ Now(ReT) $x = \frac{1}{2} [T + T^*] x = \frac{1}{2} [T + T^*x] = \frac{1}{2} (\lambda$ $+ \overline{\lambda}$)Ix = λ x, hence $\lambda \in \sigma_p(ReT)$.

2- If $\sigma_p(T) = \phi$ there is nothing to prove. Let $\lambda \in \sigma_p(T)$, then $Tx = \lambda x$ for some $x \neq 0$.

Now[Re(T) - Re λ] $x = \frac{1}{2}$ $\frac{1}{2}$ [(T+T*)- $(\lambda + \overline{\lambda})$ Ix]

$$
= \frac{1}{2} [(\text{T+}\text{T*}) \times - (\lambda + \overline{\lambda}) \text{Ix}]
$$

$$
= \frac{1}{2} [(\lambda x + \overline{\lambda x}) - (\lambda + \overline{\lambda}) \text{Ix}] = 0
$$

Therefore, $Re\lambda \in \sigma_p(ReT)$

$$
[\text{Im}T - (\text{Im}\lambda)I]x = \frac{1}{2i} [(T - T^*) - (\lambda - \overline{\lambda})I]x
$$

$$
= \frac{1}{2i} [(\text{T-T*})\text{x}-(\lambda - \overline{\lambda})\text{Ix}] = \frac{1}{2i} [(\lambda x - \overline{\lambda x})-\lambda x + \overline{\lambda}x]
$$

=0, hence Im(λ) $\in \sigma_p$ (ImT).

3. Since $\sigma_p(T) \neq \phi$, then there exists $\lambda \in \phi$ such that $Tx = \lambda x$ for some $x \neq 0 \in H$ Therefore $[T^*,T]x = (T^*T - TT^*)x$

$$
= T^*(\lambda x) - T(\overline{\lambda}x) = |\lambda|^2 x - |\lambda|^2 x = 0
$$

Hence , $0 \in \sigma_p([T^*, T])$.

Recall that if T is an operator and λ is a scalar, the null space of the operator T- λ I is called the λ th eigenspace of T and is denoted by $E_T(\lambda)$, $E_T(\lambda)$ = $\{x \in H : Tx = \lambda x\}$, it is easy to check that $E_T(\lambda)$ is closed linear subspace of H, moreover, $E_T(\lambda) \neq$ $\{0\}$ if and only if λ is an eigenvalue for T. A non zero vector x is an eigenvector for T if x belongs to some λ - eigenvector of T.

Proposition 1.5.

Let T be a pseudo normal operator , then :

- **1-** E_T(λ) \perp E_T(M) whenever $\lambda \neq M$.
- **2** For a fixed scalar λ , $E_T(\lambda)$ redues T and

 $T \nvert E_{T(\lambda)}$ is normal operator, morever

$$
\sum_{\lambda \in \sigma_p(T)} \overline{\oplus E_T(\lambda)}
$$
 reduces T.

Proof

1. Let $x \in E_T(M)$ and $y \in E_T(\lambda)$ then

 $M(x,y) = (Mx,y) = (Tx,y) = (x,T^*y) = (x,\overline{\lambda}y) =$ $\lambda(x,y)$ Thus(M- λ)(x,y)= 0 but M $\neq \lambda$ then (x,y)=0

2- First we prove $E_T(\lambda)$ reduces T. We show that $E_T(\lambda)$ is invariant under T and T^{*}. $T(T^*x) = T(\overline{\lambda} x) = \overline{\lambda} (Tx) = \overline{\lambda} \lambda = \lambda (T^*x).$ Hence $E(\lambda) = \lambda(Tx)$ and $E(\lambda)$ is invariant under T.

 $T(T^*x)=T(\overline{\lambda}x)=\overline{\lambda}(Tx)=\overline{\lambda}\lambda x=-\lambda(T^*x)$. Hence $E_T(\lambda)$ is invariant under T^{*} and $E_T(\lambda)$ reduces T. To prove T $E_{T(\lambda)}$ is normal, Let $x \in E_T(\lambda)$ $T^*Tx = T^*(Tx) = T^*(\lambda x) = \lambda(T^*x) = |\lambda|^2x$.

On the other hand

$$
TT^*x = T(T^*x) = T(\overline{\lambda} x) = \overline{\lambda} (Tx) = |\lambda|^2 x .
$$

Therefore.

TT*x= T*Tx $\forall x \in E_T(\lambda)$ and T $|E_{T(\lambda)}|$ is normal, we leave the proof of the last assertion to the reader.

Before we give our next result we need a lemma.

Lemma 1.6

 Every *-paranormal operator T has an approximate eigenualue λ such that $|\lambda| = ||T||$,

Proof see [5].

Now by the above lemma. It is clear that example(1.2)(2) is not $*$ - paranormal operator but it is pseudo normal operator.

Proposition 1.7

Let T \in B(H) such that for all $\lambda \in \sigma_p(T)$ $|\lambda| = |T|$ then T is pseudo normal operator.

Proof

Let $x \in H$ such that $Tx = \lambda x$

Now $\left\| \begin{array}{ccc} (T^* - \overline{\lambda} I) & x \end{array} \right\|^2 = \langle (T^* - \overline{\lambda} I) \times (T^* - \overline{\lambda} I) \rangle$ $\overline{\lambda}$ Dx> $=$ <T*x –T*x> - <T*x, $\overline{\lambda}$ x> - < $\overline{\lambda}$ x.T*x > + $< \lambda x, \lambda x$ = $\left\|T^{*}x\right\|^{2}-\lambda <\!x, Tx\!>\!-\!\overline{\lambda} <\!{\rm Tx}, x\!>\!+\!|\lambda|^{2}\|x\|^{2}.$ \leq $||T^*||^2 ||x||^2 - |\lambda|^2 ||x||^2 - |\lambda|^2 ||x||^2 + |\lambda|^2 ||x||^2 = 0$

Therefor $T^*x = \overline{\lambda}x$ hence T is pseudo normal operator.

Theorem 1.8

 If T is pseudo normal operator then T can be expressed uniquely as the direct sum $T = T_1 \oplus T_2$ defined on the space $H=H_1 \oplus H_2$ with the following properties:

- 1. H_1 is the closure of the space spanned by the eigen vectors of T.
- 2. T_1 is normal.
- 3. $\sigma_p(T_2) = \phi$
- 4. T is normal if and only if T_2 is normal.

Proof

1. Let $H_1 = \sum_{\lambda \in \sigma_n(T)} \oplus$ (T) (λ) *T T p E* $\lambda \in \sigma$ λ) Since H_1^{\perp} is a closed linear subspace,

And $T_2 = T \vert_{H2}$ Then $H = H_1 \oplus H_2$ where $H_2 = H_1^{\perp}$ Let $T_1 =$ $T|_{H1}$

Then $T = T_1 \oplus T_2$ uniquely.

2. Let
$$
H_1 = E_T(\lambda_1) \oplus E_T(\lambda_2) \oplus E_T(\lambda_3) \oplus ...
$$

\nand $x \in H_1$. Then $x = x_{\lambda_1} + x_{\lambda_2} + x_{\lambda_3} + ...$
\nfor any
\n $x_{\lambda i} \in E_T(\lambda i)$, i. e., $x = \sum_{\lambda \in \sigma_p(T_1)} x_{\lambda i}$ for each I
\nand $\sum |x|_{\lambda i}^2 < \infty$.
\n $T_1^*T_1 \Biggl[\sum_{\lambda i \in \sigma_p(T_1)} x_{\lambda i} \Biggr] = T_1^* \Biggl[\sum_{\lambda i \in \sigma_p(T_1)} T_1 x_{\lambda i} \Biggr]$
\n $= \lambda_1 T_1^* x_{\lambda_1} + \lambda_2 T_2^* x_{\lambda_2} + \lambda_3 T_3^* x_{\lambda_3} + ...$
\n $= |\lambda_1|^2 x_{\lambda_1} + |\lambda_2|^2 x_{\lambda_2} + |\lambda_3|^2 x_{\lambda_3} + ...$
\nAnd

$$
T_1 T_1 * x = T_1 T_1 * (x_{\lambda_1} + x_{\lambda_2} + x_{\lambda_3} + ..)
$$

= $\overline{\lambda_1}$ Tx_{\lambda_1} + $\overline{\lambda_2}$ Tx_{\lambda_2} + $\overline{\lambda_3}$ Tx_{\lambda_3} +

$$
= |\lambda_1|^2 x_{\lambda_1} + |\lambda_2|^2 x_{\lambda_2} + |\lambda_3|^2 x_{\lambda_3} +
$$

hence T₁ is normal

3. Suppose that, $\sigma_p(T_2) \neq \emptyset$ and let $M \in \sigma_p(T_2)$. Then there exists

 $x \neq 0 \in H_2$ such that $(T_2-M)x = 0$

Now $T(0 + x) = T_2x = Mx = M(0 + x)$.

 $H_2=H_1$ and $x\neq o$ therefor $\sigma_p(T_2)=\emptyset$

and T_2 is pseudo normal operator.

2 .Recall that a family of closed linear subspaces in H is said to be a total family in case the only vector x in H , which is orthogonal to every subspace of H belonging to the f a m i l y is X=0. $0 = r(T_2) = \lim_{n \to \infty}$ [l,p.l67].

The following theorem gives a condition under which a pseudo normal operator is normal operator.

Theorem 2.1

Let $T \in B(H)$ be a pseudo normal operator, if the eigen spaces, $E_T(\lambda)$ of T form a total family, then T is a normal operator compact operator but V is not normal operator.

Proof

Let H_0 be the null space of TT^* -T^{*}T, the **References**

Let $x \in E_T(M)$, thus $T^* x \in E_T(M)$. therefore company. New York.n. Y.
 $T^* = M(T^*x) = T^*(MX) = T^*Tx$ 2- Dowson H.R (1978) *spectral theory of operators*

It follows that if $x \perp H_0$, then $x \perp E_T(M)$ for all M

But the eigenspaces form a total family.
Hence x=o then **book** spinger-verlaging New York.
 $\frac{3}{4}$ - Hou., jinchaan (**1984**) "*Some Results on M*-

normal operator.

 Let T be a *-paranormal or dominant operator. If the eigen spaces, $E_T(\lambda)$ of T from a total family then T is normal operator.

Lemma 2.3 [3,P 96]

Let $T \in B(H)$ be a compact operator and $\lambda \neq 0 \in \sigma(T)$ Then $\lambda \in \sigma_p(T)$

Let T be a pseudo normal operator which satisfies the following conditions, then T is normal operator 1 - T is compact.

2- If $T_1 = T/\mu_0$ where M₀ is an invariant subspace

n 1 $\left\|T_1^n\right\| = \left\|T_1\right\|^n$ for every positive integer n

Proof

 Since T is pseudo normal operator , then by theorem 1.8

 $T = T_1 \oplus T_2$, where T_1 is normal operator and $\sigma_p(T_2)=\varnothing$

It is enough to show that T_2 is normal operator Thus $T^*T = TT^*$ if and only if $T_2^*T_2 = T_2T_2^*$ since T is compact then T_2 is compact. By lemma 2.3 and theorem 1.8.

> $\sigma(T_2)=0$ **Hence**

$$
0 = r(T_2) = \lim_{n \to \infty} \left\| T_2^{n} \right\|_{n}^{1} =
$$

 $\lim_{n\to\infty}$ T_2 = T_2 , [2, P.5]

Thus $T_2 = 0$ and T is normal operator .

Remark 2.5

 If T is a pseudo normal compact operator on H i t is not necessary T is normal operator, in fact, in example 1.2 (3) we see that V is a pseudo normal

- problem is to show that $H_0=H$ or equivalently H_0^{\perp} 1- Berberrian, S.K.(1976) "*Introduction to Hilbert space*". Second edition. Chelesa publising $c = \{0\}$ claim $E_T(M) \subseteq H_0$ for all M.

Let $x \in E_T(M)$ thus $T^* x \in E_T(M)$ therefore company. New York.n.Y.
- $TT^* = M(T^*x) = T^*(MX) = T^*Tx.$
 Acadimic press INC. London.
 Acadimic press INC. London.
	- 3- Halmos, P.R(1982), '*A Hilbert space problem Book*" springer- verlag New York.
- (TT*-T*T)x=0 \forall x \in H, thus T*T=TT* and T is hyponnormal operators" Jornal of math. Research and Exposition v, 4.
- ⁿ 5- RTOO C. (**1998**), "*some class of operatos*" Math. J, Toyamess univ. 21. **Corollary 2.2**